JP3721229B2 - Surface acoustic wave filter - Google Patents

Surface acoustic wave filter Download PDF

Info

Publication number
JP3721229B2
JP3721229B2 JP17293496A JP17293496A JP3721229B2 JP 3721229 B2 JP3721229 B2 JP 3721229B2 JP 17293496 A JP17293496 A JP 17293496A JP 17293496 A JP17293496 A JP 17293496A JP 3721229 B2 JP3721229 B2 JP 3721229B2
Authority
JP
Japan
Prior art keywords
idt
surface acoustic
saw
acoustic wave
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17293496A
Other languages
Japanese (ja)
Other versions
JPH09331233A (en
Inventor
吉隆 渡辺
Original Assignee
東洋通信機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋通信機株式会社 filed Critical 東洋通信機株式会社
Priority to JP17293496A priority Critical patent/JP3721229B2/en
Publication of JPH09331233A publication Critical patent/JPH09331233A/en
Application granted granted Critical
Publication of JP3721229B2 publication Critical patent/JP3721229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【0001】
【発明の属する分野】
本発明は弾性表面波フィルタに関し、特に、複数個の弾性表面波共振子を直列腕と並列腕とに配置した梯子型弾性表面波フィルタに関する。
【0002】
【従来の技術】
従来より携帯用通信機等には小型化に適した弾性表面波フィルタ(以下、SAWフィルタと云う)がRF及びIFフィルタとして使用されてきたが、近年の搬送周波数の高周波化に伴い、携帯電話等のRFフィルタ用として中心周波数が700〜2000MHz、通過帯域幅が20〜60MHzのSAWフィルタ実現の要望が高まっている。
無線機等に広く利用されてきた455kHzセラミックフィルタの回路構成である梯子型回路にならい、セラミック共振子を弾性表面波共振子(以下、SAW共振子と云う)に置き換えたタイプの梯子型SAWフィルタが、数年前より提案され実用化されている。該フィルタはQの高いSAW共振子のみで構成する共振子型フィルタであるため、低損失が得られること、通過域の急峻なカットオフ特性が得られること等の特徴を備えている。
【0003】
図5はこのような梯子型SAWフィルタの構成を示す構成図であって、2端子対回路の直列腕にSAW共振子11を、並列腕にSAW共振子12または13を梯子状に接続したものである。梯子型フィルタは、他の例えば、ヤーマン回路の様にトランス等を用いず、Qの高い共振子のみで多段接続のフィルタ回路を構成することができるため低損失であり、更に、同一圧電基板上に複数のSAW共振子を形成して梯子型SAWフィルタを構成すれば、小型化、量産性等に適しているという特徴を有する。図6は梯子型SAWフィルタに用いる各SAW共振子の基本構成を示した図であって圧電基板1の主面にIDT14とその両側に反射器15a、15bを形成した一般的なものであり、反射器間に振動エネルギーが閉じ込められる現象を利用するものである。ここで、WはIDTの交叉指幅であり、IDTの対数N、電極膜厚H等と共にSAW共振子の特性を左右する重要なファクターである。
【0004】
このような従来の梯子型SAWフィルタの濾波特性例は、例えば、36゜YカットX伝搬リチウムタンタレートを圧電基板とし、SAW共振子数は7素子とし、入出力端の並列腕にはIDT対数N=40、電極指交叉指幅W=28λ(λは該IDTが励起する弾性表面波の波長である。)、他の並列腕にはIDT対数N=80、電極指交叉指幅W=28λ、直列腕にIDT対数N=80、電極指交叉指幅W=10λのSAW共振子をそれぞれ配置すると、その濾波特性は図7のようになる。
【0005】
ところが図7から明らかなようにカットオフ特性は急峻さを欠き、減衰傾度も十分ではなく、フィルタの挿入損失が2.5dBと大きいという欠点がある。この原因は設計する際に一般的に使われている簡便な影像パラメータ法を用いて梯子型フィルタを構成したためであるを推測される。そこで、より良好な特性が期待できる動作パラメータ法を駆使すると共に種々パラメータを変更しながらシミュレーションを行ったところ、梯子型フィルタを構成するSAW共振子として容量比の異なるものを用いて、これを適宜直列腕、並列腕に配列することが必要となることが判明した。所望のフィルタ特性により異なるが、動作パラメータ法を用いた設計では、梯子型回路に用いるSAW共振子の容量比の最小値のものと最大値のものとの比率を概略2程度までの範囲で自由に選定することが必要となる。
【0006】
【発明が解決しようとする課題】
しかしながら、図6に示すような一般的なSAW共振子にあっては、各SAW共振子の容量比はほぼ同一であり、製造によるバラツキを考慮してもその差異は10%未満である。容量比を決定する最も重要な因子は圧電基板であり、同一基板上に容量比の異なるSAW共振子を構成することは困難である。他の決定因子としてはIDTの対数N、IDTの交叉指幅比W/λ、電極膜厚比H/λ及びIDT形状等があるもののこれらパラメータを変化させれば、容量比をある程度変化させることは可能であるが、自由に設定することは極めて困難であった。
【0007】
例えば、図5に示すように一枚の圧電基板上に複数のSAW共振子を同時に形成するのではなく、個別のSAW共振子を用いて梯子型SAWフィルタを構成する場合には、個別の容量を前記SAW共振子に並列接続して、見かけ上の容量比を可変することは容易であり、この手段は通常の水晶フィルタ等を梯子型で構成する場合には一般的に用いられてきた。また、この手段を一枚の圧電基板に複数のSAW共振子を形成するものに適用しようとしても、小型化と量産性が特徴であるSAWフィルタでは、個別容量を追加する余地もなく、たとえ追加が可能であるとしても小型化上問題となることは明らかである。
【0008】
本発明は上記課題を解決するためになされたものであって、SAW共振子の容量比を自由に設定できるSAW共振子を実現することであり、これを用いて梯子型SAWフィルタの濾波特性を改善し、良好なSAWフィルタを提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために本発明に係る弾性表面波フィルタの請求項1記載の発明は、圧電基板上に所定のパターンの複数の弾性表面波共振子を梯子型回路の直列腕と並列腕のそれぞれに配置した帯域通過フィルタ回路において、前記弾性表面波共振子の少なくとも一つがIDTの電極指部を伝搬方向に沿って複数部分に分割されており、且つ、前記分割電極指部間の間隔を波長の0.55〜0.85倍としたことを特徴とする弾性表面波フィルタである。請求項2記載の発明は、前記圧電基板が36゜±3゜または41゜±1゜YカットX伝搬リチウムタンタレートであることを特徴とする請求項1記載の弾性表面波フィルタである。
【0010】
【発明の実施の形態】
以下、本発明を図面に示した実施の形態に基づいて詳細に説明する。
図1は本発明に係る梯子型SAWフィルタを構成するSAW共振子の構成の一実施例を示す図であって、例えば、36゜YカットX伝搬リチウムタンタレート基板の主面上に、弾性表面波の伝搬方向に沿って対数がN対のIDT2を配置し、該IDTを間隔Dを設けて電極指部3と4とに2分割すると共に、IDT2の両側に反射器5aと5bとを配置するように構成したSAW共振子である。ここでIDT電極指部3と4の電極指ピッチはほぼ等しく、該電極指部3と4の間隔Dは、利用する弾性表面波の波長λの0.55〜0.85倍とする。また、IDTと反射器との間隔は励起される弾性表面波の半波長分とする。
【0011】
このSAW共振子の電極指部3と4との間に設けた間隔Dの距離を変更すると、図2に示すようにSAW共振子の容量比がこれに応じて変化する。ここで、横軸はIDT2により励起される弾性表面波の波長λで間隔Dを基準化したD/λであり、縦軸は容量比倍率(容量比倍率とは前記IDT電極指間の間隔Dがλ/2の時、即ち、従来の電極指配置における容量比と間隔Dを形成した時の容量比との比をいう)を表している。この図から明らかなように基準化間隔D/λ即ち、間隔Dを変えることによって、該SAW共振子の容量比を大幅に変化させることが可能となり、動作パラメータによる梯子型フィルタで必要な種々の容量比を実現することが出来る。
前述のように、図6のSAW共振子を梯子型回路に用いた場合、SAW共振子の容量比の最小値のものと最大値のものとの差異は10%未満(容量比倍率で1.1未満)であったために特性劣化を引き起こしたものと考えられる。従って、容量比倍率は少なくとも1.1以上は必要であり、また、動作パラメータ法を用いた設計では容量比倍率を2程度までの範囲で選定する必要がある。このような範囲に容量比倍率を選定するには、図2より間隔Dを波長の0.55〜0.85倍に設定すれば良いことが分かる。
【0012】
図3は本発明を適用した弾性表面波フィルタの特性例を示す図である。即ち、図7に示した従来の梯子型SAWフィルタの各SAW共振子について適切な容量比を求め、これを実現すべく本発明に基づいて各SAW共振子のIDTを所定の間隔をもって分割構成した梯子型SAWフィルタの特性を示す図である。なお圧電基板は36゜YカットX伝搬リチウムタンタレート基板であり、梯子型回路のSAW共振子数は7素子とし、入出力端の並列腕にはIDT対数N=40、電極指交叉幅W=28λ、他の並列腕にはIDT対数N=80、電極指交叉幅W=28λ、 直列腕にIDT対数N=80、電極指交叉幅W=10λのSAW共振子をそれぞれ配置した。図3に示す如く中心周波数は836.5MHzで、図7に示した従来例に比べると明らかなように通過帯域のカットオフ特性は急峻であり、減衰傾度も改善され、しかも、阻止域減衰量を十分に確保し且つ、挿入損失が(2dB以下に)低減されたものであることが理解できよう。
【0013】
図4は本発明の他の実施例を示すSAW共振子の電極指構成例の図であって、この例では36゜YカットX伝搬リチウムタンタレート基板1の主面上に、弾性表面波の伝搬方向に沿ってIDT対数がN対のIDT6を配置し、該IDT6の電極指部のみをIDT電極指部7、8および9に分割すると共に、IDT6の両側に反射器10aと10bを配置するように構成したSAW共振子である。ここでIDT電極指部7と8の間隔、IDT電極指部8と9の間隔を同じくDとし、該間隔Dを前記IDTが励起する波長λの0.55〜0.85倍とすることによって、図1の本発明に係るSAW共振子と同様な効果即ち、間隔DによりSAW共振子の容量比を大幅に可変することができる。
なお、以上SAW共振子の構成としてIDTを2分割および3分割した例について説明したが、図示した以外の箇所に間隙を設けても、同等の効果が得られ、また分割数は更に多くてももよい。また、IDT分割の位置と、数と幅を適宜選択して組み合わせれば任意の容量比を実現することができる。
【0014】
また、本発明を36゜YカットX伝搬リチウムタンタレートを基板とし、中心周波数836.5MHzの携帯電話用RFフィルタを例として説明したが、本発明はこれのみに限定されるものではなく、適当な基板、電極材料、電極膜厚、IDT対数、交差幅、反射器本数とすることにより同様な構成で梯子型SAWフィルタが実現することは明白であり、中心周波数も弾性表面波が励振可能な範囲であればよい。また、IDT電極指ピッチと反射器電極指ピッチ比率の補正、IDTと反射器電極の間隔補正およびIDT電極への重み付けと云ったSAW共振子に於いて周知の技術を適用して特性の改善を図ることも可能である。
【0015】
更に、本発明に係るSAW共振子を用いることにより各種のフィルタ、例えばチェビシェフフィルタ、振幅平坦フィルタ(ButterworthあるいはWagner特性)や遅延平坦特性フィルタへも適用できることは言うまでもない。梯子型SAWフィルタの構成例として図5に両端が並列腕共振子で構成される場合について示したが、両端が直列腕共振子および並列腕共振子の任意の組み合わせで終わる構成が可能なことは自明である。
【0016】
【発明の効果】
本発明は以上説明した如く構成するものであるから、SAW共振子の容量比をマスクパターンによって任意の値に設定することができ、設計手法として動作パラメータ法が採用できるため、通過帯域特性と阻止域特性のバランスの良好な梯子型SAWフィルタを実現することが出来る。その結果、イメージパラメータ法による特性に比較して、通過帯域のカットオフ特性は急峻であり、減衰傾度は改良され、阻止域減衰量は増大し、且つ挿入損失も低減することが出来、特に梯子型SAWフィルタの特性改善をする上で著しい効果を発揮する。
【図面の簡単な説明】
【図1】本発明に係る一実施例で、梯子型SAWフィルタの構成要素に用いられる共振子のIDT構成を示す模式図である。
【図2】SAW共振子のIDT電極指部間距離と容量比倍率の関係を示す図である。
【図3】本発明になるSAW共振子を用いて構成した梯子型SAWフィルタの濾波特性を示す図である。
【図4】本発明に係る他の実施例で、SAW共振子に適用したIDT電極指部の構成を示す模式図である。
【図5】従来から用いられている梯子型SAWフィルタの構成を示す図である。
【図6】従来構成のSAW共振子のIDT及び反射器の構成を示す図である。
【図7】従来構成の梯子型SAWフィルタの濾波特性を示す図である。
【符号の説明】
1 圧電基板
2、6 IDT
3、4、7、8、9 IDT電極指部
5a、5b、10a、10b 反射器
D IDT電極指部間の間隔
[0001]
[Field of the Invention]
The present invention relates to a surface acoustic wave filter, and more particularly to a ladder-type surface acoustic wave filter in which a plurality of surface acoustic wave resonators are arranged in a series arm and a parallel arm.
[0002]
[Prior art]
Conventionally, surface acoustic wave filters (hereinafter referred to as SAW filters) suitable for miniaturization have been used as RF and IF filters in portable communication devices and the like, but with the recent increase in carrier frequency, cellular phones There is an increasing demand for realizing a SAW filter having a center frequency of 700 to 2000 MHz and a passband width of 20 to 60 MHz.
A ladder-type SAW filter of a type in which a ceramic resonator is replaced with a surface acoustic wave resonator (hereinafter referred to as a SAW resonator) in accordance with a ladder-type circuit that is a circuit configuration of a 455 kHz ceramic filter that has been widely used in radio equipment and the like. However, it has been proposed and put into practical use several years ago. Since the filter is a resonator type filter composed of only a SAW resonator having a high Q, it has characteristics such as low loss and a steep cut-off characteristic in the pass band.
[0003]
FIG. 5 is a block diagram showing the configuration of such a ladder-type SAW filter, in which a SAW resonator 11 is connected to a series arm of a two-terminal pair circuit, and a SAW resonator 12 or 13 is connected to a parallel arm in a ladder shape. It is. The ladder type filter has a low loss because it can form a multistage connection filter circuit only with a resonator having a high Q without using a transformer or the like like other Yarman circuits, and further, on the same piezoelectric substrate. If a plurality of SAW resonators are formed to form a ladder-type SAW filter, it is suitable for downsizing, mass productivity, and the like. FIG. 6 is a diagram showing a basic configuration of each SAW resonator used in the ladder-type SAW filter, in which the IDT 14 is formed on the main surface of the piezoelectric substrate 1 and the reflectors 15a and 15b are formed on both sides thereof. This utilizes the phenomenon in which vibration energy is confined between the reflectors. Here, W is the cross finger width of the IDT, and is an important factor that influences the characteristics of the SAW resonator together with the logarithm N of the IDT, the electrode film thickness H, and the like.
[0004]
Examples of the filtering characteristics of such a conventional ladder-type SAW filter include, for example, 36 ° Y-cut X-propagating lithium tantalate as a piezoelectric substrate, seven SAW resonators, and an IDT logarithm on the parallel arm at the input / output terminals. N = 40, electrode finger cross finger width W = 28λ (λ is the wavelength of the surface acoustic wave excited by the IDT), IDT logarithm N = 80 for other parallel arms, electrode finger cross finger width W = 28λ When SAW resonators having IDT logarithm N = 80 and electrode finger crossing finger width W = 10λ are arranged on the series arm, the filtering characteristics are as shown in FIG.
[0005]
However, as apparent from FIG. 7, the cutoff characteristics lack steepness, the attenuation gradient is not sufficient, and the filter insertion loss is as large as 2.5 dB. The reason for this is presumed to be that the ladder type filter is constructed using a simple image parameter method generally used in designing. Therefore, a simulation was performed while making full use of the operating parameter method that can be expected to provide better characteristics and changing various parameters. As a result, the SAW resonators constituting the ladder-type filter having different capacitance ratios were appropriately used. It was found that it was necessary to arrange in series arms and parallel arms. Depending on the desired filter characteristics, in the design using the operation parameter method, the ratio of the minimum value and the maximum value of the capacitance ratio of the SAW resonator used in the ladder-type circuit can be freely set within a range of approximately 2 It is necessary to select
[0006]
[Problems to be solved by the invention]
However, in a general SAW resonator as shown in FIG. 6, the capacity ratio of each SAW resonator is substantially the same, and the difference is less than 10% even when manufacturing variations are taken into account. The most important factor for determining the capacitance ratio is the piezoelectric substrate, and it is difficult to construct SAW resonators having different capacitance ratios on the same substrate. Other determinants include IDT logarithm N, IDT crossing finger width ratio W / λ, electrode film thickness ratio H / λ, and IDT shape, but changing these parameters will change the capacitance ratio to some extent. However, it was extremely difficult to set freely.
[0007]
For example, when a plurality of SAW resonators are not simultaneously formed on one piezoelectric substrate as shown in FIG. 5 and a ladder-type SAW filter is configured using individual SAW resonators, individual capacitors are used. It is easy to change the apparent capacity ratio by connecting the SAW resonator in parallel to the SAW resonator, and this means has been generally used in the case where an ordinary crystal filter or the like is configured in a ladder type. Also, even if this means is applied to one that forms a plurality of SAW resonators on a single piezoelectric substrate, the SAW filter, which is characterized by miniaturization and mass productivity, has no room to add individual capacitors, even if it is added. Even if it is possible, it is clear that there is a problem in miniaturization.
[0008]
The present invention has been made to solve the above-described problem, and is to realize a SAW resonator in which the capacitance ratio of the SAW resonator can be freely set. By using this, the filtering characteristics of the ladder-type SAW filter can be improved. The object is to improve and provide a good SAW filter.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a surface acoustic wave filter according to a first aspect of the present invention is characterized in that a plurality of surface acoustic wave resonators of a predetermined pattern are arranged on a piezoelectric substrate with a series arm and a parallel arm of a ladder circuit. In each bandpass filter circuit, at least one of the surface acoustic wave resonators is obtained by dividing an electrode finger portion of the IDT into a plurality of portions along a propagation direction, and an interval between the divided electrode finger portions is set. A surface acoustic wave filter having a wavelength of 0.55 to 0.85 times . The surface acoustic wave filter according to claim 1 is characterized in that the piezoelectric substrate is 36 ° ± 3 ° or 41 ° ± 1 ° Y-cut X-propagating lithium tantalate.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
FIG. 1 is a diagram showing an embodiment of the configuration of a SAW resonator constituting a ladder-type SAW filter according to the present invention. For example, an elastic surface is formed on the main surface of a 36 ° Y-cut X-propagating lithium tantalate substrate. An IDT 2 with a logarithm of N is arranged along the wave propagation direction, the IDT is divided into two electrode fingers 3 and 4 with a distance D, and reflectors 5a and 5b are arranged on both sides of the IDT 2 This is a SAW resonator configured as described above. Here, the electrode finger pitches of the IDT electrode finger portions 3 and 4 are substantially equal, and the distance D between the electrode finger portions 3 and 4 is 0.55 to 0.85 times the wavelength λ of the surface acoustic wave to be used. Further, the interval between the IDT and the reflector is the half wavelength of the excited surface acoustic wave.
[0011]
When the distance D provided between the electrode fingers 3 and 4 of the SAW resonator is changed, the capacitance ratio of the SAW resonator changes accordingly as shown in FIG. Here, the horizontal axis is D / λ obtained by standardizing the interval D with the wavelength λ of the surface acoustic wave excited by the IDT 2, and the vertical axis is the capacitance ratio magnification (the capacitance ratio magnification is the interval D between the IDT electrode fingers). Is the ratio of the capacitance ratio in the conventional electrode finger arrangement and the capacitance ratio when the interval D is formed). As is apparent from this figure, by changing the standardization interval D / λ, that is, the interval D, the capacitance ratio of the SAW resonator can be changed greatly. Capacitance ratio can be realized.
As described above, when the SAW resonator of FIG. 6 is used in a ladder circuit, the difference between the minimum value and the maximum value of the capacitance ratio of the SAW resonator is less than 10% (capacity ratio magnification is 1. It is considered that the characteristic deterioration was caused. Accordingly, the capacitance ratio magnification must be at least 1.1 or more, and the design using the operation parameter method needs to select the capacitance ratio magnification within a range up to about 2. In order to select the capacitance ratio magnification in such a range, it can be seen from FIG. 2 that the interval D should be set to 0.55 to 0.85 times the wavelength.
[0012]
FIG. 3 is a diagram showing a characteristic example of a surface acoustic wave filter to which the present invention is applied. That is, an appropriate capacity ratio is obtained for each SAW resonator of the conventional ladder-type SAW filter shown in FIG. 7, and the IDT of each SAW resonator is divided at a predetermined interval according to the present invention to realize this. It is a figure which shows the characteristic of a ladder type SAW filter. The piezoelectric substrate is a 36 ° Y-cut X-propagation lithium tantalate substrate, the ladder type circuit has 7 SAW resonators, the parallel arms at the input and output ends have IDT logarithm N = 40, and electrode finger crossing width W = SAW resonators having 28λ, IDT logarithm N = 80 and electrode finger crossing width W = 28λ on the other parallel arms, and IDT logarithm N = 80 and electrode finger crossing width W = 10λ on the serial arms, respectively. As shown in FIG. 3, the center frequency is 836.5 MHz, and as is clear from the conventional example shown in FIG. 7, the cutoff characteristic of the pass band is steep, the attenuation gradient is improved, and the stopband attenuation amount is also obtained. It can be understood that the insertion loss is sufficiently ensured and the insertion loss is reduced (to 2 dB or less).
[0013]
FIG. 4 is a diagram of an electrode finger configuration example of a SAW resonator according to another embodiment of the present invention. In this example, a surface acoustic wave wave is formed on the main surface of the 36 ° Y-cut X-propagating lithium tantalate substrate 1. An IDT 6 with N pairs of IDTs is arranged along the propagation direction, only the electrode finger part of the IDT 6 is divided into IDT electrode finger parts 7, 8 and 9, and reflectors 10a and 10b are arranged on both sides of the IDT 6. The SAW resonator is configured as described above. Here, the interval between the IDT electrode finger portions 7 and 8 and the interval between the IDT electrode finger portions 8 and 9 are also D, and the interval D is 0.55 to 0.85 times the wavelength λ excited by the IDT. 1, the capacitance ratio of the SAW resonator can be greatly varied by the same effect as the SAW resonator according to the present invention of FIG.
Although the example in which the IDT is divided into two and three as the configuration of the SAW resonator has been described above, the same effect can be obtained even if a gap is provided in a place other than the illustrated one, and the number of divisions can be further increased. Also good. In addition, an arbitrary capacity ratio can be realized by appropriately selecting and combining the IDT division position, number, and width.
[0014]
Further, although the present invention has been described by taking as an example a mobile phone RF filter having a center frequency of 836.5 MHz using 36 ° Y-cut X-propagation lithium tantalate as a substrate, the present invention is not limited to this, and is suitable. It is clear that a ladder-type SAW filter can be realized with the same configuration by setting the appropriate substrate, electrode material, electrode film thickness, IDT logarithm, cross width, and number of reflectors, and surface acoustic waves can be excited at the center frequency. Any range is acceptable. In addition, by improving the characteristics by applying well-known techniques in SAW resonators such as correction of the IDT electrode finger pitch and reflector electrode finger pitch ratio, correction of the distance between the IDT and reflector electrodes, and weighting of the IDT electrodes. It is also possible to plan.
[0015]
Furthermore, it goes without saying that the SAW resonator according to the present invention can be applied to various filters, for example, a Chebyshev filter, an amplitude flat filter (Butterworth or Wagner characteristic), and a delay flat characteristic filter. As a configuration example of the ladder-type SAW filter, FIG. 5 shows a case where both ends are constituted by parallel arm resonators, but it is possible that a configuration in which both ends end with an arbitrary combination of a series arm resonator and a parallel arm resonator is possible. It is self-explanatory.
[0016]
【The invention's effect】
Since the present invention is configured as described above, the capacitance ratio of the SAW resonator can be set to an arbitrary value by a mask pattern, and the operation parameter method can be adopted as a design method. A ladder-type SAW filter with a good balance of band characteristics can be realized. As a result, compared with the characteristics by the image parameter method, the cutoff characteristic of the pass band is steep, the attenuation gradient is improved, the stop band attenuation is increased, and the insertion loss can be reduced. A remarkable effect is exhibited in improving the characteristics of the type SAW filter.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an IDT configuration of a resonator used as a constituent element of a ladder-type SAW filter in an embodiment according to the present invention.
FIG. 2 is a diagram showing a relationship between a distance between IDT electrode finger portions of a SAW resonator and a capacitance ratio magnification.
FIG. 3 is a diagram showing the filtering characteristics of a ladder-type SAW filter configured using the SAW resonator according to the present invention.
FIG. 4 is a schematic diagram showing a configuration of an IDT electrode finger portion applied to a SAW resonator in another embodiment according to the present invention.
FIG. 5 is a diagram showing a configuration of a ladder-type SAW filter used conventionally.
FIG. 6 is a diagram illustrating a configuration of an IDT and a reflector of a SAW resonator having a conventional configuration.
FIG. 7 is a diagram illustrating a filtering characteristic of a ladder-type SAW filter having a conventional configuration.
[Explanation of symbols]
1 Piezoelectric substrate 2, 6 IDT
3, 4, 7, 8, 9 IDT electrode fingers 5a, 5b, 10a, 10b Reflector D Distance between IDT electrode fingers

Claims (2)

圧電基板上に所定のパターンの複数の弾性表面波共振子を梯子型回路の直列腕と並列腕のそれぞれに配置した帯域通過フィルタ回路において、
前記弾性表面波共振子の少なくとも一つがIDTの電極指部を伝搬方向に沿って複数部分に分割されており、且つ、前記分割電極指部間の間隔を波長の0.55〜0.85倍としたことを特徴とする弾性表面波フィルタ。
In a bandpass filter circuit in which a plurality of surface acoustic wave resonators having a predetermined pattern are arranged on each of a serial arm and a parallel arm of a ladder circuit on a piezoelectric substrate,
At least one of the surface acoustic wave resonators is obtained by dividing the electrode finger portion of the IDT into a plurality of portions along the propagation direction, and the interval between the divided electrode finger portions is 0.55 to 0.85 times the wavelength. A surface acoustic wave filter characterized by that.
前記圧電基板が36゜±3゜または41゜±1゜YカットX伝搬リチウムタンタレートであることを特徴とする請求項1記載の弾性表面波フィルタ。2. The surface acoustic wave filter according to claim 1, wherein the piezoelectric substrate is a 36 ° ± 3 ° or 41 ° ± 1 ° Y-cut X-propagating lithium tantalate.
JP17293496A 1996-06-12 1996-06-12 Surface acoustic wave filter Expired - Fee Related JP3721229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17293496A JP3721229B2 (en) 1996-06-12 1996-06-12 Surface acoustic wave filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17293496A JP3721229B2 (en) 1996-06-12 1996-06-12 Surface acoustic wave filter

Publications (2)

Publication Number Publication Date
JPH09331233A JPH09331233A (en) 1997-12-22
JP3721229B2 true JP3721229B2 (en) 2005-11-30

Family

ID=15951067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17293496A Expired - Fee Related JP3721229B2 (en) 1996-06-12 1996-06-12 Surface acoustic wave filter

Country Status (1)

Country Link
JP (1) JP3721229B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3419339B2 (en) 1999-03-11 2003-06-23 株式会社村田製作所 Surface acoustic wave filters, duplexers, communication equipment
JP6825822B2 (en) * 2016-05-11 2021-02-03 京セラ株式会社 Capacitive element, elastic wave element and elastic wave module

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541787Y2 (en) * 1973-12-28 1979-01-26
JPS53112046A (en) * 1977-03-11 1978-09-30 Murata Manufacturing Co Elastic surface wave filter
JPS553281A (en) * 1978-06-22 1980-01-11 Matsushita Electric Ind Co Ltd Elastic surface wave filter
JPS5765917A (en) * 1980-10-11 1982-04-21 Murata Mfg Co Ltd Surface acoustic wave device
JPS58205320A (en) * 1982-05-25 1983-11-30 Toyo Commun Equip Co Ltd Electrode construction of surface acoustic wave resonator
JPS61157112A (en) * 1984-12-28 1986-07-16 Toshiba Corp Surface acoustic wave resonator
JPH0429245A (en) * 1990-05-25 1992-01-31 Matsushita Electric Ind Co Ltd Electrophotographic sensitive body
JPH04132409A (en) * 1990-09-25 1992-05-06 Hitachi Ltd Surface acoustic wave resonator
JPH04150607A (en) * 1990-10-15 1992-05-25 Toyo Commun Equip Co Ltd Leaky saw resonator
JPH0522074A (en) * 1991-07-11 1993-01-29 Hitachi Ltd Surface acoustic wave resonator, surface acoustic wave resonator composite filter and radio transmitter/ receiver
JP3390537B2 (en) * 1994-08-22 2003-03-24 富士通株式会社 Surface acoustic wave filter
JPH08204501A (en) * 1994-11-22 1996-08-09 Tdk Corp Surface acoustic wave filter

Also Published As

Publication number Publication date
JPH09331233A (en) 1997-12-22

Similar Documents

Publication Publication Date Title
KR100817849B1 (en) Elastic surface wave resonator and elastic surface wave filter using the same
KR0177907B1 (en) Surface acoustic wave filter
JP3449352B2 (en) Surface acoustic wave filter
US5844453A (en) Surface acoustic wave filter utilizing a transducer having interdigital electrodes and continuously adjacent electrodes
JPH06260876A (en) Surface acoustic wave filter
JPH11340783A (en) Surface acoustic wave filter
JP4687462B2 (en) SAW filter
JPH11312951A (en) Surface acoustic wave filter
JP3246906B2 (en) Branching filter
US7482895B2 (en) Surface acoustic wave filter
JP3721229B2 (en) Surface acoustic wave filter
JP3915322B2 (en) Surface acoustic wave filter
JPH10135780A (en) Structure of double mode saw filter
US6037700A (en) Surface acoustic wave device
JP3402015B2 (en) Surface acoustic wave filter
JP4138093B2 (en) Vertically coupled double mode SAW filter
JP2001156586A (en) Ladder type surface acoustic wave filter
JP3290165B2 (en) Ladder type surface acoustic wave filter
JP3327433B2 (en) Surface acoustic wave filter
JP2004048283A (en) Longitudinally coupled surface acoustic wave filter
JP2003174350A (en) Cascaded surface acoustic wave filter
JP2002111444A (en) Coupled surface acoustic wave filter
JP4004042B2 (en) Duplexer
JP3784146B2 (en) Surface acoustic wave filter
JP2002359541A (en) Resonator-type surface acoustic wave filter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees