JP4288560B2 - Tubular solid oxide fuel cell - Google Patents

Tubular solid oxide fuel cell Download PDF

Info

Publication number
JP4288560B2
JP4288560B2 JP2002319499A JP2002319499A JP4288560B2 JP 4288560 B2 JP4288560 B2 JP 4288560B2 JP 2002319499 A JP2002319499 A JP 2002319499A JP 2002319499 A JP2002319499 A JP 2002319499A JP 4288560 B2 JP4288560 B2 JP 4288560B2
Authority
JP
Japan
Prior art keywords
gas
introduction pipe
gas introduction
gas supply
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002319499A
Other languages
Japanese (ja)
Other versions
JP2004152723A (en
Inventor
幸作 藤永
進 相川
正宏 黒石
健 斎藤
俊哉 阿部
賢太郎 鈴木
弘明 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2002319499A priority Critical patent/JP4288560B2/en
Publication of JP2004152723A publication Critical patent/JP2004152723A/en
Application granted granted Critical
Publication of JP4288560B2 publication Critical patent/JP4288560B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、筒状固体酸化物形燃料電池に関し、さらに詳しくは片側先端が密封された筒状固体酸化物形燃料電池のガス分配構造に関する。
【0002】
【従来の技術】
従来、筒状固体酸化物形燃料電池において、酸化剤ガスを細長い酸化剤導入管で分配して燃料電池の内部まで供給するものは、酸化剤ガスを供給する酸化剤の供給本管の一方端から他方端に流し、供給本管の軸線が分岐管の軸線に90度より小さい角度で交差するように接続される酸化剤分配構造となっている。(特許文献1参照。)
【0003】
【特許文献1】
特開平5−151985号広報(2〜4頁、図1)
【0004】
しかしながら、従来の構成では、複数の固体酸化物形燃料電池セルの集合体よりなる燃料電池モジュールを形成した場合、固体酸化物形燃料電池セルはセラミック材料よりなるため、取付配置に対する寸法誤差を生じやすく、設置時に酸化剤導入管を最適な位置に配置することが困難であった。また、固体酸化物形燃料電池の発電反応で約700〜1,000℃において、供給本管と分岐管の接続部や分岐管を保持するフランジ部と固体酸化物形燃料電池セルとの熱膨張率の差や起動停止の熱サイクルによる応力により、固体酸化物形燃料電池セルが亀裂や破損するという問題があった。
【0005】
【発明が解決しようとする課題】
本発明は以上のような従来技術の問題点を解決するためになされたものであり、その目的とするところは熱膨張率の差や起動停止の熱サイクルによる応力を許容できるガス分配器を有する信頼性の高い安全な筒状固体酸化物形燃料電池を提供することにある。
【0006】
【課題を解決するための手段】
以上のような課題を解決する請求項1の発明は、空気極と燃料極との間に電解質を積層し、片側先端で密封された筒状固体酸化物形燃料電池セルと、ガスを供給するガス供給ダクトに接続されたバッファーとしてのガス供給容器と、このガス供給容器と連通し前記筒状固体酸化物形燃料電池セルの密封された先端内部へガスを供給する細長いガス導入管と、からなるガス分配器と、を備えた筒状固体酸化物形燃料電池において、前記ガス導入管の一端に設けられたガス導入管フランジと、このガス導入管フランジを固定支持する基準となる壁である接続壁に設けられ、前記ガス導入管の外径よりも大径であってこのガス導入管が挿入された接続孔と、前記ガス導入管フランジの上方より均等な面圧力を与える圧力保持手段と、前記ガス導入管フランジを支点として回転可能に支持する接触応力緩和手段と、によって、前記ガス導入管と前記ガス供給容器との接続部が形成されていることを特徴とする。
このように、ガス導入管の外径よりも大きな接続孔を設けてガス導入管と接続孔との隙間を形成し、ガス導入管を接続孔へ挿入することにより、セラミック材料よりなる燃料電池セルの集合体の燃料電池モジュールを形成した際に生ずる取付配置に対する寸法誤差と、燃料電池セルと接続壁との熱膨張率の差による運転時の位置ずれを考慮し、ガス導入管の組み立ての際、自在にガス導入管を取付けて寸法誤差を許容し、初期の燃料電池セルとガス導入管との接触を防ぐことができる。また、圧力保持手段が設けられることにより、面圧力を変化することでガス導入管の傾いたときのガス漏れ量を容易に制御することができる。さらに、接触応力緩和手段が設けられることにより、前述の熱膨張率の差や起動停止の熱サイクルによる固体酸化物形燃料電池セルとガス導入管との接触応力を緩和して固体酸化物形燃料電池セルの亀裂や破損を防ぐことができる。よって、信頼性の高い安全な発電をすることができる。
【0007】
請求項2の発明は、前記ガス供給容器の内部には滞留したガスを前記ガス導入管へ供給するガス供給孔を複数有する平板状のガス供給壁が収納されていると共に、前記ガス供給容器の下面に前記接続孔が形成されており、このガス供給壁の自重により前記ガス導入管フランジを前記ガス供給容器の下面へ押し付けることによって前記圧力保持手段が構成されていること特徴とする。
これによって、平板の重量を変えてガス導入管を支持固定する面圧力を自在にでき、容易にガス漏れ量とガス導入管の傾きを制御することができる。
【0008】
請求項3の発明は、前記ガス供給容器の下方に前記接続孔が形成された平板状の接続壁を設けると共に、前記ガス供給容器の下面にはガスを流出するガス供給孔を複数有しており、前記ガス導入管フランジを前記ガス供給容器の下面と前記接続壁で挟持することによって前記圧力保持手段が構成されていることを特徴とする。
これによって、ガス供給容器と接続壁の圧縮量によりガス導入管を支持固定する面圧力を自在にでき、容易にガス漏れ量とガス導入管の傾きを制御することができる。
【0009】
請求項4の発明は、前記ガス導入管フランジを平面とし、その上下に弾性体のシール材を各孔基準で配置することをよって前記接触応力緩和手段が構成されていることを特徴とする。
これによって、筒状固体酸化物形燃料電池セル内部でガス導入管が自在に傾くことができ、熱膨張率の差や起動停止の熱サイクルによるガス導入管と筒状固体酸化物形燃料電池セルの接触応力を緩和して固体酸化物形燃料電池セルの亀裂や破損を防ぐことができる。
【0012】
【発明の実施の形態】
