JP3580734B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP3580734B2
JP3580734B2 JP21806199A JP21806199A JP3580734B2 JP 3580734 B2 JP3580734 B2 JP 3580734B2 JP 21806199 A JP21806199 A JP 21806199A JP 21806199 A JP21806199 A JP 21806199A JP 3580734 B2 JP3580734 B2 JP 3580734B2
Authority
JP
Japan
Prior art keywords
partition plate
solid oxide
fuel cell
cell
oxide fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21806199A
Other languages
Japanese (ja)
Other versions
JP2001043887A (en
Inventor
高志 重久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP21806199A priority Critical patent/JP3580734B2/en
Publication of JP2001043887A publication Critical patent/JP2001043887A/en
Application granted granted Critical
Publication of JP3580734B2 publication Critical patent/JP3580734B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体電解質型燃料電池に関し、特に、燃焼室仕切板と燃料ガス室仕切板を用いて燃焼室と反応室と燃料ガス室を形成した固体電解質型燃料電池に関する。
【0002】
【従来技術】
従来の固体電解質型燃料電池は、図7に示すように、反応容器51内に、空気室仕切板52、燃焼室仕切板53、燃料ガス室仕切板54を用いて空気室A、燃焼室B、反応室C、燃料ガス室Dが形成されている。反応容器51内に収容された複数の有底筒状の固体電解質型燃料電池セル55は、燃焼室仕切板53に形成されたセル挿入孔57に挿入固定されており、また、その内部には空気室仕切板52に固定された空気導入管59の一端が挿入されている。
【0003】
燃焼室仕切板53には、余剰の燃料ガスを燃焼室Bに導入するための燃料ガス噴出孔が形成されており、燃料ガス室仕切板54には燃料ガスを反応室C内に供給するための供給孔が形成されている。また、反応容器51には、例えば水素からなる燃料ガスを導入する燃料ガス導入口61、空気を導入する空気導入口62、燃焼室B内で燃焼したガスを排出するための排気口63が形成されている。
【0004】
このような固体電解質型燃料電池は、空気室Aからの空気を固体電解質型燃料電池セル55内にそれぞれ供給し、かつ、燃料ガス室Dからの燃料ガスを複数の固体電解質型燃料電池セル55間に供給し、反応室Cにて反応させ、余剰の空気と燃料ガスを燃焼室Bにて燃焼させ、燃焼したガスが排気口63から外部に排出される。
【0005】
ところで、固体電解質型燃料電池では、空気および燃料ガスの2種類のガスを用いて発電させるものであるため、ガスの漏出による悪影響を防止しなければならない。このため、上記したように、燃焼室Bを構成するための空気室仕切板52、燃焼室仕切板53、燃料ガス室仕切板54が設けられ、それぞれの室を構成しており、これらの室に導入されるガスが制御されている。
【0006】
つまり、空気室仕切板52と空気導入管59との固定部から空気が燃焼室B内に漏出しないように、また、燃焼室仕切板53とセル55との固定部から燃料ガスが燃焼室B内に漏出しないように、さらに、空気室仕切板52、燃焼室仕切板53、燃料ガス室仕切板54の外周面と、反応容器51の内壁面との間からガスが漏出しないようにする必要がある。特に、燃焼室仕切板53による気密性については十分留意する必要がある。
【0007】
【発明が解決しようとする課題】
しかしながら、固体電解質型燃料電池には、セラミックス、金属等、様々な材料が用いられており、一方で固体電解質型燃料電池は動作温度が約1000℃と高いために各部材間の熱膨張率が異なり、空気室仕切板52、燃焼室仕切板53、燃料ガス室仕切板54と、セル55や空気導入管59、反応容器51等とを密接に接合すると、セル55や空気導入管59等が破損する危険性があった。特に円筒形の固体電解質型燃料電池セルでは、その形状故に長さ方向の熱膨張が大きく、ガスの漏出の危険性が大きかった。
【0008】
即ち、従来、セル55は燃焼室仕切板53に形成されたセル挿入孔57に挿入固定されており、その底部は燃料ガス室仕切板54に当接していたため、セル55の両端部が固定された状態であり、高温となってセル55が長さ方向に熱膨張するとセル55が破損したり、燃焼室仕切板53での固定が解除されてガスが漏出するという問題があった。
【0009】
本発明は、固体電解質型燃料電池セルの熱膨張によるガスの漏出を防止でき、これにより発電性能、耐久性、熱サイクル特性を向上できる固体電解質型燃料電池を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の固体電解質型燃料電池は、反応容器内に燃焼室仕切板と燃料ガス室仕切板を設けて、燃焼室と反応室と燃料ガス室を形成し、複数の有底筒状の固体電解質型燃料電池セルを前記燃焼室仕切板に形成された複数のセル挿入孔に、開口部が前記燃焼室仕切板から前記燃焼室側に突出するようにそれぞれ挿入し固定してなるとともに、前記固体電解質型燃料電池セルの底面と前記燃料ガス室仕切板との間に繊維状金属を介装し、かつ前記固体電解質型燃料電池セルの底面と前記繊維状金属との間にセラミック板を介装してなるものである。ここで、セラミック板はZrO 、MgO及びAl のうち少なくとも一種を主成分とすることが望ましい。
【0011】
このような構成を採用することにより、室温から1000℃程度に温度上昇し、固体電解質型燃料電池セルが長さ方向に熱膨張したとしても、その熱膨張が繊維状金属により吸収され、特に燃焼室仕切板と固体電解質型燃料電池セル間に応力がほとんど作用せず、固体電解質型燃料電池セルの破損を防止できるとともに、燃焼室仕切板での固定が解除されることがなく、さらに繊維状金属により燃料ガスを、各固体電解質型燃料電池セル間に拡散できる。これにより固体電解質型燃料電池セルの熱膨張によるガスの漏出を防止できる。
【0012】
また、繊維状金属は変形しやすいため、固体電解質型燃料電池セルを繊維状金属上に配置すると、自重のために沈みこみ、固体電解質型燃料電池セルの熱膨張を充分に吸収できなくなる虞があるが、固体電解質型燃料電池セルの底面と繊維状金属との間にセラミック板を介装することより、セルの自重等が、セラミック板を介して繊維状金属に作用するため、固体電解質型燃料電池セルの自重等が作用したとしても沈み込みを抑制することができるとともに、固体電解質型燃料電池セルの熱膨張を充分に吸収できる。
【0013】
ここで、セラミック板に固体電解質型燃料電池セルの底部を収容する凹部を形成することにより、固体電解質型燃料電池セルの保持固定を確実に行うことができる。
【0014】
【発明の実施の形態】
本発明の固体電解質型燃料電池では、図1に示すように、反応容器1内に、空気室仕切板2、燃焼室仕切板3、燃料ガス室仕切板4を用いて空気室A、燃焼室B、反応室C、燃料ガス室Dが形成されている。反応容器1内に収容された複数の有底筒状の固体電解質型燃料電池セル5は、燃焼室仕切板3に形成されたセル挿入孔7に挿入固定されており、また、その内部には空気室仕切板2に固定された空気導入管9の一端が挿入されている。
【0015】
燃焼室仕切板3には、余剰の燃料ガスを燃焼室Bに導入するための燃料ガス噴出孔が形成されており、燃料ガス室仕切板4には燃料ガスを反応室C内に供給するための供給孔が形成されている。また、反応容器1には、例えば水素からなる燃料ガスを導入する燃料ガス導入口11、空気を導入する空気導入口12、燃焼室B内で燃焼したガスを排出するための排気口13が形成されている。
【0016】
そして、本発明の固体電解質型燃料電池では、セル5の底面と燃料ガス室仕切板4との間に繊維状金属15が介装されている。この繊維状金属15はNiまたはZnを主成分とされている。これは1000℃の還元雰囲気でも弾力性を失わないことと、発電性能を劣化させる硫黄分を燃料ガス中から除去することができるからである。
【0017】
セル5は、図2に示すように、例えば、支持管としてのLaMnO系空気極17と、この空気極17の表面に形成されたY安定化ZrOからなる固体電解質18と、固体電解質18の表面に形成されたNi−ジルコニア系の燃料極19と、空気極17と電気的に接続されるLaCrO系よりなるインターコネクタ21とから構成されている。
【0018】
一方のセル5のインターコネクタ21を、図3に示すように、他方のセル5の燃料極19にNi金属繊維等の接続部材23を介して、他方のセル5の燃料極19に接続して、複数のセル5が電気的に接続され、スタック25が構成されており、このようなスタック25が、図1に示したように、反応容器1内に複数収容されて固体電解質型燃料電池が構成されている。
【0019】
以上のように構成された固体電解質型燃料電池では、室温から1000℃程度に温度上昇し、セル5が長さ方向に熱膨張したとしても、その熱膨張が繊維状金属15により吸収され、燃焼室仕切板3とセル5間に応力がほとんど作用せず、セル5の破損を防止できるとともに、燃焼室仕切板3での固定が解除されることがなく、さらに繊維状金属15により燃料ガスを、各セル5間に拡散できる。これによりセル5の熱膨張によるガスの漏出を防止できる。例えば、セル挿入孔7からの燃料ガスの燃焼室B内への漏出や、燃焼室仕切板3自体からの空気の反応室C内への漏出を防止することができるとともに、各部材とセル5の熱膨張差による応力を緩和し、セル等の破損を防止することができる。
【0020】
さらに、本発明の固体電解質型燃料電池では、図4に示すように、セル5の底面と燃料ガス室仕切板4との間に繊維状金属15が介装されており、セル5の底面と繊維状金属15との間に、それぞれセラミック板31が介装されている。特に、図4に示したようにセル5の底面が球面形状の場合には、セル5の自重がセル5の先端部に集中するため、このようなセラミック板31を用いることが望ましい。
【0021】
セラミック板31はZrO、MgOおよびAlのうち少なくとも一種を主成分とすることが望ましい。これは1000℃の還元雰囲気でも材料的に安定であるためである。
【0022】
このような固体電解質型燃料電池では、セル5の底面と繊維状金属15との間にセラミック板31を介装することより、セル5の自重等がセラミック板31を介して繊維状金属15に作用するため、セル5の自重等が作用したとしても沈み込みを抑制することができるとともに、繊維状金属15によりセル5の熱膨張を充分に吸収できる。このセラミック板31により、熱サイクル特性や、耐久性においても繊維状金属の弾力性を保つことができる。
【0023】
また、セラミック板31を、ZrO、MgOおよびAlのうち少なくとも一種を主成分としたので、1000℃の還元雰囲気でも材料的に安定とできる。
【0024】
尚、図5に示すように、セラミック板31に凹部35を形成し、この凹部35内にセル5の底部を収容することにより、セル5の保持固定を確実に行うことができる。
【0025】
また、図4では、各セル5毎にセラミック板31を繊維状金属15上に設けた例について説明したが、図6に示すように、複数のセル5共通のセラミック板41を繊維状金属15上に設けても良い。
【0026】
【実施例】
先ず、反応容器1内に、Alを主成分とするセラミック板からなる燃料ガス仕切板4を収容し、燃料ガス仕切板4上に繊維状金属15を配置した。その後、図4に示すようにセラミック板31を配置した。
【0027】
次に、燃料ガス室仕切板4上に、図3に示したようなセル5を9本連結したスタック25を4組を配置した。燃焼室仕切板3を反応容器1内に収容し、燃焼室仕切板3とセル5の外面との隙間、燃焼室仕切板3と反応容器1の内壁面との隙間に繊維状セラミックスを詰め込んだ。
【0028】
次に、反応容器1内に断熱ボードからなる空気室仕切板2を収容し、空気室仕切板2と反応容器1の内壁面との隙間に上記繊維状セラミックスを詰め込んだ。そして、反応容器1内に白煙を導入し、目視にて空気導入管9以外から空気の流れがないことを確認した。
【0029】
そして、空気および水素ガスを燃料ガスとして反応容器1内に供給し、1000℃にて発電を行った。1000時間後と400〜1000℃の熱サイクルを20サイクルしたときの性能の劣化を、初期性能からの劣化の割合で示した。また、燃焼室仕切板3において燃料ガス噴出孔以外からのガスの漏れがないかを、熱電対による温度変化により確認した。
【0030】
一方、燃料ガス室仕切板4上に繊維状金属15やセラミック板31を挿入しない図7の場合についても確認した。その結果を表1に示す。
【0031】
【表1】

Figure 0003580734
【0032】
この表1より、燃料ガス室仕切板上に繊維状金属やセラミック板を設けない従来の固体電解質型燃料電池では、セルの熱膨張により燃焼室仕切板に応力が生じ、燃焼室仕切板の封止部分から燃料ガスが漏出しており、初期性能が低く、しかも経時的に出力密度が低下していくことが判る。
【0033】
一方、本発明の固体電解質型燃料電池ではセルの熱膨張を吸収するため、燃焼室仕切板に応力が生じず、燃料ガスの漏出することなく、初期性能が良好であり、しかも経時的に殆ど変化しないことが判る。尚、試料No.3のセラミック板には、図5に示すような凹部を形成した。
【0034】
【発明の効果】
本発明の固体電解質型燃料電池では、固体電解質型燃料電池セルの底面と燃料ガス室仕切板との間に繊維状金属を介装したので、繊維状金属により、セルの熱膨張を吸収し、特に燃焼室仕切板とセル間の応力がほとんど作用せず、燃焼室と反応室の不要なガスの漏出を防止できる。さらに、繊維状金属は燃料ガスのセル内への供給を均一にし、発電性能を向上できる。また、プレート状のセラミック板をセルの底面と繊維状金属との間に介装することにより、セルと繊維状金属の接触面積を大きくし、セルの繊維金属への自重による沈み込みを防ぎ、熱サイクル特性や、耐久性においても繊維状金属の弾力性を損なうことなく、不要なガスの漏出を防止できる。
【図面の簡単な説明】
【図1】本発明の固体電解質型燃料電池の模式図である。
【図2】固体電解質型燃料電池セルの断面図である。
【図3】スタックを示す平面図である。
【図4】セラミック板をセル底面と繊維状金属との間に介装した模式図である。
【図5】セラミック板の凹部にセル底面が収容されている状態を示す模式図である。
【図6】セラミック板に3本のセルの底面が当接している状態を示す模式図である。
【図7】従来の固体電解質型燃料電池の模式図である。
【符号の説明】
1・・・反応容器
3・・・燃焼室仕切板
4・・・燃料ガス室仕切板
5・・・固体電解質型燃料電池セル
7・・・セル挿入孔
15・・・繊維状金属
31、41・・・セラミック板
35・・・凹部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid oxide fuel cell, and more particularly to a solid oxide fuel cell in which a combustion chamber, a reaction chamber, and a fuel gas chamber are formed using a combustion chamber partition plate and a fuel gas chamber partition plate.
[0002]
[Prior art]
As shown in FIG. 7, a conventional solid oxide fuel cell uses an air chamber A, a combustion chamber B in a reaction vessel 51 by using an air chamber partition plate 52, a combustion chamber partition plate 53, and a fuel gas chamber partition plate. , A reaction chamber C and a fuel gas chamber D are formed. A plurality of bottomed cylindrical solid oxide fuel cells 55 housed in the reaction vessel 51 are inserted and fixed in cell insertion holes 57 formed in the combustion chamber partition plate 53, and are internally provided therein. One end of an air introduction pipe 59 fixed to the air chamber partition plate 52 is inserted.
[0003]
The combustion chamber partition plate 53 is provided with a fuel gas ejection hole for introducing surplus fuel gas into the combustion chamber B. The fuel gas chamber partition plate 54 is used to supply fuel gas into the reaction chamber C. Are formed. The reaction vessel 51 has a fuel gas inlet 61 for introducing a fuel gas composed of, for example, hydrogen, an air inlet 62 for introducing air, and an exhaust port 63 for discharging gas burned in the combustion chamber B. Have been.
[0004]
In such a solid oxide fuel cell, the air from the air chamber A is supplied into the solid oxide fuel cell 55, and the fuel gas from the fuel gas chamber D is supplied to the plurality of solid oxide fuel cells 55. The air is supplied to the reaction chamber C and reacted in the reaction chamber C, and excess air and fuel gas are burned in the combustion chamber B. The burned gas is discharged to the outside through the exhaust port 63.
[0005]
By the way, in a solid oxide fuel cell, power is generated by using two types of gas, air and fuel gas, so that it is necessary to prevent adverse effects due to gas leakage. For this reason, as described above, the air chamber partition plate 52, the combustion chamber partition plate 53, and the fuel gas chamber partition plate 54 for constituting the combustion chamber B are provided, and constitute the respective chambers. The gas to be introduced into the is controlled.
[0006]
That is, the air is prevented from leaking into the combustion chamber B from the fixed portion between the air chamber partition plate 52 and the air introduction pipe 59, and the fuel gas is discharged from the fixed portion between the combustion chamber partition plate 53 and the cell 55 from the combustion chamber B. Further, it is necessary to prevent gas from leaking from between the outer peripheral surface of the air chamber partition plate 52, the combustion chamber partition plate 53, the fuel gas chamber partition plate 54 and the inner wall surface of the reaction vessel 51 so as not to leak into the inside. There is. In particular, it is necessary to pay sufficient attention to the airtightness of the combustion chamber partition plate 53.
[0007]
[Problems to be solved by the invention]
However, various materials such as ceramics and metals are used in the solid oxide fuel cell. On the other hand, the operating temperature of the solid oxide fuel cell is as high as about 1000 ° C., so that the coefficient of thermal expansion between the members is low. In contrast, when the air chamber partition plate 52, the combustion chamber partition plate 53, the fuel gas chamber partition plate 54, and the cell 55, the air introduction pipe 59, the reaction vessel 51, and the like are tightly joined, the cell 55, the air introduction pipe 59, and the like are formed. There was a risk of breakage. In particular, a cylindrical solid oxide fuel cell has a large thermal expansion in the length direction due to its shape, and has a high risk of gas leakage.
[0008]
That is, conventionally, the cell 55 is inserted and fixed in the cell insertion hole 57 formed in the combustion chamber partition plate 53, and the bottom thereof is in contact with the fuel gas chamber partition plate 54, so that both ends of the cell 55 are fixed. When the temperature rises and the cell 55 thermally expands in the length direction, the cell 55 is damaged, and the fixing by the combustion chamber partition plate 53 is released, and the gas leaks.
[0009]
An object of the present invention is to provide a solid oxide fuel cell capable of preventing gas leakage due to thermal expansion of a solid oxide fuel cell, thereby improving power generation performance, durability, and heat cycle characteristics.
[0010]
[Means for Solving the Problems]
The solid oxide fuel cell of the present invention has a combustion chamber, a reaction chamber, and a fuel gas chamber provided in a reaction vessel with a combustion chamber partition plate and a fuel gas chamber partition plate. The fuel cell is inserted and fixed in a plurality of cell insertion holes formed in the combustion chamber partition plate such that an opening projects from the combustion chamber partition plate to the combustion chamber side, and the solid fuel cell is formed. A fibrous metal is interposed between the bottom surface of the electrolyte fuel cell and the fuel gas chamber partition plate, and a ceramic plate is interposed between the bottom surface of the solid electrolyte fuel cell and the fibrous metal. one in which you composed. Here, the ceramic plate preferably contains at least one of ZrO 2 , MgO and Al 2 O 3 as a main component.
[0011]
By adopting such a configuration, even if the temperature rises from room temperature to about 1000 ° C. and the solid oxide fuel cell thermally expands in the length direction, the thermal expansion is absorbed by the fibrous metal, and particularly the combustion Almost no stress acts between the chamber partition plate and the solid oxide fuel cell unit, preventing damage to the solid oxide fuel cell unit. The metal allows the fuel gas to diffuse between the solid oxide fuel cells. Thus, gas leakage due to thermal expansion of the solid oxide fuel cell can be prevented.
[0012]
In addition, since the fibrous metal is easily deformed, when the solid oxide fuel cell is disposed on the fibrous metal, it may sink due to its own weight and may not be able to sufficiently absorb the thermal expansion of the solid oxide fuel cell. However, since the ceramic plate is interposed between the bottom surface of the solid oxide fuel cell and the fibrous metal, the cell's own weight acts on the fibrous metal via the ceramic plate. Even if the self-weight of the fuel cell or the like acts, the sinking can be suppressed and the thermal expansion of the solid oxide fuel cell can be sufficiently absorbed.
[0013]
Here, by forming a recess for accommodating the bottom of the solid oxide fuel cell in the ceramic plate, the solid oxide fuel cell can be securely held and fixed.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
In the solid oxide fuel cell of the present invention, as shown in FIG. 1, an air chamber A, a combustion chamber partition plate 3, a combustion chamber partition plate 3, and a fuel gas chamber partition plate 4 are provided in a reaction vessel 1. B, a reaction chamber C, and a fuel gas chamber D are formed. A plurality of bottomed cylindrical solid oxide fuel cells 5 housed in the reaction vessel 1 are inserted and fixed in cell insertion holes 7 formed in the combustion chamber partition plate 3. One end of an air introduction pipe 9 fixed to the air chamber partition plate 2 is inserted.
[0015]
The combustion chamber partition plate 3 is formed with a fuel gas ejection hole for introducing surplus fuel gas into the combustion chamber B. The fuel gas chamber partition plate 4 supplies fuel gas into the reaction chamber C. Are formed. Further, the reaction vessel 1 has a fuel gas inlet 11 for introducing a fuel gas composed of, for example, hydrogen, an air inlet 12 for introducing air, and an exhaust port 13 for discharging gas burned in the combustion chamber B. Have been.
[0016]
In the solid oxide fuel cell of the present invention, a fibrous metal 15 is interposed between the bottom surface of the cell 5 and the fuel gas chamber partition plate 4. The fibrous metal 15 is mainly composed of Ni or Zn. This is because the elasticity is not lost even in a reducing atmosphere at 1000 ° C. and the sulfur content that degrades the power generation performance can be removed from the fuel gas.
[0017]
As shown in FIG. 2, the cell 5 includes, for example, a LaMnO 3 -based air electrode 17 as a support tube, a solid electrolyte 18 made of Y 2 O 3 stabilized ZrO 2 formed on the surface of the air electrode 17, It is composed of a Ni-zirconia based fuel electrode 19 formed on the surface of the solid electrolyte 18 and an LaCrO 3 based interconnector 21 electrically connected to the air electrode 17.
[0018]
As shown in FIG. 3, the interconnector 21 of one cell 5 is connected to the fuel electrode 19 of the other cell 5 via a connecting member 23 such as Ni metal fiber, etc. , A plurality of cells 5 are electrically connected to each other to form a stack 25. As shown in FIG. 1, a plurality of such stacks 25 are accommodated in the reaction vessel 1 to form a solid oxide fuel cell. It is configured.
[0019]
In the solid oxide fuel cell configured as described above, even if the temperature rises from room temperature to about 1000 ° C. and the cell 5 thermally expands in the length direction, the thermal expansion is absorbed by the fibrous metal 15 and the combustion is performed. Almost no stress acts between the chamber partition plate 3 and the cell 5, which prevents damage to the cell 5, does not release the fixation at the combustion chamber partition plate 3, and further releases the fuel gas by the fibrous metal 15. , Can be spread between the cells 5. Thereby, gas leakage due to thermal expansion of the cell 5 can be prevented. For example, leakage of fuel gas from the cell insertion hole 7 into the combustion chamber B and leakage of air from the combustion chamber partition plate 3 into the reaction chamber C can be prevented. The stress due to the difference in thermal expansion can be reduced, and damage to cells and the like can be prevented.
[0020]
Further, in the solid oxide fuel cell of the present invention, as shown in FIG. 4 , the fibrous metal 15 is interposed between the bottom surface of the cell 5 and the fuel gas chamber partition plate 4, and Ceramic plates 31 are interposed between the fibrous metals 15 respectively. In particular, when the bottom surface of the cell 5 is spherical as shown in FIG. 4, it is desirable to use such a ceramic plate 31 because the weight of the cell 5 is concentrated on the tip of the cell 5.
[0021]
The ceramic plate 31 preferably contains at least one of ZrO 2 , MgO and Al 2 O 3 as a main component. This is because the material is stable even in a reducing atmosphere at 1000 ° C.
[0022]
In such a solid oxide fuel cell, since the ceramic plate 31 is interposed between the bottom surface of the cell 5 and the fibrous metal 15, the weight of the cell 5, etc. is applied to the fibrous metal 15 via the ceramic plate 31. Therefore, the sinking can be suppressed even if the weight of the cell 5 acts, and the thermal expansion of the cell 5 can be sufficiently absorbed by the fibrous metal 15. The ceramic plate 31 can maintain the elasticity of the fibrous metal in terms of the heat cycle characteristics and durability.
[0023]
Further, since the ceramic plate 31 contains at least one of ZrO 2 , MgO and Al 2 O 3 as a main component, the material can be made stable even in a reducing atmosphere at 1000 ° C.
[0024]
As shown in FIG. 5, by forming a recess 35 in the ceramic plate 31 and housing the bottom of the cell 5 in the recess 35, the cell 5 can be reliably held and fixed.
[0025]
Further, in FIG. 4, the example in which the ceramic plate 31 is provided on the fibrous metal 15 for each cell 5 has been described, but as shown in FIG. It may be provided above.
[0026]
【Example】
First, a fuel gas partition plate 4 made of a ceramic plate containing Al 2 O 3 as a main component was accommodated in the reaction vessel 1, and a fibrous metal 15 was arranged on the fuel gas partition plate 4. Then, the ceramic plate 31 was arranged as shown in FIG.
[0027]
Next, on the partition plate 4 of the fuel gas chamber, four stacks 25 each having nine cells 5 connected as shown in FIG. The combustion chamber partition plate 3 was accommodated in the reaction vessel 1, and fibrous ceramic was packed in the gap between the combustion chamber partition plate 3 and the outer surface of the cell 5 and the gap between the combustion chamber partition plate 3 and the inner wall surface of the reaction vessel 1. .
[0028]
Next, the air chamber partition plate 2 made of a heat insulating board was accommodated in the reaction container 1, and the fibrous ceramic was packed in a gap between the air chamber partition plate 2 and the inner wall surface of the reaction container 1. Then, white smoke was introduced into the reaction vessel 1, and it was confirmed visually that there was no flow of air from other than the air introduction pipe 9.
[0029]
Then, air and hydrogen gas were supplied as fuel gases into the reaction vessel 1 to generate power at 1000 ° C. Deterioration of the performance after 1000 hours and when the heat cycle at 400 to 1000 ° C. was performed for 20 cycles was shown by the rate of deterioration from the initial performance. Further, whether or not gas leaked from the combustion chamber partition plate 3 except for the fuel gas ejection holes was confirmed by a temperature change using a thermocouple.
[0030]
On the other hand, the case of FIG. 7 in which the fibrous metal 15 and the ceramic plate 31 were not inserted on the fuel gas chamber partition plate 4 was also confirmed. Table 1 shows the results.
[0031]
[Table 1]
Figure 0003580734
[0032]
According to Table 1, in a conventional solid oxide fuel cell in which no fibrous metal or ceramic plate is provided on the fuel gas chamber partition plate, stress is generated in the combustion chamber partition plate due to thermal expansion of the cell, and the combustion chamber partition plate is sealed. It can be seen that the fuel gas is leaking from the stop portion, the initial performance is low, and the output density decreases with time.
[0033]
On the other hand, in the solid oxide fuel cell of the present invention, since the thermal expansion of the cells is absorbed, no stress is generated in the combustion chamber partition plate, the fuel gas does not leak, the initial performance is good, and almost no change over time. It turns out that it does not change. In addition, sample No. A concave portion as shown in FIG. 5 was formed in the ceramic plate of No. 3.
[0034]
【The invention's effect】
In the solid oxide fuel cell of the present invention, since the fibrous metal is interposed between the bottom surface of the solid oxide fuel cell and the fuel gas chamber partition plate, the fibrous metal absorbs the thermal expansion of the cell, In particular, almost no stress acts between the combustion chamber partition plate and the cell, and unnecessary gas leakage from the combustion chamber and the reaction chamber can be prevented. Further, the fibrous metal can evenly supply the fuel gas into the cell, and can improve the power generation performance. In addition, by interposing a plate-shaped ceramic plate between the bottom of the cell and the fibrous metal, the contact area between the cell and the fibrous metal is increased, preventing the cell from sinking due to its own weight on the fibrous metal, Unnecessary gas leakage can be prevented without impairing the elasticity of the fibrous metal even in the heat cycle characteristics and durability.
[Brief description of the drawings]
FIG. 1 is a schematic view of a solid oxide fuel cell according to the present invention.
FIG. 2 is a sectional view of a solid oxide fuel cell.
FIG. 3 is a plan view showing a stack.
FIG. 4 is a schematic diagram in which a ceramic plate is interposed between a cell bottom surface and a fibrous metal.
FIG. 5 is a schematic diagram showing a state in which a cell bottom is accommodated in a concave portion of a ceramic plate.
FIG. 6 is a schematic diagram showing a state where the bottom surfaces of three cells are in contact with a ceramic plate.
FIG. 7 is a schematic view of a conventional solid oxide fuel cell.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Reaction container 3 ... Combustion chamber partition plate 4 ... Fuel gas chamber partition plate 5 ... Solid oxide fuel cell 7 ... Cell insertion hole 15 ... Fibrous metal 31, 41 ... Ceramic plate 35 ... recess

Claims (3)

反応容器内に燃焼室仕切板と燃料ガス室仕切板を設けて、燃焼室と反応室と燃料ガス室を形成し、複数の有底筒状の固体電解質型燃料電池セルを前記燃焼室仕切板に形成された複数のセル挿入孔に、開口部が前記燃焼室仕切板から前記燃焼室側に突出するようにそれぞれ挿入し固定してなるとともに、前記固体電解質型燃料電池セルの底面と前記燃料ガス室仕切板との間に繊維状金属を介装し、かつ前記固体電解質型燃料電池セルの底面と前記繊維状金属との間にセラミック板を介装してなることを特徴とする固体電解質型燃料電池。A combustion chamber partition plate and a fuel gas chamber partition plate are provided in a reaction vessel to form a combustion chamber, a reaction chamber, and a fuel gas chamber, and a plurality of bottomed tubular solid oxide fuel cell units are connected to the combustion chamber partition plate. A plurality of cell insertion holes are formed and fixed so that the openings protrude from the combustion chamber partition plate toward the combustion chamber, respectively, and the bottom surface of the solid oxide fuel cell and the fuel A solid electrolyte comprising a fibrous metal interposed between the gas chamber partition plate and a ceramic plate interposed between the bottom surface of the solid oxide fuel cell unit and the fibrous metal. Type fuel cell. セラミック板はZrOCeramic plate is ZrO 2 、MgO及びAl, MgO and Al 2 O 3 のうち少なくとも一種を主成分とすることを特徴とする請求項1記載の固体電解質型燃料電池。2. The solid oxide fuel cell according to claim 1, wherein at least one of them is a main component. セラミック板には、固体電解質型燃料電池セルの底部を収容する凹部が形成されていることを特徴とする請求項1または2記載の固体電解質型燃料電池。3. The solid oxide fuel cell according to claim 1, wherein the ceramic plate has a concave portion for accommodating the bottom of the solid oxide fuel cell.
JP21806199A 1999-07-30 1999-07-30 Solid oxide fuel cell Expired - Fee Related JP3580734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21806199A JP3580734B2 (en) 1999-07-30 1999-07-30 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21806199A JP3580734B2 (en) 1999-07-30 1999-07-30 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2001043887A JP2001043887A (en) 2001-02-16
JP3580734B2 true JP3580734B2 (en) 2004-10-27

Family

ID=16714044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21806199A Expired - Fee Related JP3580734B2 (en) 1999-07-30 1999-07-30 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3580734B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247131A (en) * 2003-02-13 2004-09-02 Toto Ltd Aggregate of cylindrical solid oxide fuel battery cell
WO2013061575A1 (en) * 2011-10-24 2013-05-02 Jx日鉱日石エネルギー株式会社 Fuel cell power generation device, fuel cell system and support structure

Also Published As

Publication number Publication date
JP2001043887A (en) 2001-02-16

Similar Documents

Publication Publication Date Title
CA2036259C (en) Solid oxide fuel cells
JP4943037B2 (en) Fuel cell module
JP5164985B2 (en) FUEL CELL MODULE AND FUEL CELL DEVICE INCLUDING THE SAME
JP3894860B2 (en) Fuel cell
JPH09259910A (en) Molten carbonate fuel battery and power generator using this battery
JP3894817B2 (en) Fuel cell
JP4325924B2 (en) Fuel cell
JP4623974B2 (en) Fuel cell
JP3580734B2 (en) Solid oxide fuel cell
JP3389482B2 (en) Solid oxide fuel cell
JP5122064B2 (en) Horizontally striped solid oxide fuel cell bundle and unit
JP2016225035A (en) Cell stack device, module and module housing apparatus
JP3894820B2 (en) Fuel cell
JP3894842B2 (en) Fuel cell
JP3686781B2 (en) Fuel cell
JP2005339906A (en) Fuel cell
JP4018922B2 (en) Fuel cell
JP5985770B2 (en) Fuel cell stack structure
JP3585363B2 (en) Solid oxide fuel cell
JP3585381B2 (en) Solid oxide fuel cell
JP2003297396A (en) Fuel cell
JP3894814B2 (en) Fuel cell
JP3610223B2 (en) Solid oxide fuel cell
JP2003272661A (en) Cell device and fuel battery
JP4288560B2 (en) Tubular solid oxide fuel cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040720

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees