JP2005311568A - Filter device and transceiver - Google Patents

Filter device and transceiver Download PDF

Info

Publication number
JP2005311568A
JP2005311568A JP2004123891A JP2004123891A JP2005311568A JP 2005311568 A JP2005311568 A JP 2005311568A JP 2004123891 A JP2004123891 A JP 2004123891A JP 2004123891 A JP2004123891 A JP 2004123891A JP 2005311568 A JP2005311568 A JP 2005311568A
Authority
JP
Japan
Prior art keywords
microresonator
input
microresonators
output
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004123891A
Other languages
Japanese (ja)
Inventor
Koji Nanbada
康治 難波田
Naohiro Tanaka
均洋 田中
Masahiro Tada
正裕 多田
Takashi Mitarai
俊 御手洗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004123891A priority Critical patent/JP2005311568A/en
Publication of JP2005311568A publication Critical patent/JP2005311568A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a filter device for developing a filtering function equivalent to that of a band-pass filter, without mutual mechanical connecting the beam electrodes of two minute resonators. <P>SOLUTION: A plurality of minute resonators 15, 16, 17, 18 are electrically interconnected in a lattice form among two input terminals for balanced input and two output terminals for balanced output, by respectively connecting the minute resonator 15 (16), each having a beam structure in series between the input terminal 11 (12) and the output terminal 13 (14) and by respectively connecting the minute resonator 17 (18), each having a beam structure in series in between the input terminal 11 (12) and the output terminal 14 (13). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、微小共振器を用いて構成されるフィルタ装置とこれを備える送受信機に関する。   The present invention relates to a filter device configured using a microresonator and a transceiver including the filter device.

近年、IT(Information Technology)の発展に伴って、ネットワークを利用するデバイスの数が飛躍的に増加している。そうした中で、特に、使い勝手などの面から、無線ネットワーク技術の需要が高まっている。無線通信で用いられるRFフロントエンドモジュールには、半導体チップのほかに、RFフィルタ(高周波数フィルタ)やIFフィルタ(中間周波数フィルタ)用にSAW(Surface Acoustic Wave)フィルタや誘電体フィルタなど、比較的サイズの大きい部品が組み込まれており、これらの部品の存在がRFフロントエンドモジュールの小型化や低コスト化を阻害する要因になっている。そこで、これらのフィルタ機能を半導体チップの中に取り込むことで、RFフロントエンドモジュールの小型化や低コスト化を実現しようとする試みが行われている。具体的には、微小電気機械システム(MEMS;Micro-Electro-Mechanical system)素子等を共振器として用いる技術が知られている。   In recent years, with the development of IT (Information Technology), the number of devices using a network has increased dramatically. Under such circumstances, the demand for wireless network technology is increasing especially from the viewpoint of usability. RF front-end modules used in wireless communication include semiconductor chips as well as SAW (Surface Acoustic Wave) filters and dielectric filters for RF filters (high frequency filters) and IF filters (intermediate frequency filters). Large-sized parts are incorporated, and the presence of these parts is a factor that hinders downsizing and cost reduction of the RF front-end module. Therefore, attempts have been made to realize a reduction in size and cost of the RF front-end module by incorporating these filter functions into a semiconductor chip. Specifically, a technique using a micro-electro-mechanical system (MEMS) element or the like as a resonator is known.

微小電気機械システム素子を用いた共振器(以下、微小共振器とも記す)は、半導体チップ上に半導体プロセスを用いて形成されるもので、共振器として機能させるためのビーム構造を有している。微小共振器は、デバイスの占有面積が小さいこと、高いQ値(エネルギー/損失の比)を実現できること、他の半導体デバイスとのインテグレーションが可能であること、などの特長をもっている。そこで、無線通信デバイスの中でも、周波数フィルタ(RFフィルタ、IFフィルタ)としての利用が提案されている。   A resonator using a microelectromechanical system element (hereinafter also referred to as a microresonator) is formed on a semiconductor chip using a semiconductor process, and has a beam structure for functioning as a resonator. . A microresonator has features such as a small device occupation area, a high Q value (energy / loss ratio), and integration with other semiconductor devices. Therefore, use as a frequency filter (RF filter, IF filter) has been proposed among wireless communication devices.

微小共振器は、ビーム電極と入出力電極とを微小なギャップを介して対向状態に配置し、ある周波数の信号を入力することにより、ビーム電極と入力電極との間に静電引力と静電反発力を交互に発生させてビーム電極を共振させ、これに伴うビーム電極と出力電極との間の微小なギャップ変化を電気信号として取り出す仕組みになっている。その際、微小共振器の出力電極からは、ビーム電極の共振周波数に対応した周波数帯域の信号が出力される。   In a microresonator, a beam electrode and an input / output electrode are arranged to face each other through a minute gap, and a signal of a certain frequency is input, whereby electrostatic attraction and electrostatic force are generated between the beam electrode and the input electrode. The beam electrode is resonated by generating repulsive force alternately, and a minute gap change between the beam electrode and the output electrode is extracted as an electric signal. At that time, a signal in a frequency band corresponding to the resonance frequency of the beam electrode is output from the output electrode of the microresonator.

このような微小共振器を用いたフィルタ装置(周波数フィルタ)として、下記非特許文献1に記載されたものが知られている。この非特許文献1に記載されたフィルタ装置においては、2つの微小共振器のビーム電極同士を棒状の弾性片で機械的に接続(連結)することにより、ある周波数帯域の信号を選択的に通す、いわゆるバンドパスフィルタとしての機能を実現している。   As a filter device (frequency filter) using such a microresonator, one described in Non-Patent Document 1 below is known. In the filter device described in Non-Patent Document 1, a signal in a certain frequency band is selectively passed by mechanically connecting (connecting) beam electrodes of two microresonators with rod-shaped elastic pieces. This realizes a function as a so-called band pass filter.

「IEEE Journal of Solid-state Circuits」,(米国),2000年4月,第35巻,第4号,p.512-526"IEEE Journal of Solid-state Circuits" (USA), April 2000, Vol. 35, No. 4, p. 512-526

しかしながら、上述のように2つの微小共振器のビーム電極同士を機械的に接続する場合はフィルタ構造が複雑になるとともに、製造プロセスに高い加工精度が要求される。そのため、フィルタ装置としての信頼性の低下や高コスト化を招いてしまう。   However, when the beam electrodes of the two microresonators are mechanically connected as described above, the filter structure is complicated and high processing accuracy is required for the manufacturing process. Therefore, the reliability as the filter device is reduced and the cost is increased.

本発明は、上記課題を解決するためになされたもので、その目的とするところは、2つの微小共振器のビーム電極同士を機械的に接続することなく、バンドパスフィルタと同等のフィルタ機能を発揮するフィルタ装置を実現することにある。   The present invention has been made in order to solve the above-mentioned problems, and its object is to provide a filter function equivalent to that of a band-pass filter without mechanically connecting the beam electrodes of two microresonators. It is to realize a filter device that exhibits.

本発明に係るフィルタ装置は、平衡入力用の2つの入力端子と平衡出力用の2つの出力端子との間に、ビーム構造を有する複数の微小共振器を電気的にラティス型に接続した構成となっている。また、本発明に係る送受信機は、上記構成のフィルタ装置を備えたものとなっている。   A filter device according to the present invention has a configuration in which a plurality of microresonators having a beam structure are electrically connected in a lattice shape between two input terminals for balanced input and two output terminals for balanced output. It has become. The transceiver according to the present invention includes the filter device having the above-described configuration.

本発明に係るフィルタ装置とこれを備える送受信機においては、2つの入力端子と2つの出力端子との間に、ビーム構造を有する複数の微小共振器をラティス型に電気的に接続することにより、バンドパスフィルタと同等のフィルタ機能を実現することが可能となる。   In the filter device according to the present invention and a transceiver including the same, by electrically connecting a plurality of microresonators having a beam structure in a lattice shape between two input terminals and two output terminals, A filter function equivalent to a band pass filter can be realized.

本発明によれば、2つの入力端子と2つの出力端子との間に、ビーム構造を有する複数の微小共振器をラティス型に電気的に接続することにより、バンドパスフィルタと同等のフィルタ機能を発揮するフィルタ装置を実現することができる。このフィルタ装置においては、微小共振器相互の接続が電気的に行われるため、2つの微小共振器のビーム電極同士を機械的に接続する場合に比較して、フィルタ構造が簡単になるとともに、フィルタ装置の製造が容易になる。したがって、フィルタ装置の小型化、低コスト化並びに信頼性の向上を図ることができる。   According to the present invention, a plurality of microresonators having a beam structure are electrically connected in a lattice shape between two input terminals and two output terminals, thereby providing a filter function equivalent to a bandpass filter. A filter device can be realized. In this filter device, since the microresonators are electrically connected to each other, the filter structure is simplified and the filter structure is simplified as compared with the case where the beam electrodes of two microresonators are mechanically connected to each other. The device can be manufactured easily. Therefore, the filter device can be reduced in size, cost, and reliability.

以下、本発明の具体的な実施の形態について図面を参照しつつ詳細に説明する。なお、本発明の実施の形態においては、マイクロマシンの1つであるMEMS素子等の微小素子を用いて構成された、ビーム構造を有する共振器を微小共振器と記述する。   Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. Note that in the embodiment of the present invention, a resonator having a beam structure formed using a microelement such as a MEMS element which is one of micromachines is described as a microresonator.

図1は本発明に用いられる微小共振器の構成例を示すもので、図中(A)は微小共振器の平面図、(B)は微小共振器の側断面図である。図1においては、ベースとなる半導体基板1上に絶縁膜2が形成されている。半導体基板1は例えばシリコン基板によって構成されるもので、絶縁膜2は例えば窒化シリコン膜によって構成されるものである。   FIG. 1 shows a configuration example of a microresonator used in the present invention, in which (A) is a plan view of the microresonator and (B) is a side sectional view of the microresonator. In FIG. 1, an insulating film 2 is formed on a semiconductor substrate 1 serving as a base. The semiconductor substrate 1 is composed of, for example, a silicon substrate, and the insulating film 2 is composed of, for example, a silicon nitride film.

絶縁膜2上には入力電極3と出力電極4が形成されている。また、入力電極3及び出力電極4の上方には、当該2つの電極3,4に対向する状態でビーム電極5が形成されている。ビーム電極5の両端部は一対の支持部6によって固定状態に支持されている。また、ビーム電極5は、入力電極3及び出力電極4の各電極面との間に微小なギャップを介して、当該入力電極3及び出力電極4を跨ぐ状態に形成されている。また、入力電極3と出力電極4は、ビーム電極5の長さ方向(図1の左右方向)の中心から等距離の位置に配置されている。   An input electrode 3 and an output electrode 4 are formed on the insulating film 2. A beam electrode 5 is formed above the input electrode 3 and the output electrode 4 so as to face the two electrodes 3 and 4. Both ends of the beam electrode 5 are supported in a fixed state by a pair of support portions 6. Further, the beam electrode 5 is formed so as to straddle the input electrode 3 and the output electrode 4 through a minute gap between each electrode surface of the input electrode 3 and the output electrode 4. Further, the input electrode 3 and the output electrode 4 are arranged at a position equidistant from the center of the beam electrode 5 in the length direction (left-right direction in FIG. 1).

図2及び図3は本発明に用いられる微小共振器の製造プロセスの一例を示すフロー図である。まず、微小共振器を製造するにあたっては、図2(A)に示すように、シリコン基板等の半導体基板1上に絶縁膜2を形成する。この絶縁膜2は、例えば窒化シリコン膜を1μmの厚みで蒸着することにより形成される。次に、図2(B)に示すように、先ほど形成した絶縁膜2上に、例えば厚さ0.5μmの多結晶シリコン層からなる下部電極層7を蒸着により形成した後、この下部電極層7をフォトリソグラフィ技術によってパターニングすることにより、図2(C)に示すように、上記入力電極3、出力電極4及び一対の支持部6を形成する。   2 and 3 are flowcharts showing an example of a manufacturing process of the microresonator used in the present invention. First, in manufacturing a microresonator, as shown in FIG. 2A, an insulating film 2 is formed on a semiconductor substrate 1 such as a silicon substrate. The insulating film 2 is formed, for example, by depositing a silicon nitride film with a thickness of 1 μm. Next, as shown in FIG. 2B, a lower electrode layer 7 made of a polycrystalline silicon layer having a thickness of 0.5 μm, for example, is formed on the insulating film 2 formed earlier by vapor deposition, and then the lower electrode layer is formed. By patterning 7 using a photolithography technique, the input electrode 3, the output electrode 4 and the pair of support portions 6 are formed as shown in FIG.

次いで、図2(D)に示すように、半導体基板1の絶縁膜2上に、上記入力電極3、出力電極4及び支持部6を覆う状態で犠牲層8を形成する。この犠牲層8は、例えば二酸化シリコンを0.5μmの厚さで蒸着することにより形成される。次に、図2(E)に示すように、犠牲層8の表面(上面)をCMP(Chemical Mechanical Polishing;化学的機械研磨)法によって平坦化する。   Next, as shown in FIG. 2D, a sacrificial layer 8 is formed on the insulating film 2 of the semiconductor substrate 1 so as to cover the input electrode 3, the output electrode 4, and the support portion 6. The sacrificial layer 8 is formed, for example, by depositing silicon dioxide with a thickness of 0.5 μm. Next, as shown in FIG. 2E, the surface (upper surface) of the sacrificial layer 8 is planarized by a CMP (Chemical Mechanical Polishing) method.

続いて、図3(A)に示すように、一対の支持部6上で犠牲層8に開口部(コンタクトホール)9を形成した後、図3(B)に示すように、上記開口部9を埋め込む状態で犠牲層8上に、例えば厚さ0.5μmの多結晶シリコン層からなる上部電極層10を形成する。次いで、図3(C)に示すように、上部電極層10をフォトリソグラフィ技術によってパターニングすることによりビーム電極5を形成する。その後、図3(D)に示すように、フッ酸等の溶剤を用いて犠牲層8を除去することにより、上記図1に示す微小共振器が得られる。   Subsequently, as shown in FIG. 3A, after an opening (contact hole) 9 is formed in the sacrificial layer 8 on the pair of support parts 6, the opening 9 is formed as shown in FIG. An upper electrode layer 10 made of, for example, a polycrystalline silicon layer having a thickness of 0.5 μm is formed on the sacrificial layer 8 in a state of being embedded. Next, as shown in FIG. 3C, the beam electrode 5 is formed by patterning the upper electrode layer 10 by photolithography. Thereafter, as shown in FIG. 3D, the sacrificial layer 8 is removed using a solvent such as hydrofluoric acid, whereby the microresonator shown in FIG. 1 is obtained.

このような製造プロセスによって得られる微小共振器において、例えば、入力電極3に直流電圧(DC)を印加しつつ周波数信号(RF信号、IF信号等)を入力すると、ビーム電極5と入力電極3との対向部分にクーロン力と総称される静電引力と静電反発力が繰り返し発生する。このうち、静電引力が発生したときはビーム電極5が入力電極3に接近する方向で微小変位し、静電反発力が発生したときはビーム電極5が入力電極3から離間する方向で微小変位する。この繰り返しによりビーム電極5は自身の固有振動数にしたがって共振(振動)し、これに応じてビーム電極5と出力電極4との対向距離も変化する。そのため、出力電極4からは、ビーム電極5の共振周波数に対応した周波数帯域の信号が出力される。   In a microresonator obtained by such a manufacturing process, for example, when a frequency signal (RF signal, IF signal, etc.) is input while applying a direct-current voltage (DC) to the input electrode 3, the beam electrode 5 and the input electrode 3 The electrostatic attractive force and the electrostatic repulsive force, collectively called Coulomb force, are repeatedly generated in the opposite portion of the. Among these, when the electrostatic attractive force is generated, the beam electrode 5 is minutely displaced in the direction approaching the input electrode 3, and when the electrostatic repulsive force is generated, the beam electrode 5 is minutely displaced in the direction away from the input electrode 3. To do. By repeating this, the beam electrode 5 resonates (vibrates) according to its own natural frequency, and the opposing distance between the beam electrode 5 and the output electrode 4 changes accordingly. Therefore, a signal in a frequency band corresponding to the resonance frequency of the beam electrode 5 is output from the output electrode 4.

図4は本発明の実施形態に係るフィルタ装置の構成を示す概略図である。図4においては、平衡入力用の2つの入力端子11,12と平衡出力用の2つの出力端子13,14との間に、複数の微小共振器15,16,17,18が電気的にラティス型に接続されている。各々の微小共振器15,16,17,18は、いずれも上記製造プロセスによって得られる微小共振器(図1参照)と同様のビーム構造を有するものである。ただし、インピーダンスを下げるために、互いに並列に接続された複数の微小共振器群を用いて、各々の微小共振器15,16,17,18を構成することも可能である。入力端子11,12には互いに逆位相の周波数信号が入力され、出力端子13,14からは互いに逆位相の周波数信号が出力される。   FIG. 4 is a schematic view showing the configuration of the filter device according to the embodiment of the present invention. In FIG. 4, a plurality of microresonators 15, 16, 17, and 18 are electrically latticed between two input terminals 11 and 12 for balanced input and two output terminals 13 and 14 for balanced output. Connected to the mold. Each of the microresonators 15, 16, 17, and 18 has a beam structure similar to that of the microresonator (see FIG. 1) obtained by the above manufacturing process. However, in order to lower the impedance, it is also possible to configure each microresonator 15, 16, 17, 18 using a plurality of microresonator groups connected in parallel to each other. Frequency signals with opposite phases are input to the input terminals 11 and 12, and frequency signals with opposite phases are output from the output terminals 13 and 14.

上記複数の微小共振器15,16,17,18のうち、微小共振器15は、一方の入力端子11とこれに対応する一方の出力端子13との間に直列に接続され、微小共振器16は、他方の入力端子12とこれに対応する他方の出力端子14との間に直列に接続されている。また、微小共振器17は、上記一方の入力端子11と上記他方の出力端子14との間に直列に接続され、微小共振器18は、上記他方の入力端子12と上記一方の出力端子13との間に直列に接続されている。   Among the plurality of microresonators 15, 16, 17, and 18, the microresonator 15 is connected in series between one input terminal 11 and one output terminal 13 corresponding thereto, and the microresonator 16. Are connected in series between the other input terminal 12 and the other output terminal 14 corresponding thereto. The microresonator 17 is connected in series between the one input terminal 11 and the other output terminal 14, and the microresonator 18 includes the other input terminal 12 and the one output terminal 13. Are connected in series.

図5は本発明の実施形態に係るフィルタ装置の構成を示す詳細図である。図5において、微小共振器15は入力電極151と出力電極152とビーム電極153とを有している。同様に、微小共振器16は入力電極161と出力電極162とビーム電極163とを有し、微小共振器17は入力電極171と出力電極172とビーム電極173とを有し、微小共振器18は入力電極181と出力電極182とビーム電極183とを有している。このうち、入力電極151,161,171,181は上記図1に示す微小共振器の入力電極3に対応し、出力電極152,162,172,182は上記図1に示す微小共振器の出力電極4に対応する。また、ビーム電極153,163,173,183は上記図1に示す微小共振器のビーム電極5に対応する。   FIG. 5 is a detailed view showing the configuration of the filter device according to the embodiment of the present invention. In FIG. 5, the microresonator 15 has an input electrode 151, an output electrode 152, and a beam electrode 153. Similarly, the microresonator 16 includes an input electrode 161, an output electrode 162, and a beam electrode 163, the microresonator 17 includes an input electrode 171, an output electrode 172, and a beam electrode 173, and the microresonator 18 includes An input electrode 181, an output electrode 182, and a beam electrode 183 are included. Among these, the input electrodes 151, 161, 171, 181 correspond to the input electrode 3 of the microresonator shown in FIG. 1, and the output electrodes 152, 162, 172, 182 are the output electrodes of the microresonator shown in FIG. Corresponding to 4. The beam electrodes 153, 163, 173, and 183 correspond to the beam electrode 5 of the microresonator shown in FIG.

微小共振器15の入力電極151は配線ラインL11を介して入力端子11に電気的に接続され、微小共振器16の入力電極161は配線ラインL12を介して入力端子12に電気的に接続されている。また、微小共振器17の入力電極171は配線ラインL13,L11を介して入力端子11に電気的に接続され、微小共振器18の入力電極181は配線ラインL14,L12を介して入力端子12に電気的に接続されている。   The input electrode 151 of the microresonator 15 is electrically connected to the input terminal 11 via the wiring line L11, and the input electrode 161 of the microresonator 16 is electrically connected to the input terminal 12 via the wiring line L12. Yes. The input electrode 171 of the microresonator 17 is electrically connected to the input terminal 11 via the wiring lines L13 and L11, and the input electrode 181 of the microresonator 18 is connected to the input terminal 12 via the wiring lines L14 and L12. Electrically connected.

一方、微小共振器15の出力電極152は配線ラインL15を介して出力端子13に電気的に接続され、微小共振器16の出力電極162は配線ラインL16を介して出力端子14に電気的に接続されている。また、微小共振器17の出力電極172は配線ラインL17,L16を介して入力端子14に電気的に接続され、微小共振器18の出力電極182は配線ラインL18,L15を介して入力端子13に電気的に接続されている。また、配線ラインL17,L18の交差部では、一方の配線ラインL18の配線層を2層構造として、それらの層間をコンタクトホール部19で電気的に接続することにより、配線ラインL17,L18同士を非導通に交差させている。   On the other hand, the output electrode 152 of the microresonator 15 is electrically connected to the output terminal 13 via the wiring line L15, and the output electrode 162 of the microresonator 16 is electrically connected to the output terminal 14 via the wiring line L16. Has been. The output electrode 172 of the microresonator 17 is electrically connected to the input terminal 14 via the wiring lines L17 and L16, and the output electrode 182 of the microresonator 18 is connected to the input terminal 13 via the wiring lines L18 and L15. Electrically connected. In addition, at the intersection of the wiring lines L17 and L18, the wiring layer of one wiring line L18 has a two-layer structure, and the wiring lines L17 and L18 are connected to each other by electrically connecting the layers through the contact hole portion 19. Crossed non-conducting.

また、微小共振器15,16の共振周波数はほぼ等しく設定され、微小共振器17,18の共振周波数もほぼ等しく設定されている。ただし、微小共振器15,16の共振周波数と微小共振器17,18の共振周波数は互いに異なる周波数に設定されている。例えば、微小共振器15,16の共振周波数を「F1」とし、微小共振器17,18の共振周波数を「F2」とすると、F1>F2の関係(例えば、F1=100MHz、F2=98MHz)に設定されている。   Further, the resonance frequencies of the microresonators 15 and 16 are set substantially equal, and the resonance frequencies of the microresonators 17 and 18 are also set approximately equal. However, the resonance frequency of the microresonators 15 and 16 and the resonance frequency of the microresonators 17 and 18 are set to different frequencies. For example, when the resonance frequency of the microresonators 15 and 16 is “F1” and the resonance frequency of the microresonators 17 and 18 is “F2”, the relationship of F1> F2 (for example, F1 = 100 MHz, F2 = 98 MHz) is established. Is set.

ここで、微小共振器の共振周波数はビーム電極の固有振動数に依存し、この固有振動数はビーム電極の長さと質量に依存する。そのため、微小共振器の共振周波数を設定するにあたっては、例えば、微小共振器15,16の各ビーム電極153,163の長さが、微小共振器17,18の各ビーム電極173,183の長さよりも短くなるように、各々のビーム電極153,163,173,183のパターン寸法を設計することにより、上記F1>F2の関係で共振周波数を設定することができる。   Here, the resonance frequency of the microresonator depends on the natural frequency of the beam electrode, and this natural frequency depends on the length and mass of the beam electrode. Therefore, in setting the resonance frequency of the microresonator, for example, the lengths of the beam electrodes 153 and 163 of the microresonators 15 and 16 are longer than the lengths of the beam electrodes 173 and 183 of the microresonators 17 and 18. By designing the pattern dimensions of the beam electrodes 153, 163, 173, and 183 so as to shorten the resonance frequency, the resonance frequency can be set in the relationship of F1> F2.

上記構成からなるフィルタ装置を動作させる場合は、上記2つの入力端子11,12又は上記複数の微小共振器15,16,17,18の各ビーム電極153,163,173,183に直流電圧を印加した状態で、2つの入力端子11,12に互いに逆位相の周波数信号(RF信号、IF信号等)を入力する。そうすると、入力端子11から入力された周波数信号が微小共振器15,17の各入力電極151,171に与えられるとともに、入力端子12から入力された周波数信号が微小共振器16,18の各入力電極161,181に与えられる。これにより、各々の微小共振器15,16,17,18では、それぞれに対応するビーム電極153,163,173,183が自身の固有振動数にしたがって共振し、この共振周波数に対応した周波数信号が、それぞれに対応する出力電極152,162,172,182から取り出される。このとき、微小共振器15,18の各出力電極152,182から取り出される周波数信号は出力端子13から出力され、微小共振器16,17の各出力電極162,172から取り出される周波数信号は出力端子14から出力される。   When operating the filter device having the above-described configuration, a DC voltage is applied to the beam electrodes 153, 163, 173, and 183 of the two input terminals 11 and 12 or the plurality of microresonators 15, 16, 17, and 18, respectively. In this state, frequency signals (RF signal, IF signal, etc.) having opposite phases to each other are input to the two input terminals 11 and 12. Then, the frequency signal input from the input terminal 11 is applied to the input electrodes 151 and 171 of the microresonators 15 and 17, and the frequency signal input from the input terminal 12 is input to the input electrodes of the microresonators 16 and 18. 161, 181. Thereby, in each of the microresonators 15, 16, 17, and 18, the corresponding beam electrodes 153, 163, 173, and 183 resonate according to their own natural frequencies, and a frequency signal corresponding to this resonance frequency is generated. , Are taken out from the corresponding output electrodes 152, 162, 172, 182. At this time, the frequency signals extracted from the output electrodes 152 and 182 of the microresonators 15 and 18 are output from the output terminal 13, and the frequency signals extracted from the output electrodes 162 and 172 of the microresonators 16 and 17 are output terminals. 14 is output.

こうして2つの出力端子13,14から出力される周波数信号の周波数帯域は、上記2つの微小共振器15,16の共振周波数F1と、上記2つの微小共振器17,18の共振周波数F2とに対応したものとなる。すなわち、本実施形態に係るフィルタ装置の特性を、縦軸に透過特性を示すSパラメータ(S21)、横軸に周波数をとって表すと図6のようになる。このフィルタ特性においては、上述した共振周波数F1−F2の間を信号の透過帯域として、ある周波数帯域の信号だけを選択的に出力端子13,14から取り出すことができる。したがって、上記複数の微小共振器15,16,17,18を電気的にラティス型に接続してフィルタ装置(周波数フィルタ)を構成することにより、このフィルタ装置をバンドパスフィルタとして機能させることができる。また、各々の微小共振器15,16,17,18をインピーダンス要素として考えることにより、個々の微小共振器15,16,17,18を電気回路の1つの部品として捉えることができる。そのため、電気回路のシミュレーション技術を用いて回路設計を行うことが可能となる。   Thus, the frequency band of the frequency signal output from the two output terminals 13 and 14 corresponds to the resonance frequency F1 of the two microresonators 15 and 16 and the resonance frequency F2 of the two microresonators 17 and 18. Will be. That is, the characteristics of the filter device according to the present embodiment are expressed as shown in FIG. 6 with the S parameter (S21) indicating transmission characteristics on the vertical axis and the frequency on the horizontal axis. In this filter characteristic, only the signal in a certain frequency band can be selectively extracted from the output terminals 13 and 14 with the signal transmission band between the resonance frequencies F1 and F2 described above. Accordingly, the filter device (frequency filter) can be configured by electrically connecting the plurality of microresonators 15, 16, 17, and 18 in a lattice shape, thereby allowing the filter device to function as a bandpass filter. . Further, by considering each microresonator 15, 16, 17, 18 as an impedance element, each microresonator 15, 16, 17, 18 can be regarded as one component of an electric circuit. Therefore, it is possible to perform circuit design using an electric circuit simulation technique.

また、フィルタ装置を構成する各々の微小共振器15,16,17,18は、入力電極と出力電極との間(空間)に寄生容量をもつが、上述したラティス型の電気的接続形態で平衡入力とした場合は、各々の微小共振器15,16,17,18に介在する寄生容量が互いに打ち消されるようになる。そのため、寄生容量の介在による共振ピークの低下を抑え、出力信号のSN比を向上させることができる。また、周波数信号の入力側から見たときの回路構成が対称になるため、フィルタ特性としての対称性も良好なものとなる。また、フィルタ装置が接続されるIC(例えば、IF用途のIC)の回路の多くは平衡回路となっているため、このICにフィルタ装置を接続する際にバラン(平衡−不平衡変換回路)が不要となる。   Each of the microresonators 15, 16, 17, and 18 constituting the filter device has a parasitic capacitance between the input electrode and the output electrode (space), but is balanced in the lattice-type electrical connection form described above. In the case of the input, the parasitic capacitances interposed in the microresonators 15, 16, 17, and 18 are canceled with each other. Therefore, it is possible to suppress a decrease in the resonance peak due to the presence of parasitic capacitance and improve the SN ratio of the output signal. In addition, since the circuit configuration is symmetric when viewed from the input side of the frequency signal, the symmetry as the filter characteristic is also good. In addition, since many of the circuits of ICs (for example, ICs for IF applications) to which the filter device is connected are balanced circuits, a balun (balanced-unbalanced conversion circuit) is used when connecting the filter device to this IC. It becomes unnecessary.

また、上述のように電気的にラティス型に接続された複数の微小共振器15,16,17,18を、例えば図7に示すように1つのフィルタユニットFuとし、当該フィルタユニットFuを、入力端子11,12と出力端子13,14との間に直列に2段(又は3段以上)並べて設けることにより、フィルタ特性(透過特性)を向上させることも可能となる。   Further, the plurality of microresonators 15, 16, 17, and 18 electrically connected in a lattice shape as described above are, for example, one filter unit Fu as shown in FIG. 7, and the filter unit Fu is input. By providing two stages (or three or more stages) in series between the terminals 11 and 12 and the output terminals 13 and 14, it is possible to improve filter characteristics (transmission characteristics).

ところで、上述のように寄生容量を打ち消した場合は、SN比の向上といったメリットが得られるものの、寄生容量の影響(共振ピークの低下)が小さくなると、それにつれて信号遮断帯域の抑圧度が大きくなる。そのため、例えば信号透過帯域(F1−F2帯域)の近傍に妨害波が存在した場合に、この妨害波をフィルタ装置で取り除くことができなくなる。   By the way, when the parasitic capacitance is canceled as described above, a merit such as an improvement in the S / N ratio can be obtained. However, as the influence of the parasitic capacitance (reduction in the resonance peak) decreases, the degree of suppression of the signal cutoff band increases accordingly. . Therefore, for example, when an interference wave exists in the vicinity of the signal transmission band (F1-F2 band), the interference wave cannot be removed by the filter device.

このような場合は、フィルタ装置を構成する複数の微小共振器15,16,17,18のうち、共振周波数が相対的に高い微小共振器の寄生容量を、共振周波数が相対的に低い微小共振器の寄生容量よりも大とすることが望ましい。例えば、上述のように微小共振器15,16の共振周波数F1を100MHzとし、微小共振器17,18の共振周波数を98MHzとした場合は、微小共振器15,16の寄生容量を微小共振器17,18の寄生容量よりも大とする。   In such a case, the parasitic capacitance of the microresonator having a relatively high resonance frequency among the plurality of microresonators 15, 16, 17, and 18 constituting the filter device is changed to a microresonance having a relatively low resonance frequency. It is desirable to make it larger than the parasitic capacitance of the vessel. For example, when the resonance frequency F1 of the microresonators 15 and 16 is 100 MHz and the resonance frequency of the microresonators 17 and 18 is 98 MHz as described above, the parasitic capacitance of the microresonators 15 and 16 is changed to the microresonator 17. , 18 is larger than the parasitic capacitance.

具体的には、図8(A)に示すように、共振周波数が相対的に高く設定された2つの微小共振器15,16にそれぞれ容量C1を付加する。また、多段のフィルタユニットを備える場合も、図8(B)に示すように、各々のフィルタユニットにおいて、2つの微小共振器15,16にそれぞれ容量C1を付加する。この容量C1は、微小共振器15を例にとると、例えば図9(A)に示すように、入力電極151側に延出する延出部152Aを出力電極152に設け、その延出部152Aで入力電極151と出力電極152の間隔を部分的に狭めることで付加することができる。また、図9(B)に示すように、微小共振器15につながるフィルタ装置の配線パターン上に、コンデンサを構成する一対の導体層(メタル層)20A,20Bを形成し、この一対の導体層20A,20Bのうち、一方の導体層20Aを入力電極151に電気的に接続し、他方の導体層20Bを出力電極152に電気的に接続することでも、容量C1を付加することができる。また、図9(C)に示すように、微小共振器15につながるフィルタ装置の配線パターン上にチップコンデンサ21を実装し、このチップコンデンサ21の各電極端子を入力電極151と出力電極152にそれぞれ電気的に接続することでも、容量C1を付加することができる。   Specifically, as shown in FIG. 8A, a capacitor C1 is added to each of the two microresonators 15 and 16 having a relatively high resonance frequency. In the case where a multi-stage filter unit is provided, as shown in FIG. 8B, a capacitor C1 is added to each of the two microresonators 15 and 16 in each filter unit. Taking the microresonator 15 as an example, the capacitor C1 is provided with an extension portion 152A extending toward the input electrode 151 on the output electrode 152 as shown in FIG. 9A, for example, and the extension portion 152A. Thus, it can be added by partially narrowing the interval between the input electrode 151 and the output electrode 152. Further, as shown in FIG. 9B, a pair of conductor layers (metal layers) 20A and 20B constituting a capacitor are formed on the wiring pattern of the filter device connected to the microresonator 15, and the pair of conductor layers. The capacitor C1 can also be added by electrically connecting one conductor layer 20A of 20A and 20B to the input electrode 151 and electrically connecting the other conductor layer 20B to the output electrode 152. 9C, a chip capacitor 21 is mounted on the wiring pattern of the filter device connected to the microresonator 15, and each electrode terminal of the chip capacitor 21 is connected to the input electrode 151 and the output electrode 152, respectively. The capacitor C1 can also be added by electrical connection.

このうち、図9(A)に示す構成では延出部152Aが容量付加部となり、図9(B)に示す構成では一対の導体層20A,20Bが容量付加部となり、図9(C)に示す構成ではチップコンデンサ21が容量付加部となる。また、図9(A),(B)に示す構成では、複数の微小共振器15,16,17,18が形成された半導体チップ上に当該複数の微小共振器15,16,17,18と一体に容量付加部(152A、20A,20B)を形成したものとなり、図9(C)に示す構成では、複数の微小共振器15,16,17,18が形成された半導体チップ上に容量付加部(21)を実装したものとなる。特に、複数の微小共振器15,16,17,18と一体に容量付加部(152A、20A,20B)を形成するものでは、フィルタ装置を製造する場合に、微小共振器の製造プロセスのなかで容量付加部を形成することができる。そのため、容量付加部を形成するための工程を別途設ける必要がない。また、図9(A)に示すものでは電極形状の部分的な変更だけで容量付加部(152A)を形成することができ、図9(B)に示すものでは僅かな空きスペースを利用して容量付加部(20A,20B)を形成することができるため、レイアウトの変更を強いられることもない。   Among these, in the configuration shown in FIG. 9A, the extension portion 152A is a capacitance addition portion, and in the configuration shown in FIG. 9B, the pair of conductor layers 20A and 20B is a capacitance addition portion, and FIG. In the configuration shown, the chip capacitor 21 serves as a capacitance adding unit. 9A and 9B, the plurality of microresonators 15, 16, 17, 18 and 18 are formed on a semiconductor chip on which a plurality of microresonators 15, 16, 17, 18 are formed. The capacitance adding portion (152A, 20A, 20B) is integrally formed. In the configuration shown in FIG. 9C, the capacitance is added on the semiconductor chip on which the plurality of microresonators 15, 16, 17, 18 are formed. The part (21) is mounted. In particular, in the case where the capacitance adding portion (152A, 20A, 20B) is formed integrally with the plurality of microresonators 15, 16, 17, 18 in the manufacturing process of the microresonator, the filter device is manufactured. A capacity addition part can be formed. Therefore, it is not necessary to provide a separate process for forming the capacitance adding portion. Further, in the case shown in FIG. 9A, the capacity addition portion (152A) can be formed only by partial change of the electrode shape, and in the case shown in FIG. 9B, a slight empty space is used. Since the capacity addition portions (20A, 20B) can be formed, the layout is not forced to change.

このように2つの微小共振器15,16にそれぞれ容量C1を付加した場合は、他の2つの微小共振器17,18が有する寄生容量とのバランスが崩れるため、容量C1の大きさによってフィルタの抑圧度が変化する。図10は付加容量の大きさによるフィルタ特性の変化を示すもので、ここでは付加容量C1の大きさを「大」「中」「小」「無し」の4段階にわけて、それそれに対応するフィルタ特性を示している。この図10から分かるように、付加容量C1が小さくなると、それにつれて抑圧度が大きくなり、付加容量C1が大きくなると、それにつれて抑圧度が小さくなる。そのため、信号透過帯域(F1−F2帯域)の近傍に妨害波が存在した場合でも、適当な大きさの容量C1を微小共振器15,16に付加することで、上記妨害波を取り除くことができる。   When the capacitance C1 is added to each of the two microresonators 15 and 16 in this way, the balance with the parasitic capacitances of the other two microresonators 17 and 18 is lost, so the filter capacity depends on the size of the capacitance C1. The degree of suppression changes. FIG. 10 shows the change of the filter characteristics depending on the size of the additional capacitance. Here, the size of the additional capacitance C1 is divided into four stages of “large”, “medium”, “small”, and “none”, corresponding to them. The filter characteristics are shown. As can be seen from FIG. 10, the degree of suppression increases as the additional capacity C1 decreases, and the degree of suppression decreases as the additional capacity C1 increases. Therefore, even when an interference wave exists in the vicinity of the signal transmission band (F1-F2 band), the interference wave can be removed by adding a capacitor C1 having an appropriate size to the microresonators 15 and 16. .

ちなみに、容量C1は共振周波数が相対的に高い微小共振器に付加する必要があることから、例えば微小共振器15,16の共振周波数が微小共振器17,18の共振周波数よりも低い場合は、微小共振器17,18に容量C1を付加することになる。   Incidentally, since the capacitor C1 needs to be added to a microresonator having a relatively high resonance frequency, for example, when the resonance frequency of the microresonators 15 and 16 is lower than the resonance frequency of the microresonators 17 and 18, The capacitor C1 is added to the microresonators 17 and 18.

また、本発明は、微小共振器を用いたフィルタ装置だけに限らず、このフィルタ装置を用いて構成される携帯電話機、無線LAN機器、テレビチューナー、ラジオチューナーなどの、電磁波を利用して通信する送受信機として提供することも可能である。   The present invention is not limited to a filter device using a microresonator, but communicates using electromagnetic waves such as a mobile phone, a wireless LAN device, a TV tuner, and a radio tuner configured using the filter device. It can also be provided as a transceiver.

本発明に用いられる微小共振器の構成例を示す図である。It is a figure which shows the structural example of the microresonator used for this invention. 本発明に用いられる微小共振器の製造プロセスの一例を示すフロー図(その1)である。It is a flowchart (the 1) which shows an example of the manufacturing process of the microresonator used for this invention. 本発明に用いられる微小共振器の製造プロセスの一例を示すフロー図(その2)である。It is a flowchart (the 2) which shows an example of the manufacturing process of the microresonator used for this invention. 本発明の実施形態に係るフィルタ装置の構成を示す概略図である。It is the schematic which shows the structure of the filter apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るフィルタ装置の構成を示す詳細図である。It is detail drawing which shows the structure of the filter apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るフィルタ装置の特性を示す図である。It is a figure which shows the characteristic of the filter apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るフィルタ装置の他の構成例を示す概略図である。It is the schematic which shows the other structural example of the filter apparatus which concerns on embodiment of this invention. 本発明の他の実施形態に係るフィルタ装置の構成例を示す概略図である。It is the schematic which shows the structural example of the filter apparatus which concerns on other embodiment of this invention. 容量付加部の具体的な構成例を示す図である。It is a figure which shows the specific structural example of a capacity | capacitance addition part. 付加容量の大きさによるフィルタ特性の変化を示す図である。It is a figure which shows the change of the filter characteristic by the magnitude | size of additional capacity | capacitance.

符号の説明Explanation of symbols

11,12…入力端子、13,14…出力端子、15,16,17,18…微小共振器、151,161,171,181…入力電極、152,162,172,182…出力電極、153,163,173,183…ビーム電極   DESCRIPTION OF SYMBOLS 11, 12 ... Input terminal, 13, 14 ... Output terminal, 15, 16, 17, 18 ... Micro resonator, 151, 161, 171, 181 ... Input electrode, 152, 162, 172, 182 ... Output electrode, 153 163, 173, 183 ... Beam electrodes

Claims (8)

平衡入力用の2つの入力端子と平衡出力用の2つの出力端子との間に、ビーム構造を有する複数の微小共振器を電気的にラティス型に接続してなる
ことを特徴とするフィルタ装置。
A filter device comprising a plurality of microresonators having a beam structure electrically connected in a lattice form between two input terminals for balanced input and two output terminals for balanced output.
前記2つの入力端子は、第1の入力端子と第2の入力端子からなり、
前記2つの出力端子は、第1の出力端子と第2の出力端子からなり、
前記複数の微小共振器は、前記第1の入力端子と前記第1の出力端子との間及び前記第2の入力端子と前記第2の出力端子との間に、それぞれ直列に接続された第1の微小共振器と、前記第1の入力端子と前記第2の出力端子との間及び前記第2の入力端子と前記第1の出力端子との間に、それぞれ直列に接続された第2の微小共振器とを含む
ことを特徴とする請求項1記載のフィルタ装置。
The two input terminals include a first input terminal and a second input terminal,
The two output terminals include a first output terminal and a second output terminal,
The plurality of microresonators are connected in series between the first input terminal and the first output terminal and between the second input terminal and the second output terminal, respectively. A second resonator connected in series between the first microresonator, the first input terminal and the second output terminal, and the second input terminal and the first output terminal. The filter device according to claim 1, further comprising: a microresonator.
前記第1の微小共振器の共振周波数が前記第2の微小共振器の共振周波数と異なる
ことを特徴とする請求項1記載のフィルタ装置。
The filter device according to claim 1, wherein a resonance frequency of the first microresonator is different from a resonance frequency of the second microresonator.
前記第1の微小共振器及び前記第2の微小共振器のうち、共振周波数が相対的に高い一方の微小共振器の寄生容量を他方の微小共振器の寄生容量よりも大としてなる
ことを特徴とする請求項3記載のフィルタ装置。
Of the first microresonator and the second microresonator, the parasitic capacitance of one microresonator having a relatively high resonance frequency is made larger than the parasitic capacitance of the other microresonator. The filter device according to claim 3.
前記一方の微小共振器に容量を付加してなる
ことを特徴とする請求項4記載のフィルタ装置。
The filter device according to claim 4, wherein a capacitor is added to the one microresonator.
前記複数の微小共振器が形成された半導体チップ上に前記複数の微小共振器と一体に容量付加部を形成してなる
ことを特徴とする請求項5記載のフィルタ装置。
The filter device according to claim 5, wherein a capacitance adding portion is formed integrally with the plurality of microresonators on a semiconductor chip on which the plurality of microresonators are formed.
前記複数の微小共振器が形成された半導体チップ上に容量付加部を実装してなる
ことを特徴とする請求項5記載のフィルタ装置。
The filter device according to claim 5, wherein a capacitor addition unit is mounted on a semiconductor chip on which the plurality of microresonators are formed.
平衡入力用の2つの入力端子と平衡出力用の2つの出力端子との間に、ビーム構造を有する複数の微小共振器を電気的にラティス型に接続してなるフィルタ装置を備える
ことを特徴とする送受信機。


A filter device comprising a plurality of microresonators having a beam structure electrically connected in a lattice shape between two input terminals for balanced input and two output terminals for balanced output, Transmitter / receiver.


JP2004123891A 2004-04-20 2004-04-20 Filter device and transceiver Pending JP2005311568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004123891A JP2005311568A (en) 2004-04-20 2004-04-20 Filter device and transceiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004123891A JP2005311568A (en) 2004-04-20 2004-04-20 Filter device and transceiver

Publications (1)

Publication Number Publication Date
JP2005311568A true JP2005311568A (en) 2005-11-04

Family

ID=35439857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004123891A Pending JP2005311568A (en) 2004-04-20 2004-04-20 Filter device and transceiver

Country Status (1)

Country Link
JP (1) JP2005311568A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7414497B2 (en) 2005-06-20 2008-08-19 Murata Manufacturing Co., Ltd. Piezoelectric thin-film filter

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468114A (en) * 1987-09-09 1989-03-14 Hiroshi Shimizu Structure for idt exciting type piezoelectric resonator
JPH05167384A (en) * 1991-12-11 1993-07-02 Hitachi Ltd Surface acoustic wave device
JPH0865089A (en) * 1994-08-22 1996-03-08 Fujitsu Ltd Surface acoustic wave filter
JPH09167937A (en) * 1995-12-18 1997-06-24 Oki Electric Ind Co Ltd Surface acoustic wave filter
JPH11330904A (en) * 1998-05-13 1999-11-30 Oki Electric Ind Co Ltd Resonator type surface acoustic wave filter
JP2001177365A (en) * 1999-11-29 2001-06-29 Nokia Mobile Phones Ltd Adjustment method for center frequency of balanced filter and plural balanced filters
JP2001223559A (en) * 2000-02-07 2001-08-17 Murata Mfg Co Ltd Surface acoustic wave filter, common unit and communication machine
JP2001308677A (en) * 2000-03-17 2001-11-02 Robert Bosch Gmbh Electric signal filter
JP2002016473A (en) * 1999-11-15 2002-01-18 Matsushita Electric Ind Co Ltd Piezoelectric element and communication equipment for moving object using the same
WO2002039537A1 (en) * 2000-11-13 2002-05-16 Mems Solution Inc. Thin film resonator and method for manufacturing the same
JP2002198777A (en) * 2000-11-24 2002-07-12 Nokia Mobile Phones Ltd Structure and configuration of filter including piezoelectric resonator
US20030048520A1 (en) * 2001-09-07 2003-03-13 Intel Corporation Vacuum-cavity MEMS resonator
WO2003056699A1 (en) * 2001-12-21 2003-07-10 Epcos Ag Symmetrically-operating reactance filter
WO2003069776A2 (en) * 2002-02-13 2003-08-21 Commissariat A L'energie Atomique Tunable bulk acoustic wave mems microresonator
JP2003532323A (en) * 2000-04-20 2003-10-28 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン Method and apparatus for filtering signals of a subsystem having a power amplifier utilizing an array of vibrating micromechanical devices

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468114A (en) * 1987-09-09 1989-03-14 Hiroshi Shimizu Structure for idt exciting type piezoelectric resonator
JPH05167384A (en) * 1991-12-11 1993-07-02 Hitachi Ltd Surface acoustic wave device
JPH0865089A (en) * 1994-08-22 1996-03-08 Fujitsu Ltd Surface acoustic wave filter
JPH09167937A (en) * 1995-12-18 1997-06-24 Oki Electric Ind Co Ltd Surface acoustic wave filter
JPH11330904A (en) * 1998-05-13 1999-11-30 Oki Electric Ind Co Ltd Resonator type surface acoustic wave filter
JP2002016473A (en) * 1999-11-15 2002-01-18 Matsushita Electric Ind Co Ltd Piezoelectric element and communication equipment for moving object using the same
JP2001177365A (en) * 1999-11-29 2001-06-29 Nokia Mobile Phones Ltd Adjustment method for center frequency of balanced filter and plural balanced filters
JP2001223559A (en) * 2000-02-07 2001-08-17 Murata Mfg Co Ltd Surface acoustic wave filter, common unit and communication machine
JP2001308677A (en) * 2000-03-17 2001-11-02 Robert Bosch Gmbh Electric signal filter
JP2003532323A (en) * 2000-04-20 2003-10-28 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン Method and apparatus for filtering signals of a subsystem having a power amplifier utilizing an array of vibrating micromechanical devices
WO2002039537A1 (en) * 2000-11-13 2002-05-16 Mems Solution Inc. Thin film resonator and method for manufacturing the same
JP2002198777A (en) * 2000-11-24 2002-07-12 Nokia Mobile Phones Ltd Structure and configuration of filter including piezoelectric resonator
US20030048520A1 (en) * 2001-09-07 2003-03-13 Intel Corporation Vacuum-cavity MEMS resonator
WO2003056699A1 (en) * 2001-12-21 2003-07-10 Epcos Ag Symmetrically-operating reactance filter
WO2003069776A2 (en) * 2002-02-13 2003-08-21 Commissariat A L'energie Atomique Tunable bulk acoustic wave mems microresonator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
".RF MEMS 無線機器の受動部品を排除 仕掛けるIBM、Intel", 日経エレクトロニクス, JPN6009057764, 4 November 2002 (2002-11-04), pages 116 - 117, ISSN: 0001458138 *
DEMIRCI M.U.,ET AL: "Higher-Mode Free-Free beam Micromechanical Resonators", FREQUENCY CONTROL SYMPOSIUM AND PDA EXHIBITION JOINTLY WITH THE 17TH EUROPEAN FREQUENCY AND TIME FOR, JPN6009057765, 8 May 2003 (2003-05-08), pages 810 - 818, XP010688962, ISSN: 0001458139, DOI: 10.1109/FREQ.2003.1275195 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7414497B2 (en) 2005-06-20 2008-08-19 Murata Manufacturing Co., Ltd. Piezoelectric thin-film filter

Similar Documents

Publication Publication Date Title
CN1977453B (en) Filter device and transmitter-receiver
US8264291B2 (en) Resonator and a method of manufacturing the same, and oscillator and electronic apparatus including the same
EP1482638B1 (en) Film bulk acoustic resonator having supports and manufacturing method therefor
US7436271B2 (en) Dielectrically transduced single-ended to differential MEMS filter
TWI309107B (en) Micro-resonator, frequency filter and communication apparatus
US7701312B2 (en) Integrated device and fabricating method thereof
KR20180017941A (en) Bulk acoustic filter device and method of manufactring the same
CN110661506B (en) RF-MEMS resonator based on bulk acoustic wave vibration mode coupling
JP2003532323A (en) Method and apparatus for filtering signals of a subsystem having a power amplifier utilizing an array of vibrating micromechanical devices
JP2009225228A (en) Band-pass filter device, method of manufacturing same, television tuner, and television receiver
WO2004027833A2 (en) Electrically-coupled micro-electro-mechanical filter systems and methods
US20070010227A1 (en) Micro electric machine system resonator, drive method thereof, manufacturing method thereof, and frequency filter
JP2007005909A (en) Electromechanical signal selection element, manufacturing method thereof, and electric apparatus using the method
JP4458081B2 (en) Flap vibrator and integrated circuit including flap vibrator
JP2007013447A (en) Micro-resonator, band pass filter, semiconductor device and communication equipment
JP4341288B2 (en) MEMS resonator, method of manufacturing the same, and filter
JP5115244B2 (en) Electrostatic vibrator and method of using the same
Li CMOS-MEMS resonators and their applications
JP2005311568A (en) Filter device and transceiver
JP4254445B2 (en) Microelectromechanical system resonator and driving method thereof
JP4155209B2 (en) Microelectromechanical system resonator, manufacturing method thereof, and frequency filter
JP2005311567A (en) Filter device and transceiver
JP2005311737A (en) Minute resonator and transceiver
JP2007142532A (en) Static capacitance resonator, manufacturing method of the static capacitance resonator, and communication apparatus
JP4635619B2 (en) Microresonator and communication device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070319

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091007

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100727