以下、本発明の好適な実施形態について図面を参照して具体的かつ詳細に説明を行う。なお、以下の実施形態における筒状固体酸化物形燃料電池は、筒状セルの外側が燃料極であって内側が空気極であり、空気などの酸化剤ガスをガス分配器によって供給する構成について説明を行なう。
図1は、本発明の一実施例を示す筒状固体酸化物形燃料電池の概略図である。燃料電池容器1の中に、複数の片側先端が密封された筒状固体酸化物形燃料電池セル(以下、燃料電池セル)12の集合体からなる燃料電池モジュール13と、ガス導入管9とガス供給容器4とガス供給ダクト2とからなるガス分配器10と、上部隔壁11と、下部隔壁15が収納され、ガス分配器10はガス導入管9がガス供給容器4 に接続する接続部7を形成し、また、燃料電池セル12は上部隔壁を貫通し、貫通部は非気密構造を形成している。このとき、燃料電池容器1は、耐熱ステンレス鋼やインコネル(登録商標)等で形成することができ、上部隔壁11と下部隔壁15は、通気性を有するセラミック系耐熱ボードや通気孔を有する耐熱ステンレス鋼、インコネル(登録商標)等で形成することができる。
【0013】
図2は、図1に示すガス分配器10の接合部7の拡大図である。ガス供給容器3の下面であり、ガス導入管9の外径より大きい接続孔22を有する接続壁6を基準面とし、ガス導入管9が接続孔22に挿入され、ガス接続壁6の上部より順に、下部シール材21と、ガス導入管フランジ20と、上部シール材19と、ガス供給孔18を有するガス供給壁5とを積層し、各孔を貫通して配置して形成されている。
【0014】
図3は、図1に示す燃料電池セル12の概略図である。燃料電池セル12は、空気極24の外周上に電解質25と燃料極26を密着積層した片側先端が密封された筒状セルである。空気極24は、多孔質のLaCoO、LaMnO、LaFeO等のペロブスカイト型酸化物でSrやCa等をLaサイトにドープしたもの、あるいはドープしないもの、またはそれらの複合材によりで形成されている。電解質25は、YSZにより形成されている。燃料極26は、多孔質のNiとYSZのサーメットにより形成されている。
【0015】
次に、このように構成された筒状固体酸化物形燃料電池の動作について説明を行う。空気は、ガス供給ダクト2よりガス分配器10のガス供給容器4と接続部7とガス導入管9を介して燃料電池セル12の先端内部に流れて空気極24に供給され、また、燃料ガスは、燃料供給管17と燃料分散室16と下部隔壁15の通気部とを介して燃料電池セル12の外側に流れて燃料極26に供給されると、電解質25の両側で電気化学反応が起こり、電気と熱と水を発生する。この反応は水の電気化学反応の逆反応である。反応済みの排燃料ガスは上部隔壁11の排出孔(図示しない)を介して燃焼室8に排出される。一方反応済みの排空気は、燃料電池セル12の開放端23から燃焼室8に排出される。燃焼室8では排燃料に含まれる残留酸素が混合して燃焼し、燃焼ガスは排気ガスダクト3を通じて排出される。固体酸化物形燃料電池の発電温度は約1000℃であるため、発電室14の温度も発電反応温度に近い温度になり、また、燃焼室8でも前述のような燃焼によってガス分配器10の接続部7の周辺温度が約700〜1000℃となり、燃料電池セル12とガス導入管9を支持する接続壁6との熱膨張差を生じる。しかしながら、セラミック材料よりなる燃料電池セル12の集合体の燃料電池モジュール13を形成した際に生ずる取付配置に対する寸法誤差と、燃料電池セル12と接続壁6との熱膨張率の差による運転時の位置ずれを考慮し、ガス導入管9の外径よりも大きな接続孔22を設けてガス導入管9と接続孔22との隙間を形成し、ガス導入管9の組み立てで自在に取付けて寸法誤差を許容し、ガス導入管9を接続孔6へ挿入されるため、初期の燃料電池セル12とガス導入管9との接触を防ぐことができる。また、ガス導入管9の一端に設けられたガス導入管フランジ20の上方より均等な面圧力を与える圧力保持手段を有しているため、ガス導入管9の傾きを制御してガス漏れを抑えることができ、さらに、ガス導入管フランジ20を支点として回転可能に支持する接触応力緩和手段を有しているため、熱膨張率の差や起動停止の熱サイクルによる燃料電池セル12とガス導入管9の接触したときの応力を緩和して燃料電池セル12の亀裂や破損を防ぐことができるため、信頼性の高い安全な発電を維持することができる。
【0016】
この場合、圧力保持手段が、ガス供給孔18を有するガス供給壁9を平板の重りで形成し、平板重量により約0.1〜1.5kg/cmの面圧力を与えることが好ましい。これによって、ガス導入管9の位置ずれを防止し、ガス導入管フランジ20の傾きを数度の範囲で制御でき、平板の重量を変えてガス導入管9を支持固定する面圧力を自在にでき、容易に接続部7からガス漏れ量とガス導入管9の傾きを制御することができる。よって、信頼性の高い安全な発電をすることができる。
【0017】
接触応力緩和手段が、ガス導入管フランジ20の上下に、ガス導入管9の外径と略同一の孔径を有する弾性体の上部シール材19、下部シール材21を各孔基準で配置され、また、下部シール材21はガス導入管フランジ20より大きい径で、ガス導入管9と一体で動けること形状であることが好ましい。例えば、ガス導入管フランジ20を有するをガス導入管9の外径6mmと、同じ約6mmの孔径で上部シール材19および下部シール材21が設けられることによって、ガス導入管9と上部シール材19と下部シール材21を取付する時、孔径基準で容易に配置でき、また、ガス導入管9と下部シール材21が密着して動くことができ、さらに、燃料電池セル12の内部でガス導入管9が自在に傾きくことができるため、発電反応温度により周辺温度約700〜1000℃の高温域となる接続部7での熱膨張差や起動停止の熱サイクルによるガス導入管9と燃料電池セル12との接触応力を緩和して燃料電池セル12の亀裂や破損が防止できる。
【0018】
上部シール材料19と下部シール材料21は、セラミック繊維や金属繊維等で形成することができるが、セラミック繊維により金属線で補強をしているもの、あるいは、目地材を塗布して補強をしているものを有する構成であることが好ましい。これによって、高温酸化後のシール材強度維持でき、シール材の弾性によりガス導入管9と上部シール材19と下部シール材21がなじむことができるため、シール材料の劣化を軽減してシール性能を維持できる。
【0019】
ガス供給壁5と接続壁6の熱膨張係数と、燃料電池セル12との熱膨張係数が略同一であることが好ましい。例えば、燃料電池セル12の熱膨張係数が約10.5×10−6(cm/cm・℃)に対し、ガス供給壁5および接続壁6の熱膨張係数が約7.5〜13.5×10−6(cm/cm・℃)の気密性を有する耐熱ステンレス鋼やセラミック等で形成されることにより、ガス導入管9の熱膨張差による位置ずれや傾きを軽減でき、ガス供給壁5と接続壁6と、燃料電池セル12との熱膨張率の差で生ずるガス導入管9と燃料電池セル12の接触応力を緩和軽減することができる。
【0020】
接続部7の周辺温度は、800℃以下で制御されることをが好ましい。これによって、ガス供給壁5と上部シール材19とガス導入管フランジ20と下部シール材21と接続壁6との熱膨張率の差を抑え、上部シール材と下部シール材の劣化を軽減できるため、接続部7のシール性能の低下を防止することができる。
【0021】
図4は、本発明の他の実施例を示すガス分配器10の圧力保持手段として、ガス供給容器4と接続壁6で圧縮し、ガス供給孔18を有するガス供給容器4の下面のガス供給壁5により、ガス導入管9を支持固定する構造例を採用した例である。しかしながら、これは一例であり限定されるものではない。ガス供給容器4と接続壁6を挟み込んでねじで締め付け可能な圧縮部材27で接続部7を圧縮する構造を形成している。このとき、圧縮部材27でガス供給容器4の下面であるガス供給孔18を有するガス供給壁5より、約0.1〜1.5kg/cmの面圧力を与えることが好ましい。これによって、ガス供給容器4と接続壁6の圧縮量によりガス導入管9を支持固定する面圧力を自在にでき、ガス導入管9の位置ずれを防止し、容易に接続部7からガス漏れ量とガス導入管9の傾きを制御することができる。よって、信頼性の高い安全な発電をすることができる。
【0022】
図5は、本発明の他の実施例を示す酸化材分配器10の接触応力緩和手段として、ガス導入管9の外径より大きな孔径の接続孔22を有する接続壁6の上に、下部シール材21と略同一の外径を有するシール材支持板28と、下部シール材21と、球面で形成されるガス導入管フランジ20と、ガス導入管フランジ20の圧縮部を除いた部分にガス供給孔18を有するガス供給壁5を配置形成し、ガス導入管フランジ20を支点として回転可能に支持する構造例を採用した例である。しかしながら、これは一例であり限定されるものではない。このとき、ガス導入管フランジ20の側面よりガスが供給され、接続孔22をシール材支持板28と下部シール材21と球面で形成されるガス導入管フランジ20でシールすると共に、ガス供給壁5で均等に圧縮支持され、また、シール材支持板28は耐熱ステンレス鋼やインコネル(登録商標)等で形成されることが好ましい。例えば、下部シール材21の内径が8mmであるとすると、同じ約8mmの孔径でシール材支持板28を形成されることにより、ガス導入管9の外径とシール材28との隙間の範囲で自在に傾くことができ、燃料電池セル12の内部でガス導入管9が自在に傾きくことができ、また、シール材支持板28が強度を有する材料で球面であるガス導入管フランジ20が支持されるため、容易にガス供給壁5によりガス導入管9を支持すると共に、発電反応温度により周辺温度約700〜1000℃ の高温域となる接続部7での熱膨張差や起動停止の熱サイクルによるガス導入管9と燃料電池セル12との接触応力を緩和して燃料電池セル12の亀裂や破損が防止できる。
【0024】
なお、前述の実施例にかかわらず、燃料ガスが燃料電池セル12の内側を流れ、酸化剤ガスが燃料電池セルの外側に流れるように構成し、燃料ガスと酸化剤ガスを入れ替えて燃料ガス分配器として同様に形成することもできる。
【0025】
【発明の効果】
以上の説明から明らかなように、本発明の筒状固体酸化物形燃料電池によれば、セラミック材料よりなる燃料電池セルの集合体の燃料電池モジュールを形成した際に生ずる取付配置に対する寸法誤差と、燃料電池セルと接続壁との熱膨張率の差による運転時の位置ずれを考慮し、ガス導入管の組み立ての際、自在にガス導入管を取付けて寸法誤差を許容し、初期の燃料電池セルとガス導入管との接触を防ぐことができ、また、ガス導入管の傾いたときのガス漏れ量を容易に制御することができ、さらに、熱膨張率の差や起動停止の熱サイクルに耐えうる信頼性の高い安全な筒状固体酸化物形燃料電池を実現できるため、安定した高効率な発電を行うことができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す筒状固体酸化物形燃料電池の概略図である。
【図2】本発明の一実施例に係わる接続部の拡大図である。
【図3】筒状固体酸化物形燃料電池セルの一例を示す概略図である。
【図4】本発明の他の実施例を示すガス分配器の圧力保持手段の概略図である。
【図5】本発明の他の実施例を示すガス分配器の接触応力緩和手段の概略図である。
【図6】本発明の一実施例に係わるガス導入管フランジの形状例を示す概略図である。
【符号の説明】
1 燃料電池容器
2 ガス供給ダクト
3 排気ガスダクト
4 ガス供給容器
5 ガス供給壁
6 接続壁
7 接続部
8 燃焼室
9 ガス導入管
10 ガス分配器
11 上部隔壁
12 筒状固体酸化物形燃料電池セル
13 燃料電池モジュール
14 発電室
15 下部隔壁
16燃料分散室
17 燃料供給配管
18 ガス供給孔
19 上部シール材
20 ガス導入管フランジ
21 下部シール材
22 接続孔
23 開放端
24 空気極
25 電解質
26 燃料極
27 圧縮部材
28 シール材支持板
[0001]
[Industrial application fields]
The present invention relates to a tubular solid oxide fuel cell, and more particularly to a gas distribution structure of a tubular solid oxide fuel cell with one end sealed.
[0002]
[Prior art]
Conventionally, in a cylindrical solid oxide fuel cell, an oxidant gas is distributed by an elongated oxidant introduction pipe and supplied to the inside of the fuel cell. To the other end, and the oxidant distribution structure is connected so that the axis of the supply main pipe intersects the axis of the branch pipe at an angle smaller than 90 degrees. (See Patent Document 1.)
[0003]
[Patent Document 1]
Japanese Laid-Open Patent Publication No. 5-151985 (2-4 pages, Fig. 1)
[0004]
However, in the conventional configuration, when a fuel cell module composed of an assembly of a plurality of solid oxide fuel cells is formed, the solid oxide fuel cells are made of a ceramic material. It was easy and it was difficult to arrange the oxidant introduction pipe at the optimum position during installation. Further, at about 700 to 1,000 ° C. in the power generation reaction of the solid oxide fuel cell, the thermal expansion of the connection portion of the supply main pipe and the branch pipe, the flange portion holding the branch pipe, and the solid oxide fuel cell. There was a problem that the solid oxide fuel cell was cracked or damaged due to the difference in rate or the stress due to the thermal cycle of starting and stopping.
[0005]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described problems of the prior art, and the object thereof is to have a gas distributor that can tolerate the difference in thermal expansion coefficient and the stress due to the thermal cycle of starting and stopping. An object of the present invention is to provide a highly reliable and safe cylindrical solid oxide fuel cell.
[0006]
[Means for Solving the Problems]
The invention according to claim 1, which solves the above-described problem, supplies a gas to a cylindrical solid oxide fuel cell in which an electrolyte is laminated between an air electrode and a fuel electrode and sealed at one end. A gas supply container as a buffer connected to the gas supply duct, and an elongated gas introduction pipe that communicates with the gas supply container and supplies gas into the sealed tip of the cylindrical solid oxide fuel cell. And a gas introducing pipe flange provided at one end of the gas introducing pipe, and a reference wall for fixing and supporting the gas introducing pipe flange. A connection hole provided in a connection wall and having a diameter larger than the outer diameter of the gas introduction pipe and into which the gas introduction pipe is inserted, and a pressure holding means for applying a uniform surface pressure from above the gas introduction pipe flange; The gas introduction pipe And contact stress relieving means for rotatably supporting the fulcrum flange, by characterized in that the connecting portion between the gas supply container and the gas inlet pipe is formed.
Thus, by providing a connection hole larger than the outer diameter of the gas introduction pipe to form a gap between the gas introduction pipe and the connection hole, and inserting the gas introduction pipe into the connection hole, a fuel cell made of a ceramic material When assembling the gas introduction pipe, taking into account the dimensional error in the mounting arrangement that occurs when the fuel cell module of the assembly of the above is formed and the positional deviation during operation due to the difference in the thermal expansion coefficient between the fuel cell and the connection wall The gas introduction pipe can be freely attached to allow a dimensional error, and contact between the initial fuel cell and the gas introduction pipe can be prevented. Further, by providing the pressure holding means, it is possible to easily control the amount of gas leakage when the gas introduction pipe is inclined by changing the surface pressure. Further, by providing contact stress relaxation means, the solid oxide fuel can be reduced by reducing the contact stress between the solid oxide fuel cell and the gas introduction pipe due to the difference in thermal expansion coefficient and the thermal cycle of starting and stopping. Battery cells can be prevented from cracking or breaking. Therefore, reliable and safe power generation can be performed.
[0007]
According to the invention of claim 2, a flat gas supply wall having a plurality of gas supply holes for supplying the retained gas to the gas introduction pipe is housed in the gas supply container. The connection hole is formed in the lower surface, and the pressure holding means is configured by pressing the gas introduction pipe flange against the lower surface of the gas supply container by its own weight of the gas supply wall.
Thus, the surface pressure for supporting and fixing the gas introduction pipe can be freely changed by changing the weight of the flat plate, and the amount of gas leakage and the inclination of the gas introduction pipe can be easily controlled.
[0008]
According to a third aspect of the present invention, a flat connection wall having the connection hole formed therein is provided below the gas supply container, and a plurality of gas supply holes through which gas flows out are provided on the lower surface of the gas supply container. The pressure holding means is configured by sandwiching the gas introduction pipe flange between the lower surface of the gas supply container and the connection wall.
Accordingly, the surface pressure for supporting and fixing the gas introduction pipe can be freely controlled by the compression amount of the gas supply container and the connection wall, and the gas leakage amount and the inclination of the gas introduction pipe can be easily controlled.
[0009]
The invention according to claim 4 is characterized in that the contact stress relaxation means is configured by arranging the gas introduction pipe flange as a flat surface and placing elastic sealing materials above and below the flange on the basis of each hole.
As a result, the gas introduction pipe can be freely tilted inside the cylindrical solid oxide fuel cell, and the gas introduction pipe and the cylindrical solid oxide fuel battery cell due to the difference in thermal expansion coefficient or the thermal cycle of start and stop It is possible to relax the contact stress of the solid oxide fuel cell and prevent cracking or breakage of the solid oxide fuel cell.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described specifically and in detail with reference to the drawings. In addition, the cylindrical solid oxide fuel cell in the following embodiments has a configuration in which the outside of the cylindrical cell is a fuel electrode and the inside is an air electrode, and an oxidant gas such as air is supplied by a gas distributor. Give an explanation.
FIG. 1 is a schematic view of a cylindrical solid oxide fuel cell showing one embodiment of the present invention. In the fuel cell container 1, a fuel cell module 13 composed of an assembly of a plurality of cylindrical solid oxide fuel cells (hereinafter referred to as fuel cells) 12 whose one end is sealed, a gas introduction pipe 9 and a gas A gas distributor 10 including a supply container 4 and a gas supply duct 2, an upper partition wall 11, and a lower partition wall 15 are accommodated. The gas distributor 10 has a connection portion 7 for connecting a gas introduction pipe 9 to the gas supply container 4. In addition, the fuel cell 12 penetrates through the upper partition, and the penetration part forms a non-airtight structure. At this time, the fuel cell container 1 can be formed of heat resistant stainless steel, Inconel (registered trademark), or the like, and the upper partition wall 11 and the lower partition wall 15 are made of a ceramic heat resistant board having air permeability or a heat resistant stainless steel having a vent hole. It can be formed of steel, Inconel (registered trademark) or the like.
[0013]
FIG. 2 is an enlarged view of the joint 7 of the gas distributor 10 shown in FIG. The connection wall 6 that is the lower surface of the gas supply container 3 and has a connection hole 22 larger than the outer diameter of the gas introduction pipe 9 is used as a reference plane, and the gas introduction pipe 9 is inserted into the connection hole 22 from above the gas connection wall 6. In order, the lower sealing material 21, the gas introduction pipe flange 20, the upper sealing material 19, and the gas supply wall 5 having the gas supply holes 18 are laminated and arranged through each hole.
[0014]
FIG. 3 is a schematic view of the fuel battery cell 12 shown in FIG. The fuel cell 12 is a cylindrical cell in which an electrolyte 25 and a fuel electrode 26 are closely stacked on the outer periphery of the air electrode 24 and sealed at one end. The air electrode 24 is formed of a porous perovskite oxide such as LaCoO 3 , LaMnO 3 , LaFeO 3 or the like, doped with Sr or Ca at the La site, or undoped, or a composite material thereof. Yes. The electrolyte 25 is made of YSZ. The fuel electrode 26 is formed of porous Ni and YSZ cermet.
[0015]
Next, the operation of the cylindrical solid oxide fuel cell configured as described above will be described. The air flows from the gas supply duct 2 through the gas supply container 4 of the gas distributor 10, the connection portion 7, and the gas introduction pipe 9 to the inside of the tip of the fuel cell 12 and is supplied to the air electrode 24. Flows to the outside of the fuel cell 12 through the fuel supply pipe 17, the fuel dispersion chamber 16, and the vent of the lower partition 15, and is supplied to the fuel electrode 26, an electrochemical reaction occurs on both sides of the electrolyte 25. Generate electricity, heat and water. This reaction is the reverse reaction of the electrochemical reaction of water. The reacted exhausted fuel gas is discharged to the combustion chamber 8 through a discharge hole (not shown) of the upper partition wall 11. On the other hand, the reacted exhaust air is discharged from the open end 23 of the fuel cell 12 to the combustion chamber 8. In the combustion chamber 8, residual oxygen contained in the exhaust fuel is mixed and burned, and the combustion gas is discharged through the exhaust gas duct 3. Since the power generation temperature of the solid oxide fuel cell is about 1000 ° C., the temperature of the power generation chamber 14 is also close to the power generation reaction temperature, and the combustion chamber 8 is also connected to the gas distributor 10 by combustion as described above. The ambient temperature of the part 7 is about 700 to 1000 ° C., and a difference in thermal expansion occurs between the fuel battery cell 12 and the connection wall 6 that supports the gas introduction pipe 9. However, a dimensional error with respect to the mounting arrangement that occurs when the fuel cell module 13 of the assembly of the fuel cells 12 made of a ceramic material is formed, and a difference in the thermal expansion coefficient between the fuel cell 12 and the connection wall 6 during operation. In consideration of misalignment, a connection hole 22 larger than the outer diameter of the gas introduction pipe 9 is provided to form a gap between the gas introduction pipe 9 and the connection hole 22 and can be freely attached by assembling the gas introduction pipe 9 to cause a dimensional error. Since the gas introduction pipe 9 is inserted into the connection hole 6, contact between the initial fuel cell 12 and the gas introduction pipe 9 can be prevented. In addition, since there is a pressure holding means for applying a uniform surface pressure from above the gas introduction pipe flange 20 provided at one end of the gas introduction pipe 9, the inclination of the gas introduction pipe 9 is controlled to suppress gas leakage. In addition, since it has contact stress relaxation means that rotatably supports the gas introduction pipe flange 20 as a fulcrum, the fuel cell 12 and the gas introduction pipe due to a difference in thermal expansion coefficient or a thermal cycle of start and stop Since the stress at the time of contact 9 can be relaxed to prevent the fuel cell 12 from being cracked or damaged, highly reliable and safe power generation can be maintained.
[0016]
In this case, it is preferable that the pressure holding means forms the gas supply wall 9 having the gas supply holes 18 with a weight of a flat plate and applies a surface pressure of about 0.1 to 1.5 kg / cm 2 by the flat plate weight. As a result, displacement of the gas introduction pipe 9 can be prevented, the inclination of the gas introduction pipe flange 20 can be controlled within a range of several degrees, and the surface pressure for supporting and fixing the gas introduction pipe 9 can be changed by changing the weight of the flat plate. The amount of gas leakage from the connecting portion 7 and the inclination of the gas introduction pipe 9 can be easily controlled. Therefore, reliable and safe power generation can be performed.
[0017]
The contact stress relaxation means is arranged above and below the gas introduction pipe flange 20 with an elastic upper seal material 19 and lower seal material 21 having a hole diameter substantially the same as the outer diameter of the gas introduction pipe 9 on the basis of each hole. The lower sealing material 21 preferably has a diameter larger than that of the gas introduction pipe flange 20 and a shape that can move integrally with the gas introduction pipe 9. For example, the gas introduction pipe 9 and the upper seal material 19 are provided by providing the upper seal material 19 and the lower seal material 21 with the gas introduction pipe flange 20 having the same diameter of about 6 mm as the outer diameter of the gas introduction pipe 9. And the lower sealing material 21 can be easily arranged on the basis of the hole diameter, the gas introduction pipe 9 and the lower sealing material 21 can move in close contact with each other, and the gas introduction pipe can be moved inside the fuel cell 12. 9 can be freely tilted, so that the gas introduction pipe 9 and the fuel battery cell due to the difference in thermal expansion at the connection portion 7 which becomes a high temperature range of about 700 to 1000 ° C. depending on the power generation reaction temperature and the thermal cycle of start and stop The contact stress with the fuel cell 12 can be relaxed, and the fuel cell 12 can be prevented from cracking or breaking.
[0018]
The upper sealing material 19 and the lower sealing material 21 can be formed of ceramic fibers, metal fibers, or the like, but are reinforced with ceramic fibers by metal wires, or by applying joint materials and reinforcing them. It is preferable that it is the structure which has what is. As a result, the strength of the sealing material after high-temperature oxidation can be maintained, and the gas introduction pipe 9, the upper sealing material 19, and the lower sealing material 21 can be adapted by the elasticity of the sealing material. Can be maintained.
[0019]
It is preferable that the thermal expansion coefficients of the gas supply wall 5 and the connection wall 6 and the thermal expansion coefficients of the fuel cells 12 are substantially the same. For example, the thermal expansion coefficient of the fuel cell 12 is about 10.5 × 10 −6 (cm / cm · ° C.), whereas the thermal expansion coefficients of the gas supply wall 5 and the connection wall 6 are about 7.5 to 13.5. By being formed of heat-resistant stainless steel or ceramic having a hermeticity of × 10 −6 (cm / cm · ° C.), it is possible to reduce misalignment and inclination due to a difference in thermal expansion of the gas introduction tube 9, and to supply the gas supply wall 5 In addition, the contact stress between the gas introduction pipe 9 and the fuel battery cell 12 caused by the difference in thermal expansion coefficient between the connection wall 6 and the fuel battery cell 12 can be reduced.
[0020]
It is preferable that the ambient temperature of the connection part 7 is controlled at 800 ° C. or lower. This suppresses the difference in thermal expansion coefficient among the gas supply wall 5, the upper seal material 19, the gas introduction pipe flange 20, the lower seal material 21, and the connection wall 6, thereby reducing deterioration of the upper seal material and the lower seal material. And the fall of the sealing performance of the connection part 7 can be prevented.
[0021]
FIG. 4 shows the gas supply of the lower surface of the gas supply container 4 compressed by the gas supply container 4 and the connection wall 6 and having the gas supply hole 18 as the pressure holding means of the gas distributor 10 showing another embodiment of the present invention. In this example, a structure example in which the gas introduction pipe 9 is supported and fixed by the wall 5 is adopted. However, this is an example and is not limited. A structure is formed in which the connecting portion 7 is compressed by a compression member 27 that is sandwiched between the gas supply container 4 and the connecting wall 6 and can be tightened with a screw. At this time, it is preferable to apply a surface pressure of about 0.1 to 1.5 kg / cm 2 from the gas supply wall 5 having the gas supply hole 18 which is the lower surface of the gas supply container 4 by the compression member 27. Accordingly, the surface pressure for supporting and fixing the gas introduction pipe 9 can be freely controlled by the compression amount of the gas supply container 4 and the connection wall 6, the displacement of the gas introduction pipe 9 can be prevented, and the amount of gas leakage from the connection portion 7 can be easily achieved. And the inclination of the gas introduction pipe 9 can be controlled. Therefore, reliable and safe power generation can be performed.
[0022]
FIG. 5 shows a lower seal on the connection wall 6 having a connection hole 22 having a larger diameter than the outer diameter of the gas introduction tube 9 as means for reducing the contact stress of the oxidant distributor 10 according to another embodiment of the present invention. Gas supply to a portion excluding the sealing member support plate 28 having substantially the same outer diameter as the member 21, the lower sealing member 21, the gas introduction pipe flange 20 formed of a spherical surface, and the compression part of the gas introduction pipe flange 20. This is an example in which a gas supply wall 5 having a hole 18 is arranged and formed, and a structure example in which the gas introduction pipe flange 20 is rotatably supported by a fulcrum is adopted. However, this is an example and is not limited. At this time, gas is supplied from the side surface of the gas introduction pipe flange 20, and the connection hole 22 is sealed by the gas introduction pipe flange 20 formed by the sealing material support plate 28, the lower sealing material 21, and the spherical surface, and the gas supply wall 5. The sealing material support plate 28 is preferably formed of heat resistant stainless steel, Inconel (registered trademark), or the like. For example, if the inner diameter of the lower seal material 21 is 8 mm, the seal material support plate 28 is formed with the same hole diameter of about 8 mm, so that the gap between the outer diameter of the gas introduction tube 9 and the seal material 28 is within the range. The gas introduction pipe 9 can be freely inclined inside the fuel battery cell 12, and the sealing material support plate 28 is supported by the gas introduction pipe flange 20 which is a spherical material made of a strong material. Therefore, the gas introduction wall 9 is easily supported by the gas supply wall 5, and the thermal expansion difference and the start / stop thermal cycle at the connection portion 7 that is in a high temperature range of about 700 to 1000 ° C. depending on the power generation reaction temperature. By reducing the contact stress between the gas introduction tube 9 and the fuel battery cell 12 due to the above, cracks and breakage of the fuel battery cell 12 can be prevented.
[0024]
Regardless of the embodiment described above, the fuel gas flows inside the fuel cell 12 and the oxidant gas flows outside the fuel cell, and the fuel gas and the oxidant gas are exchanged to distribute the fuel gas. It can be similarly formed as a vessel.
[0025]
【The invention's effect】
As is apparent from the above description, according to the cylindrical solid oxide fuel cell of the present invention, the dimensional error with respect to the mounting arrangement caused when the fuel cell module of the assembly of fuel cells made of ceramic material is formed. Considering the displacement during operation due to the difference in thermal expansion coefficient between the fuel cell and the connection wall, when assembling the gas introduction tube, the gas introduction tube can be freely attached to allow dimensional errors, and the initial fuel cell Contact between the cell and the gas inlet pipe can be prevented, and the amount of gas leakage when the gas inlet pipe is tilted can be easily controlled. Since a reliable and safe cylindrical solid oxide fuel cell that can withstand can be realized, stable and highly efficient power generation can be performed.
[Brief description of the drawings]
FIG. 1 is a schematic view of a cylindrical solid oxide fuel cell showing one embodiment of the present invention.
FIG. 2 is an enlarged view of a connection portion according to an embodiment of the present invention.
FIG. 3 is a schematic view showing an example of a cylindrical solid oxide fuel cell.
FIG. 4 is a schematic view of a pressure holding means of a gas distributor showing another embodiment of the present invention.
FIG. 5 is a schematic view of contact stress relaxation means of a gas distributor showing another embodiment of the present invention.
FIG. 6 is a schematic view showing an example of the shape of a gas introduction pipe flange according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fuel cell container 2 Gas supply duct 3 Exhaust gas duct 4 Gas supply container 5 Gas supply wall 6 Connection wall 7 Connection part 8 Combustion chamber 9 Gas introduction pipe 10 Gas distributor 11 Upper partition 12 Cylindrical solid oxide fuel cell 13 Fuel cell module 14 Power generation chamber 15 Lower partition wall 16 Fuel dispersion chamber 17 Fuel supply pipe 18 Gas supply hole 19 Upper seal material 20 Gas introduction pipe flange 21 Lower seal material 22 Connection hole 23 Open end 24 Air electrode 25 Electrolyte 26 Fuel electrode 27 Compression Member 28 Sealing material support plate

Claims (4)

空気極と燃料極との間に電解質を積層し、片側先端で密封された筒状固体酸化物形燃料電池セルと、
ガスを供給するガス供給ダクトに接続されたバッファーとしてのガス供給容器と、このガス供給容器と連通し前記筒状固体酸化物形燃料電池セルの密封された先端内部へガスを供給する細長いガス導入管と、からなるガス分配器と、
を備えた筒状固体酸化物形燃料電池において、
前記ガス導入管の一端に設けられたガス導入管フランジと、
このガス導入管フランジを固定支持する基準となる壁である接続壁に設けられ、前記ガス導入管の外径よりも大径であってこのガス導入管が挿入された接続孔と、
前記ガス導入管フランジの上方より均等な面圧力を与える圧力保持手段と、
前記ガス導入管フランジを支点として回転可能に支持する接触応力緩和手段と、
によって、前記ガス導入管と前記ガス供給容器との接続部が形成されていることを特徴とする筒状固体酸化物形燃料電池。
A cylindrical solid oxide fuel battery cell in which an electrolyte is laminated between an air electrode and a fuel electrode and sealed at one end.
A gas supply container as a buffer connected to a gas supply duct for supplying gas, and an elongated gas introduction that communicates with the gas supply container and supplies gas into the sealed tip of the cylindrical solid oxide fuel cell. A gas distributor comprising: a tube;
In a cylindrical solid oxide fuel cell comprising:
A gas introduction pipe flange provided at one end of the gas introduction pipe;
A connection wall which is a reference wall for fixing and supporting the gas introduction pipe flange, a connection hole having a diameter larger than the outer diameter of the gas introduction pipe and into which the gas introduction pipe is inserted;
Pressure holding means for applying a uniform surface pressure from above the gas introduction pipe flange;
Contact stress relaxation means for rotatably supporting the gas introduction pipe flange as a fulcrum;
The cylindrical solid oxide fuel cell is characterized in that a connection portion between the gas introduction pipe and the gas supply container is formed by the above.
前記ガス供給容器の内部には滞留したガスを前記ガス導入管へ供給するガス供給孔を複数有する平板状のガス供給壁が収納されていると共に、前記ガス供給容器の下面に前記接続孔が形成されており、このガス供給壁の自重により前記ガス導入管フランジを前記ガス供給容器の下面へ押し付けることによって前記圧力保持手段が構成されていること特徴とする請求項1に記載の筒状固体酸化物形燃料電池。  A flat gas supply wall having a plurality of gas supply holes for supplying the retained gas to the gas introduction pipe is housed in the gas supply container, and the connection hole is formed in the lower surface of the gas supply container. 2. The cylindrical solid oxidation according to claim 1, wherein the pressure holding means is configured by pressing the gas introduction pipe flange against the lower surface of the gas supply container by its own weight of the gas supply wall. Physical fuel cell. 前記ガス供給容器の下方に前記接続孔が形成された平板状の接続壁を設けると共に、前記ガス供給容器の下面にはガスを流出するガス供給孔を複数有しており、前記ガス導入管フランジを前記ガス供給容器の下面と前記接続壁で挟持することによって前記圧力保持手段が構成されていることを特徴とする請求項1に記載の筒状固体酸化物形燃料電池。  A flat connection wall having the connection hole is provided below the gas supply container, and a plurality of gas supply holes through which gas flows out are provided on the lower surface of the gas supply container, and the gas introduction pipe flange 2. The cylindrical solid oxide fuel cell according to claim 1, wherein the pressure holding means is configured by sandwiching the gas between the lower surface of the gas supply container and the connection wall. 前記ガス導入管フランジを平面とし、その上下に弾性体のシール材を各孔基準で配置することをよって前記接触応力緩和手段が構成されていることを特徴とする請求項1〜3のいずれか1項に記載の筒状固体酸化物形燃料電池。  4. The contact stress relaxation means is configured by arranging the gas introduction pipe flange as a flat surface and disposing an elastic sealing material on the upper and lower sides thereof with respect to each hole. 2. A cylindrical solid oxide fuel cell according to item 1.
JP2002319499A 2002-11-01 2002-11-01 Tubular solid oxide fuel cell Expired - Fee Related JP4288560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002319499A JP4288560B2 (en) 2002-11-01 2002-11-01 Tubular solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002319499A JP4288560B2 (en) 2002-11-01 2002-11-01 Tubular solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2004152723A JP2004152723A (en) 2004-05-27
JP4288560B2 true JP4288560B2 (en) 2009-07-01

Family

ID=32462331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002319499A Expired - Fee Related JP4288560B2 (en) 2002-11-01 2002-11-01 Tubular solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP4288560B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5290021B2 (en) * 2009-03-30 2013-09-18 アイシン精機株式会社 Fuel cell device
JP5655508B2 (en) 2010-11-02 2015-01-21 住友電気工業株式会社 Gas decomposition element, power generation device and gas decomposition method

Also Published As

Publication number Publication date
JP2004152723A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
JP4969880B2 (en) Fuel cell
CA2036259C (en) Solid oxide fuel cells
JP3736765B2 (en) Manifold holding system for fuel cell stack
JP4291299B2 (en) Flat type solid oxide fuel cell
US20060166053A1 (en) Solid oxide fuel cell assembly with replaceable stack and packet modules
JP4981331B2 (en) Fuel cell stack and current collector
US20060051642A1 (en) Solid oxide fuel cell system
JPH09259910A (en) Molten carbonate fuel battery and power generator using this battery
JP2001110435A (en) Solid oxide fuel cell equipped with open end protection means
CA2618131A1 (en) Solid oxide fuel cell stack for portable power generation
CN102024974A (en) Combined cell module for solid oxide fuel cell
JP4573526B2 (en) Solid oxide fuel cell
US5589286A (en) Solid electrolyte fuel cell
JP2007053043A (en) Manifold structure of fuel cell and method of manufacturing same
JP3621849B2 (en) Fuel cell module
JP4288560B2 (en) Tubular solid oxide fuel cell
JP2004119300A (en) Cylindrical solid oxide fuel cell (sofc) generator
JP3706959B2 (en) Structure of a cylindrical solid oxide fuel cell having a conductive tube inserted therein, a structure of a bundle in which a plurality of such cells are bundled, and a structure of a power generation module using the bundle
JP2531824B2 (en) Solid oxide fuel cell
JP3389482B2 (en) Solid oxide fuel cell
JP4418196B2 (en) Fuel cell module
JP2004288608A (en) Assembly of cylindrical solid oxide fuel battery cell
JP4942064B2 (en) Current collector and solid oxide fuel cell stack including the same
JP2528986B2 (en) Solid oxide fuel cell
JP3487606B2 (en) Solid oxide fuel cell power reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090127

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090305

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees