JP3389482B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell

Info

Publication number
JP3389482B2
JP3389482B2 JP32749097A JP32749097A JP3389482B2 JP 3389482 B2 JP3389482 B2 JP 3389482B2 JP 32749097 A JP32749097 A JP 32749097A JP 32749097 A JP32749097 A JP 32749097A JP 3389482 B2 JP3389482 B2 JP 3389482B2
Authority
JP
Japan
Prior art keywords
combustion chamber
partition plate
solid oxide
chamber partition
oxide fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32749097A
Other languages
Japanese (ja)
Other versions
JPH11162498A (en
Inventor
高志 重久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP32749097A priority Critical patent/JP3389482B2/en
Publication of JPH11162498A publication Critical patent/JPH11162498A/en
Application granted granted Critical
Publication of JP3389482B2 publication Critical patent/JP3389482B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質型燃料
電池に関し、特に、燃焼室仕切板を用いて燃焼室と反応
室を形成した固体電解質型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell, and more particularly to a solid oxide fuel cell in which a combustion chamber partition plate is used to form a combustion chamber and a reaction chamber.

【0002】[0002]

【従来の技術】固体電解質型燃料電池は、図1に示すよ
うに、反応容器51内に、空気室仕切板61、燃焼室仕
切板63、燃料ガス室仕切板55を用いて空気室A、燃
焼室B、反応室C、燃料ガス室Dが形成されている。
2. Description of the Related Art As shown in FIG. 1, a solid oxide fuel cell has a reaction chamber 51 in which an air chamber partition plate 61, a combustion chamber partition plate 63, and a fuel gas chamber partition plate 55 are used. A combustion chamber B, a reaction chamber C, and a fuel gas chamber D are formed.

【0003】反応容器51内に収容された複数の有底筒
状の固体電解質型燃料電池セル52は、燃焼室仕切板6
3に形成されたセル挿入孔に挿入固定されており、ま
た、その内部には空気室仕切板61に固定された空気導
入管59の一端が挿入されている。
A plurality of bottomed cylindrical solid oxide fuel cell units 52 housed in a reaction vessel 51 are composed of a combustion chamber partition plate 6.
It is inserted and fixed in the cell insertion hole formed in No. 3, and one end of an air introduction pipe 59 fixed to the air chamber partition plate 61 is inserted into the inside thereof.

【0004】燃焼室仕切板63には、余剰の燃料ガスを
燃焼室Bに導入するための燃料ガス噴出孔が形成されて
おり、燃料ガス室仕切板55には、燃料ガスを反応室C
内に供給するための供給孔が形成されている。
The combustion chamber partition plate 63 is formed with a fuel gas ejection hole for introducing an excess fuel gas into the combustion chamber B, and the fuel gas chamber partition plate 55 stores the fuel gas in the reaction chamber C.
A supply hole for supplying the inside is formed.

【0005】また、反応容器51には、例えば水素から
なる燃料ガスを導入する燃料ガス導入口53、空気を導
入する空気導入口57、燃焼室B内で燃焼したガスを排
出するための排気口67が形成されている。
Further, in the reaction vessel 51, for example, a fuel gas introduction port 53 for introducing a fuel gas composed of hydrogen, an air introduction port 57 for introducing air, and an exhaust port for discharging the gas burned in the combustion chamber B. 67 is formed.

【0006】このような固体電解質型燃料電池は、空気
室Aからの空気を固体電解質型燃料電池セル52内にそ
れぞれ供給し、かつ、燃料ガス室Dからの燃料ガスを複
数の固体電解質型燃料電池セル52間に供給し、反応室
Cにて反応させ、余剰の空気と燃料ガスを燃焼室Bにて
燃焼させ、燃焼したガスが排気口67から外部に排出さ
れる。
In such a solid oxide fuel cell, the air from the air chamber A is supplied into the solid oxide fuel cell 52, and the fuel gas from the fuel gas chamber D is supplied to a plurality of solid oxide fuel cells. It is supplied between the battery cells 52, reacted in the reaction chamber C, burns excess air and fuel gas in the combustion chamber B, and the burned gas is discharged to the outside from the exhaust port 67.

【0007】ところで、固体電解質型燃料電池では、空
気および燃料ガスの2種類のガスを用いて発電させるも
のであるため、ガスの漏出による悪影響を防止しなけれ
ばならない。このため、上記したように、燃焼室Bを構
成するための空気室仕切板61、セル52の燃焼室仕切
板63、燃料ガス室仕切板55が設けられ、それぞれの
室を構成しており、これらの室に導入されるガスが制御
されている。つまり、空気室仕切板61と空気導入管5
9との固定部から空気が燃焼室B内に漏出しないよう
に、また、燃焼室仕切板63とセル52との固定部から
燃料ガスが燃焼室内に漏出しないように、さらに、空気
室仕切板61、燃焼室仕切板63、燃料ガス室仕切板5
5の外周面と、反応容器51の内壁面との間からガスが
漏出しないようにする必要がある。特に、燃焼室仕切板
63による気密性については十分留意する必要がある。
By the way, in the solid oxide fuel cell, since two types of gas, air and fuel gas, are used to generate electricity, it is necessary to prevent adverse effects due to gas leakage. Therefore, as described above, the air chamber partition plate 61 for configuring the combustion chamber B, the combustion chamber partition plate 63 of the cell 52, and the fuel gas chamber partition plate 55 are provided, and each chamber is configured, The gases introduced into these chambers are controlled. That is, the air chamber partition plate 61 and the air introduction pipe 5
9 so that air does not leak into the combustion chamber B from the fixed portion with 9, and fuel gas does not leak into the combustion chamber from the fixed portion between the combustion chamber partition plate 63 and the cell 52. 61, combustion chamber partition plate 63, fuel gas chamber partition plate 5
It is necessary to prevent the gas from leaking between the outer peripheral surface of 5 and the inner wall surface of the reaction vessel 51. In particular, it is necessary to pay sufficient attention to the airtightness of the combustion chamber partition plate 63.

【0008】ところが、固体電解質型燃料電池には、セ
ラミックス、金属等、様々な材料が用いられており、一
方で固体電解質型燃料電池は動作温度が約1000℃と
高いために各部材間の熱膨張率が異なり、空気室仕切板
61、燃焼室仕切板63、燃料ガス室仕切板55と、セ
ル52や空気導入管59、反応容器51等と密接に接合
するとセル52や空気導入管59等が破損する危険性が
あった。
However, various materials such as ceramics and metals are used for the solid oxide fuel cell, and the operating temperature of the solid oxide fuel cell is as high as about 1000 ° C., so that the heat between the members is increased. When the expansion coefficient is different and the air chamber partition plate 61, the combustion chamber partition plate 63, and the fuel gas chamber partition plate 55 are closely joined to the cell 52, the air introduction pipe 59, the reaction container 51, etc., the cell 52, the air introduction pipe 59, etc. There was a risk of damage.

【0009】そこで、従来、空気室仕切板61、燃焼室
仕切板63、燃料ガス室仕切板55として、熱膨張係数
の観点からセル52や空気導入管59等が破損しないよ
うに、アルミナファイバーをバインダで固めた断熱ボー
ドが用いられていた。図7に、断熱ボードからなる燃焼
室仕切板63を用いてセル52を固定した状態を示す。
Therefore, conventionally, as the air chamber partition plate 61, the combustion chamber partition plate 63, and the fuel gas chamber partition plate 55, alumina fibers are used so as not to damage the cells 52, the air introduction pipes 59, etc. from the viewpoint of the coefficient of thermal expansion. A heat-insulating board hardened with a binder was used. FIG. 7 shows a state in which the cells 52 are fixed by using the combustion chamber partition plate 63 made of a heat insulating board.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、断熱ボ
ードはアルミナファイバーをバインダで固めただけであ
り、柔軟性を有していたため柔らかく、図7に示したよ
うに、断熱ボードからなる燃焼室仕切板63を用いる場
合には、セルの外周面と燃焼室仕切板63との間に隙間
が生じ、その部分から燃料ガスが燃焼室B内に漏れ、セ
ルの近傍で燃焼が起こり、セル近傍が加熱されてセルが
破損する虞があった。また、燃料ガスの漏出により燃料
効率が悪くなり、発電性能が悪化するという問題があっ
た。
However, the heat insulation board is soft because it is made of only alumina fibers which are hardened with a binder and has flexibility. As shown in FIG. 7, the combustion chamber partition plate composed of the heat insulation board is used. When 63 is used, a gap is created between the outer peripheral surface of the cell and the combustion chamber partition plate 63, fuel gas leaks into the combustion chamber B from that portion, combustion occurs near the cell, and the vicinity of the cell is heated. There was a risk that the cells would be damaged and damaged. Further, there is a problem that the fuel efficiency is deteriorated due to the leakage of the fuel gas and the power generation performance is deteriorated.

【0011】また、燃焼室仕切板63は、アルミナファ
イバーをバインダで固めただけのものであったため、燃
焼室Bに供給された空気が燃焼室仕切板63を介して反
応室C内に漏出し、燃焼が反応容器内で生ずる虞があっ
た。
Further, since the combustion chamber partition plate 63 is made of alumina fibers only hardened with a binder, the air supplied to the combustion chamber B leaks into the reaction chamber C through the combustion chamber partition plate 63. However, there was a risk that combustion would occur in the reaction vessel.

【0012】本発明は、燃料ガスや空気の漏出を防止で
き、これにより発電性能を向上できる固体電解質型燃料
電池を提供することを目的とする。
It is an object of the present invention to provide a solid oxide fuel cell which can prevent leakage of fuel gas and air and thereby improve power generation performance.

【0013】本発明の固体電解質型燃料電池は、反応容
器内に燃焼室仕切板を用いて燃焼室と反応室を形成し、
複数の有底筒状の固体電解質型燃料電池セルを前記燃焼
室仕切板に形成された複数のセル挿入孔にそれぞれ挿入
し固定してなり、空気を前記固体電解質型燃料電池セル
内にそれぞれ供給し、かつ、燃料ガスを前記反応室内の
前記固体電解質型燃料電池セル間に供給して反応させ、
余剰の燃料ガスを前記燃焼室仕切板に形成された燃料ガ
ス噴出孔から前記燃焼室内に噴出させ、前記固体電解質
型燃料電池セル内から前記燃焼室内に排出された空気と
反応させて燃焼させる固体電解質型燃料電池であって、
前記燃焼室仕切板を所定間隔をおいて対向配置された一
対のセラミックス板により形成し、該セラミックス板間
における前記固体電解質型燃料電池セル外周部に繊維状
セラミックスを充填するとともに、前記燃焼室仕切板の
外周面と前記反応容器内壁面との隙間に繊維状セラミッ
クスを充填してなるものである。ここで、繊維状セラミ
ックスが、Al23を主成分とし、SiO2の含有量が
40重量%以下であることが望ましい。
In the solid oxide fuel cell of the present invention, a combustion chamber partition plate is used in the reaction container to form a combustion chamber and a reaction chamber.
A plurality of bottomed cylindrical solid oxide fuel cell units are inserted into and fixed in a plurality of cell insertion holes formed in the combustion chamber partition plate, and air is supplied into the solid oxide fuel cell units. And, a fuel gas is supplied between the solid oxide fuel cell units in the reaction chamber to cause a reaction,
Excess fuel gas is ejected into the combustion chamber from the fuel gas ejection holes formed in the combustion chamber partition plate, and the solid electrolyte
A solid oxide fuel cell for reacting with the air discharged from the inside of the fuel cell of the fuel cell to burn the fuel.
The combustion chamber partition plate is formed of a pair of ceramic plates that are opposed to each other at a predetermined interval, and the outer peripheral portion of the solid oxide fuel cell between the ceramic plates is filled with fibrous ceramics. The gap between the outer peripheral surface of the plate and the inner wall surface of the reaction vessel is filled with fibrous ceramics. Here, it is desirable that the fibrous ceramics contain Al 2 O 3 as a main component and the content of SiO 2 be 40% by weight or less.

【0014】[0014]

【作用】本発明の固体電解質型燃料電池では、燃焼室仕
切板を所定間隔をおいて対向配置された一対のセラミッ
クス板により形成し、該セラミックス板間における固体
電解質型燃料電池セル外周部に繊維状セラミックスを充
填するとともに、燃焼室仕切板の外周面と反応容器内壁
面との隙間に繊維状セラミックスを充填したので、反応
容器内を、燃焼室と反応室に確実に仕切ることができ、
不要なガスの漏出を防止することができるとともに、燃
焼室仕切板とセルとの間や反応容器内壁面との間は接合
されていないため、多少熱膨張率が相違していても各部
材には応力が殆ど作用せず、セル等の破損を防止するこ
とができる。
In the solid oxide fuel cell of the present invention, the combustion chamber partition plates are formed of a pair of ceramic plates opposed to each other at a predetermined interval, and the fibers are provided on the outer periphery of the solid oxide fuel cell between the ceramic plates. Since the fibrous ceramics were filled in the gap between the outer peripheral surface of the combustion chamber partition plate and the inner wall surface of the reaction vessel while filling the ceramics, it is possible to reliably partition the inside of the reaction vessel into the combustion chamber and the reaction chamber.
Not only is it possible to prevent unnecessary gas from leaking out, but since there is no joint between the combustion chamber partition plate and the cell or the inner wall surface of the reaction vessel, even if the coefficient of thermal expansion is slightly different, Almost no stress acts, and it is possible to prevent damage to cells and the like.

【0015】また、燃焼室仕切板が2層構造であるた
め、燃焼室における熱の反応室内のセルへの伝達を抑制
でき、温度差によるセルの破壊を防止できる。
Further, since the combustion chamber partition plate has a two-layer structure, it is possible to suppress the transfer of heat in the combustion chamber to the cells in the reaction chamber and prevent the cells from being broken due to the temperature difference.

【0016】さらに、繊維状セラミックスを、Al2
3 を主成分とし、SiO2 の含有量が40重量%以下と
することが望ましいが、これはSiO2 を含有すること
によりアルミナファイバーをボード状に成形できるよう
になるが、反面、空気や燃料ガス中へのSiO2 成分が
混入し、セルの空気極や燃料極にSiO2 成分が付着
し、発電特性を劣化させる虞があったが、SiO2 の含
有量を40重量%以下としたことにより、空気や燃料ガ
ス中へのSiO2 成分の含有が抑制され、発電特性を向
上できる。
Further, fibrous ceramics are mixed with Al 2 O.
It is desirable that the main component is 3 , and the content of SiO 2 is 40% by weight or less. This makes it possible to mold the alumina fiber into a board by containing SiO 2 , but on the other hand, it is not possible to use air or fuel. SiO 2 component into the gas is mixed, SiO 2 component is attached to the air electrode and the fuel electrode of the cell, but there is a possibility to deteriorate the power generation characteristics, that the content of SiO 2 is 40 wt% or less As a result, the content of SiO 2 component in the air or fuel gas is suppressed, and the power generation characteristics can be improved.

【0017】[0017]

【発明の実施の形態】本発明の固体電解質型燃料電池
は、空気や燃料ガスの漏出を防止する構造を除いて実質
的に従来と同様の構造を有している。本発明の固体電解
質型燃料電池を、図1で説明する。尚、従来の技術で述
べた構造と同様の構造の場合には、従来の技術と同一符
号を付した。
BEST MODE FOR CARRYING OUT THE INVENTION The solid oxide fuel cell of the present invention has substantially the same structure as the conventional one except for a structure for preventing leakage of air and fuel gas. The solid oxide fuel cell of the present invention will be described with reference to FIG. In the case of a structure similar to the structure described in the related art, the same reference numeral as that in the related art is given.

【0018】即ち、固体電解質型燃料電池は、図1に示
すように、反応容器51内に、有底筒状の固体電解質型
燃料電池セル52を配置して構成されており、この反応
容器51には、例えば水素からなる燃料ガスを導入する
燃料ガス導入口53、燃料ガスを分散するための燃料ガ
ス室仕切板55、空気を導入する空気導入口57、およ
びセル52内に空気を導入する空気導入管59、この空
気導入管59を固定する空気室仕切板61、セル52を
固定する燃焼室仕切板63とから構成されている。
That is, as shown in FIG. 1, the solid oxide fuel cell is constructed by arranging a cylindrical solid oxide fuel cell 52 having a bottom in a reaction container 51. For example, a fuel gas inlet 53 for introducing a fuel gas composed of hydrogen, a fuel gas chamber partition plate 55 for dispersing the fuel gas, an air inlet 57 for introducing air, and air are introduced into the cell 52. It is composed of an air introducing pipe 59, an air chamber partition plate 61 fixing the air introducing pipe 59, and a combustion chamber partition plate 63 fixing the cell 52.

【0019】燃料ガス室仕切板55には、燃料ガスをセ
ル52間に分散するための分散孔(図示せず)が形成さ
れている。空気室仕切板61とセル52を固定する燃焼
室仕切板63との間は、空気と水素が燃焼する燃焼室B
とされ、燃焼室仕切板63には、図2(b)に示すよう
に、セル52間を通過した燃料ガスを燃焼室B内に導入
する燃料ガス噴出孔83が形成され、燃焼室65内で燃
焼したガスは反応容器51に設けられた排気口67を介
して外部に排出される。
Dispersion holes (not shown) for dispersing the fuel gas between the cells 52 are formed in the fuel gas chamber partition plate 55. Between the air chamber partition plate 61 and the combustion chamber partition plate 63 that fixes the cell 52, there is a combustion chamber B in which air and hydrogen burn.
As shown in FIG. 2 (b), the combustion chamber partition plate 63 is formed with the fuel gas ejection holes 83 for introducing the fuel gas passing between the cells 52 into the combustion chamber B. The gas burned in (1) is discharged to the outside through the exhaust port 67 provided in the reaction vessel 51.

【0020】セル52は燃焼室仕切板63に形成された
セル挿入孔に挿入され、この燃焼室仕切板63には、余
剰の燃焼ガスを燃焼室Bに導入するための導入孔が形成
されている。空気導入管59は、空気室仕切板61に形
成された空気導入管挿入孔に挿入されている。燃焼室仕
切板63のセル挿入孔は、セル52の外径よりも0.5
〜3mm大きい方が良い。
The cell 52 is inserted into a cell insertion hole formed in the combustion chamber partition plate 63, and the combustion chamber partition plate 63 is formed with an introduction hole for introducing an excess combustion gas into the combustion chamber B. There is. The air introduction pipe 59 is inserted into an air introduction pipe insertion hole formed in the air chamber partition plate 61. The cell insertion hole of the combustion chamber partition plate 63 has a diameter 0.5 smaller than the outer diameter of the cell 52.
~ 3mm larger is better.

【0021】セル52は、図3に示すように、例えば、
支持管としてのLaMnO3 系空気極71と、この空気
極71の表面に形成されたY2 3 安定化ZrO2 から
なる固体電解質72と、固体電解質72の表面に形成さ
れたNi−ジルコニア系の燃料極73と、空気極71と
電気的に接続されるLaCrO3 系よりなるインターコ
ネクタ74とから構成されている。
The cell 52 is, for example, as shown in FIG.
LaMnO 3 system air electrode 71 as a support tube, solid electrolyte 72 formed of Y 2 O 3 stabilized ZrO 2 formed on the surface of this air electrode 71, and Ni-zirconia system formed on the surface of solid electrolyte 72 Of the fuel electrode 73 and an interconnector 74 of LaCrO 3 system electrically connected to the air electrode 71.

【0022】そして、図4に示すように、一方のセル5
2のインターコネクタ74を、他方のセル52の燃料極
73にNi金属繊維等の接続部材75を介して、他方の
セル52の燃料極73に接続して、複数のセル52が電
気的に接続され、スタック77が構成されており、この
ようなスタック77が、図1に示したように、反応容器
51内に複数収容されて固体電解質型燃料電池が構成さ
れている。反応容器51内には、一つのセル52のイン
ターコネクタ74に接続された電極78と、他方のセル
52の燃料極73に接続された電極(図示せず)が配置
されており、これらの電極78を介して電力が取り出さ
れる。
Then, as shown in FIG. 4, one cell 5
The second interconnector 74 is connected to the fuel electrode 73 of the other cell 52 via the connecting member 75 such as Ni metal fiber to the fuel electrode 73 of the other cell 52 to electrically connect the plurality of cells 52. The stack 77 is configured, and as shown in FIG. 1, a plurality of such stacks 77 are housed in the reaction vessel 51 to configure the solid oxide fuel cell. In the reaction vessel 51, an electrode 78 connected to the interconnector 74 of one cell 52 and an electrode (not shown) connected to the fuel electrode 73 of the other cell 52 are arranged. Power is extracted via 78.

【0023】そして、本発明の固体電解質型燃料電池で
は、図2(c)に示すように、燃焼室仕切板63が一対
のセラミックス板79、80により形成し、該セラミッ
クス板79、80間における固体電解質型燃料電池セル
52外周部に繊維状セラミックス82が充填されてい
る。また、セラミックス板79、80に形成されたセル
挿入孔とセル52の外面との間にも繊維状セラミックス
82が充填されている。さらに、燃焼室仕切板63の外
周面と反応容器51内壁面との隙間にも繊維状セラミッ
クス82が充填されている。
In the solid oxide fuel cell of the present invention, as shown in FIG. 2 (c), the combustion chamber partition plate 63 is formed by a pair of ceramic plates 79 and 80, and the space between the ceramic plates 79 and 80. Fibrous ceramics 82 is filled in the outer peripheral portion of the solid oxide fuel cell unit 52. Fibrous ceramics 82 is also filled between the cell insertion holes formed in the ceramics plates 79 and 80 and the outer surface of the cell 52. Further, the fibrous ceramics 82 is also filled in the gap between the outer peripheral surface of the combustion chamber partition plate 63 and the inner wall surface of the reaction vessel 51.

【0024】さらに、燃料ガス室仕切板55もセラミッ
クス板により形成され、このセラミックス板からなる燃
料ガス室仕切板55の外周面と反応容器51の内壁面と
の隙間に繊維状セラミックス82が充填されている。ま
た、空気室仕切板61は、従来の断熱ボードにより形成
され、この断熱ボードからなる空気室仕切板61の外周
面と反応容器51の内壁面との隙間に繊維状セラミック
ス82が充填されている。
Further, the fuel gas chamber partition plate 55 is also formed of a ceramic plate, and the fibrous ceramics 82 is filled in the gap between the outer peripheral surface of the fuel gas chamber partition plate 55 made of this ceramic plate and the inner wall surface of the reaction vessel 51. ing. The air chamber partition plate 61 is formed of a conventional heat insulating board, and the fibrous ceramics 82 is filled in the gap between the outer peripheral surface of the air chamber partition plate 61 and the inner wall surface of the reaction vessel 51. .

【0025】この繊維状セラミックス82は、Al2
3 を主成分とし、SiO2 の含有量が40重量%以下と
されている。これはSiO2 を含有することによりファ
イバー化することができるが、40重量%よりも多くな
ると空気や燃料ガス中にSiO2 成分が混入し、セルの
空気極や燃料極にSiO2 成分が付着し、発電特性を劣
化させる虞があるからである。SiO2 含有量は、10
00時間後における性能劣化を3%未満にする点から5
重量%以下が望ましい。
This fibrous ceramic 82 is made of Al 2 O.
The main component is 3 , and the content of SiO 2 is 40% by weight or less. Although this can be fiberizing by containing SiO 2, larger than 40 wt%, the SiO 2 component is mixed with the air and fuel gas, the SiO 2 component is attached to the air electrode and the fuel electrode of the cell However, the power generation characteristics may be deteriorated. SiO 2 content is 10
5 from the point that performance deterioration after 00 hours is less than 3%
It is preferably less than or equal to wt%.

【0026】このような固体電解質型燃料電池の発電
は、空気を空気導入口57から空気導入管59を介して
セル52内に空気を導入するとともに、燃料ガス導入口
53から水素を導入し、燃料ガス室仕切板55の分散孔
で分散してセル52の外部に導入することにより行わ
れ、余剰の空気と燃料ガスは燃焼室B内で燃焼させら
れ、排気口67から外部に排出される。
In the power generation of such a solid oxide fuel cell, air is introduced from the air introduction port 57 into the cell 52 through the air introduction pipe 59, and hydrogen is introduced from the fuel gas introduction port 53. This is performed by dispersing the fuel gas in the fuel gas chamber partition plate 55 through the dispersion holes and introducing the dispersed gas into the outside of the cell 52. The surplus air and the fuel gas are burned in the combustion chamber B and discharged from the exhaust port 67 to the outside. .

【0027】図5に固体電解質型燃料電池セル一本のガ
スの流れを示す。水素ガス(燃料ガス)は燃料電池セル
下方から導入され、発電により酸化されながら上方へと
進む。一方、空気(酸化ガス)は空気導入管59を介し
てセル上方よりセル内部下方へ導入される。そしてセル
内部下方より上部へと流れる。セル上部より排出された
空気は発電で消費されなかった水素ガスと反応し、燃焼
室B内で燃焼する。
FIG. 5 shows the gas flow of one solid oxide fuel cell unit. Hydrogen gas (fuel gas) is introduced from the lower side of the fuel cell and is oxidized by power generation and proceeds upward. On the other hand, air (oxidizing gas) is introduced from above the cell to below the inside of the cell via the air introduction pipe 59. Then, it flows from the lower part inside the cell to the upper part. The air discharged from the upper part of the cell reacts with the hydrogen gas that has not been consumed in the power generation, and burns in the combustion chamber B.

【0028】以上のように構成された固体電解質型燃料
電池では、燃焼室仕切板63を緻密質な一対のセラミッ
クス板79、80により形成し、これらのセラミックス
板79、80間における固体電解質型燃料電池セル52
外周部に繊維状セラミックス82が充填され、また燃焼
室仕切板63の外周面と反応容器51内壁面との隙間に
も繊維状セラミックス82が充填されているため、反応
容器51内の燃焼室Bと反応室Cを確実に仕切ることが
でき、不要なガスの漏出、例えば、セル挿入孔からの燃
料ガスの燃焼室B内への漏出や、燃焼室仕切板63自体
からの空気の反応室C内への漏出を防止することができ
るとともに、燃焼室仕切板63とセル52との間や反応
容器51内壁面との間は接合されていないため、多少熱
膨張率が相違していても各部材には応力が殆ど作用せ
ず、セル等の破損を防止することができる。
In the solid oxide fuel cell configured as described above, the combustion chamber partition plate 63 is formed by a pair of dense ceramic plates 79 and 80, and the solid electrolytic fuel between the ceramic plates 79 and 80 is formed. Battery cell 52
Since the fibrous ceramics 82 is filled in the outer peripheral portion and the fibrous ceramics 82 is also filled in the gap between the outer peripheral surface of the combustion chamber partition plate 63 and the inner wall surface of the reaction vessel 51, the combustion chamber B in the reaction vessel 51 is filled. And the reaction chamber C can be reliably partitioned, and unnecessary gas leaks, for example, fuel gas leaks into the combustion chamber B from the cell insertion hole, and air reaction chamber C from the combustion chamber partition plate 63 itself. It is possible to prevent leakage into the interior, and since the combustion chamber partition plate 63 and the cell 52 and the inner wall surface of the reaction vessel 51 are not joined, even if the coefficient of thermal expansion is slightly different, Almost no stress acts on the member, and damage to the cell or the like can be prevented.

【0029】また、燃焼室仕切板63が2層構造である
ため、燃焼室Bにおける熱の反応室C内のセル52への
伝達を抑制でき、温度差によるセル52の破壊を防止で
きるとともに、空気の反応室Cへの漏出を防止すること
ができる。また、燃料ガス室仕切板55をセラミックス
板により形成し、このセラミックス板と反応容器51内
壁面との隙間に繊維状セラミックス82を充填したた
め、反応容器51内を確実に仕切ることができ、不要な
ガスの漏出を防止することができるとともに、燃料ガス
室仕切板55と反応容器51内壁面との間は接合されて
いないため、多少熱膨張率が相違していても各部材には
応力が殆ど作用せず、セル等の破損を防止することがで
きる。
Further, since the combustion chamber partition plate 63 has a two-layer structure, it is possible to suppress the transfer of heat in the combustion chamber B to the cells 52 in the reaction chamber C and prevent the cells 52 from being broken due to a temperature difference. Leakage of air into the reaction chamber C can be prevented. Further, since the fuel gas chamber partition plate 55 is formed of a ceramic plate and the gap between the ceramic plate and the inner wall surface of the reaction container 51 is filled with the fibrous ceramics 82, the interior of the reaction container 51 can be reliably partitioned, which is unnecessary. The leakage of gas can be prevented, and since the fuel gas chamber partition plate 55 and the inner wall surface of the reaction vessel 51 are not joined to each other, even if the coefficient of thermal expansion is slightly different, each member is almost free from stress. It does not work and can prevent damage to cells and the like.

【0030】さらに、繊維状セラミックス82を、Al
2 3 を主成分とし、SiO2 の含有量が40重量%以
下としたので、セルの空気極や燃料極にSiO2 成分が
付着するのを抑制し、発電特性を向上できる。
Further, the fibrous ceramics 82 is replaced with Al
Since 2 O 3 is the main component and the content of SiO 2 is 40% by weight or less, it is possible to prevent the SiO 2 component from adhering to the air electrode or the fuel electrode of the cell and improve the power generation characteristics.

【0031】図6は、燃焼室仕切板63を一対のセラミ
ックス板79、80から構成するとともに、これらのセ
ラミックス板79、80の間にアルミナファイバーをバ
インダで固めた従来の断熱ボード84が配置されてお
り、セラミックス板79、80間における固体電解質型
燃料電池セル52外周部に繊維状セラミックス82が充
填されている。セラミックス板79、80のセル挿入孔
の内面とセルの外面との間にも繊維状セラミックス82
が充填されている。
In FIG. 6, the combustion chamber partition plate 63 is composed of a pair of ceramic plates 79 and 80, and a conventional heat insulating board 84 in which alumina fibers are hardened with a binder is arranged between the ceramic plates 79 and 80. The fibrous ceramics 82 is filled in the outer peripheral portion of the solid oxide fuel cell unit 52 between the ceramics plates 79 and 80. The fibrous ceramics 82 is also provided between the inner surfaces of the cell insertion holes of the ceramic plates 79 and 80 and the outer surfaces of the cells.
Is filled.

【0032】このような構造でも、セラミックス板7
9、80、繊維状セラミックス82、断熱ボード84に
よりガスの漏出を防止できる。
Even with such a structure, the ceramic plate 7
The gas leakage can be prevented by the 9, 80, the fibrous ceramics 82, and the heat insulating board 84.

【0033】[0033]

【実施例】図1に示すような固体電解質型燃料電池を作
製した。先ず、反応容器51内に、Al2 3 を主成分
とするセラミックス板からなる燃料ガス仕切板55を収
容し、燃料ガス仕切板55と反応容器51の内壁面との
隙間に、Al2 3 を主成分とし、SiO2 を5重量%
含有する繊維状セラミックス、商品名:カオウール(イ
ソライト工業社製)を詰め込んだ。そして、反応容器5
1内に白煙を導入し、目視にて燃料ガスの供給孔以外か
らガスの流れがないことを確認した。
Example A solid oxide fuel cell as shown in FIG. 1 was produced. First, a fuel gas partition plate 55 made of a ceramics plate containing Al 2 O 3 as a main component is housed in the reaction vessel 51, and Al 2 O is placed in the gap between the fuel gas partition plate 55 and the inner wall surface of the reaction vessel 51. 3 as the main component, 5% by weight of SiO 2
The contained fibrous ceramics, trade name: Kaowool (manufactured by Isolite Industrial Co., Ltd.) was packed. And the reaction vessel 5
White smoke was introduced into No. 1, and it was visually confirmed that there was no gas flow from other than the fuel gas supply holes.

【0034】次に、燃料ガス室仕切板55上に、図4に
示したようなセル52を9本連結したスタック77を4
組作製した。
Next, on the fuel gas chamber partition plate 55, four stacks 77 each having nine cells 52 connected as shown in FIG. 4 are connected.
A set was made.

【0035】(c)に示す構造の燃焼室仕切板63を反
応容器51内に収容し、燃焼室仕切板63と固体電解質
型燃料電池セル52の外面との隙間、燃焼室仕切板63
と反応容器51の内壁面との隙間、およびセラミックス
板79、80の間に上記した繊維状セラミックス82を
詰め込んだ。この後、セラミックス板79、80に形成
された燃料ガス噴出孔に治具を挿入して燃料ガス噴出孔
を完成した。
A combustion chamber partition plate 63 having the structure shown in (c) is housed in the reaction vessel 51, and the gap between the combustion chamber partition plate 63 and the outer surface of the solid oxide fuel cell unit 52, the combustion chamber partition plate 63.
The fibrous ceramics 82 described above was packed in the space between the inner wall surface of the reaction vessel 51 and the ceramics plates 79 and 80. After that, a jig was inserted into the fuel gas ejection holes formed in the ceramic plates 79 and 80 to complete the fuel gas ejection holes.

【0036】次に、反応容器51内に上記した断熱ボー
ドからなる空気室仕切板61を収容し、空気室仕切板6
1と反応容器51の内壁面との隙間に上記繊維状セラミ
ックス82を詰め込んだ。そして、反応容器51内に白
煙を導入し、目視にて空気導入管59以外から空気の流
れがないことを確認した。
Next, the air chamber partition plate 61 made of the above-described heat insulating board is housed in the reaction vessel 51, and the air chamber partition plate 6 is placed.
The fibrous ceramics 82 was packed in the gap between the inner wall surface of the reaction vessel 51 and the inner wall of the reaction vessel 51. Then, white smoke was introduced into the reaction vessel 51, and it was visually confirmed that there was no air flow except through the air introduction tube 59.

【0037】そして、空気および水素ガスを燃料ガスと
して反応容器51内に供給し、1000℃にて発電を行
った。また、燃焼室仕切板63の燃料ガス噴出孔以外か
らのガスの漏れがないかを、熱電対による温度変化によ
り確認した。
Then, air and hydrogen gas were supplied as fuel gas into the reaction vessel 51, and power was generated at 1000 ° C. Further, it was confirmed whether or not gas leaked from other than the fuel gas ejection holes of the combustion chamber partition plate 63 by a temperature change by a thermocouple.

【0038】一方、図7に示すように、燃焼室仕切板6
3を従来のアルミナファイバーからなる断熱ボード84
にて作製した場合、図6に示すように、燃焼室仕切板6
3を一対のアルミナを主成分とするセラミックス板によ
り構成し、その間にアルミナファイバーからなる断熱ボ
ードを配置して構成し、燃焼室仕切板63と断熱ボード
のセル挿入孔との間に、Al2 3 からなる繊維状セラ
ミックス82を詰め込んだ場合についても確認した。そ
の結果を表1に示す。
On the other hand, as shown in FIG. 7, the combustion chamber partition plate 6
3 is a heat insulating board 84 made of conventional alumina fiber
In the case of manufacturing in, as shown in FIG. 6, the combustion chamber partition plate 6
3 is composed of a pair of ceramic plates containing alumina as a main component, and a heat insulating board made of alumina fibers is arranged between them, and Al 2 is provided between the combustion chamber partition plate 63 and the cell insertion hole of the heat insulating board. The case where the fibrous ceramics 82 made of O 3 was packed was also confirmed. The results are shown in Table 1.

【0039】[0039]

【表1】 [Table 1]

【0040】この表1より、燃焼室仕切板63を従来の
断熱ボード84にて作製した場合には、燃料ガスの漏出
があり、発電性能が悪いことが判る。一方、燃焼室仕切
板63をセラミック板により形成し、Al2 3 からな
る繊維状セラミックス82を詰め込んだ本発明の場合に
は、発電性能が良好であることが判る。
From Table 1, it can be seen that when the combustion chamber partition plate 63 is manufactured by the conventional heat insulating board 84, fuel gas leaks and the power generation performance is poor. On the other hand, in the case of the present invention in which the combustion chamber partition plate 63 is formed of a ceramic plate and the fibrous ceramics 82 made of Al 2 O 3 is packed, it is understood that the power generation performance is good.

【0041】実施例2 実施例1のNo.2と同様な固体電解質型燃料電池を作製
し、繊維状セラミックス82のSiO2 量を変化させて
1000時間後の性能を比較した。この結果を表2に記
載した。
Example 2 A solid oxide fuel cell similar to No. 2 of Example 1 was prepared and the performance after 1000 hours was compared by changing the amount of SiO 2 in the fibrous ceramics 82. The results are shown in Table 2.

【0042】[0042]

【表2】 [Table 2]

【0043】この表2より、SiO2 含有量が0の場合
が最も発電性能が良好であり、SiO2 量が増加するに
伴い発電性能が劣化することが判る。
From Table 2, it can be seen that the power generation performance is best when the SiO 2 content is 0, and the power generation performance deteriorates as the SiO 2 content increases.

【0044】[0044]

【発明の効果】本発明の固体電解質型燃料電池では、反
応容器内を、燃焼室と反応室に確実に仕切ることがで
き、不要なガスの漏出を防止することができるととも
に、燃焼室仕切板とセルとの間や反応容器内壁面との間
は接合されていないため、多少熱膨張率が相違していて
も各部材には応力が殆ど作用せず、セル等の破損を防止
することができる。また、燃焼室仕切板が2層構造であ
るため、燃焼室における熱の反応室内のセルへの伝達を
抑制でき、温度差によるセルの破壊を防止できる。
According to the solid oxide fuel cell of the present invention, the inside of the reaction vessel can be reliably partitioned into the combustion chamber and the reaction chamber, unnecessary gas can be prevented from leaking, and the combustion chamber partition plate can be prevented. Since there is no joint between the cell and the cell or the inner wall surface of the reaction vessel, even if the coefficient of thermal expansion is slightly different, almost no stress acts on each member, and damage to the cell etc. can be prevented. it can. Moreover, since the combustion chamber partition plate has a two-layer structure, it is possible to suppress the transfer of heat in the combustion chamber to the cells in the reaction chamber, and prevent the cells from being broken due to a temperature difference.

【図面の簡単な説明】[Brief description of drawings]

【図1】固体電解質型燃料電池の模式図である。FIG. 1 is a schematic diagram of a solid oxide fuel cell.

【図2】燃焼室仕切板およびその近傍を示すもので、
(a)は側面図、(b)は平面図、(c)は断面図であ
る。
FIG. 2 shows a combustion chamber partition plate and its vicinity,
(A) is a side view, (b) is a plan view, and (c) is a sectional view.

【図3】固体電解質型燃料電池モルの断面図である。FIG. 3 is a cross-sectional view of a solid oxide fuel cell mole.

【図4】スタックを示す平面図である。FIG. 4 is a plan view showing a stack.

【図5】固体電解質型燃料電池セルのガスの流れを説明
するための説明図である。
FIG. 5 is an explanatory diagram for explaining a gas flow in a solid oxide fuel cell unit.

【図6】燃焼室仕切板を一対のセラミックス板、断熱ボ
ード、繊維状セラミックスで構成した断面図である。
FIG. 6 is a cross-sectional view of a combustion chamber partition plate composed of a pair of ceramic plates, a heat insulating board, and fibrous ceramics.

【図7】燃焼室仕切板を断熱ボードで構成した従来の固
体電解質型燃料電池の断面図である。
FIG. 7 is a cross-sectional view of a conventional solid oxide fuel cell in which a combustion chamber partition plate is composed of a heat insulating board.

【符号の説明】[Explanation of symbols]

51・・・反応容器 52・・・固体電解質型燃料電池セル 55・・・燃料ガス室仕切板 61・・・空気室仕切板 63・・・燃焼室仕切板 79、80・・・セラミックス板 82・・・繊維状セラミックス 51 ... Reaction container 52 ... Solid oxide fuel cell 55 ... Fuel gas chamber partition plate 61 ... Air chamber partition plate 63 ... Combustion chamber partition plate 79, 80 ... Ceramic plate 82 ... Fibrous ceramics

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】反応容器内に燃焼室仕切板を用いて燃焼室
と反応室を形成し、複数の有底筒状の固体電解質型燃料
電池セルを前記燃焼室仕切板に形成された複数のセル挿
入孔にそれぞれ挿入し固定してなり、空気を前記固体電
解質型燃料電池セル内にそれぞれ供給し、かつ、燃料ガ
スを前記反応室内の前記固体電解質型燃料電池セル間に
供給して反応させ、余剰の燃料ガスを前記燃焼室仕切板
に形成された燃料ガス噴出孔から前記燃焼室内に噴出さ
せ、前記固体電解質型燃料電池セル内から前記燃焼室内
に排出された空気と反応させて燃焼させる固体電解質型
燃料電池であって、前記燃焼室仕切板を所定間隔をおい
て対向配置された一対のセラミックス板により形成し、
該セラミックス板間における前記固体電解質型燃料電池
セル外周部に繊維状セラミックスを充填するとともに、
前記燃焼室仕切板の外周面と前記反応容器内壁面との隙
間に繊維状セラミックスを充填してなることを特徴とす
る固体電解質型燃料電池。
1. A combustion chamber partition plate is used in a reaction container to form a combustion chamber and a reaction chamber, and a plurality of bottomed cylindrical solid oxide fuel cell units are formed in the combustion chamber partition plate. Each of them is inserted into a cell insertion hole and fixed, and air is supplied into each of the solid oxide fuel cells, and a fuel gas is supplied between the solid oxide fuel cells in the reaction chamber to cause a reaction. An excess fuel gas is ejected into the combustion chamber from a fuel gas ejection hole formed in the combustion chamber partition plate, and the solid electrolyte fuel cell is ejected into the combustion chamber.
A solid oxide fuel cell for reacting with the air discharged to burn the air, wherein the combustion chamber partition plates are formed of a pair of ceramic plates facing each other at a predetermined interval,
While filling the outer periphery of the solid oxide fuel cell unit between the ceramic plates with fibrous ceramics,
A solid oxide fuel cell, characterized in that a fibrous ceramic is filled in a gap between the outer peripheral surface of the combustion chamber partition plate and the inner wall surface of the reaction vessel.
【請求項2】繊維状セラミックスが、Al23を主成分
とし、SiO2の含有量が40重量%以下であることを
特徴とする請求項1記載の固体電解質型燃料電池。
2. The solid oxide fuel cell according to claim 1, wherein the fibrous ceramics contains Al 2 O 3 as a main component and the content of SiO 2 is 40% by weight or less.
JP32749097A 1997-11-28 1997-11-28 Solid oxide fuel cell Expired - Fee Related JP3389482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32749097A JP3389482B2 (en) 1997-11-28 1997-11-28 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32749097A JP3389482B2 (en) 1997-11-28 1997-11-28 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH11162498A JPH11162498A (en) 1999-06-18
JP3389482B2 true JP3389482B2 (en) 2003-03-24

Family

ID=18199745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32749097A Expired - Fee Related JP3389482B2 (en) 1997-11-28 1997-11-28 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3389482B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4884595B2 (en) * 2001-04-02 2012-02-29 三菱重工業株式会社 Solid oxide fuel cell module
US7144649B2 (en) 2002-11-27 2006-12-05 Utc Fuel Cells, Llc Interconnect for solid oxide fuel cells
JP4587659B2 (en) * 2003-11-26 2010-11-24 京セラ株式会社 Manufacturing method of fuel cell stack
US20080124598A1 (en) * 2006-11-29 2008-05-29 Monika Backhaus-Ricoult Activation of solid oxide fuel cell electrode surfaces
JP5305131B2 (en) * 2008-05-21 2013-10-02 Toto株式会社 Fuel cell and fuel cell
JP6120252B2 (en) * 2013-06-27 2017-04-26 Toto株式会社 Solid oxide fuel cell device
JP6854954B1 (en) * 2020-07-02 2021-04-07 三菱パワー株式会社 Insulation structure of high temperature reaction part

Also Published As

Publication number Publication date
JPH11162498A (en) 1999-06-18

Similar Documents

Publication Publication Date Title
JP4969880B2 (en) Fuel cell
US5330858A (en) Solid electrolyte type fuel cell power generation module and system
US8026011B2 (en) Fuel cell assembly
KR102499720B1 (en) Planar solid oxide fuel unit cells and stacks
JP4587659B2 (en) Manufacturing method of fuel cell stack
EP0133747B1 (en) Improved fuel cell generators
JP2001110435A (en) Solid oxide fuel cell equipped with open end protection means
JP3389482B2 (en) Solid oxide fuel cell
JP3894817B2 (en) Fuel cell
JP6001800B2 (en) Fuel cell stack structure
JP3796182B2 (en) Fuel cell
JP4623974B2 (en) Fuel cell
JP5122064B2 (en) Horizontally striped solid oxide fuel cell bundle and unit
JP3686781B2 (en) Fuel cell
JP3585363B2 (en) Solid oxide fuel cell
JP5985770B2 (en) Fuel cell stack structure
JP2005339906A (en) Fuel cell
JP3389481B2 (en) Solid oxide fuel cell
JP3580734B2 (en) Solid oxide fuel cell
JPH11214026A (en) Solid electrolyte type fuel cell
JPH11273697A (en) Solid electrolyte fuel cell
JP3686773B2 (en) Solid oxide fuel cell
JP4288560B2 (en) Tubular solid oxide fuel cell
JP6484376B1 (en) Electrochemical equipment
JP2003234122A (en) Fuel cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees