JP2531824B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell

Info

Publication number
JP2531824B2
JP2531824B2 JP2075606A JP7560690A JP2531824B2 JP 2531824 B2 JP2531824 B2 JP 2531824B2 JP 2075606 A JP2075606 A JP 2075606A JP 7560690 A JP7560690 A JP 7560690A JP 2531824 B2 JP2531824 B2 JP 2531824B2
Authority
JP
Japan
Prior art keywords
sofc
gas
fuel cell
exhaust gas
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2075606A
Other languages
Japanese (ja)
Other versions
JPH03276564A (en
Inventor
毅 石原
越延 三澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2075606A priority Critical patent/JP2531824B2/en
Priority to US07/649,988 priority patent/US5185219A/en
Priority to CA002036259A priority patent/CA2036259C/en
Priority to EP91301211A priority patent/EP0442743B1/en
Priority to DE69121601T priority patent/DE69121601T2/en
Publication of JPH03276564A publication Critical patent/JPH03276564A/en
Application granted granted Critical
Publication of JP2531824B2 publication Critical patent/JP2531824B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は固体電解質型燃料電池に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a solid oxide fuel cell.

(従来の技術) 最近、燃料電池が発電装置として注目されている。こ
れは、燃料が有する化学エネルギーを直接電気エネルギ
ーに変換できる装置で、カルノーサイクルの制約を受け
ないため、本質的に高いエネルギー変換効率を有し、燃
料の多様化が可能で(ナフサ、天然ガス、メタノール、
石炭改質ガス、重油等)、低公害で、しかも発電効率が
設備規模によって影響されず、極めて有望な技術であ
る。
(Prior Art) Recently, a fuel cell has attracted attention as a power generation device. This is a device that can directly convert the chemical energy of fuel into electrical energy. It is not restricted by the Carnot cycle, so it has essentially high energy conversion efficiency and can diversify the fuel (naphtha, natural gas). ,methanol,
It is a very promising technology that has low pollution and power generation efficiency is not affected by the equipment scale.

特に、固体電解質型燃料電池(以下、SOFCと記す)は
1000℃の高温で作動するための電極反応が極めて活発
で、高価な白金などの貴金属触媒を全く必要とせず、分
極が小さく、出力電圧も比較的高いため、エネルギー変
換効率が他の燃料電池にくらべ著しく高い。更に、構造
材は全て固体から構成されているため、安定且つ長寿命
である。
In particular, solid oxide fuel cells (hereinafter referred to as SOFC)
The electrode reaction to operate at a high temperature of 1000 ° C is extremely active, no expensive precious metal catalyst such as platinum is required, the polarization is small, and the output voltage is relatively high. Remarkably high compared to Further, since the structural material is composed entirely of solid, it is stable and has a long life.

SOFC素子の構成要素は、一般的に空気電極、固体電解
質、燃料電極から構成される。
The components of the SOFC element are generally composed of an air electrode, a solid electrolyte and a fuel electrode.

平板型SOFC素子は単位体積当りの電池有効面積が大き
く、有望である。こうした平板型SOFC素子を多数平行に
配列し、各素子同士をリジッドにシールして発電室を形
成し、発電室の一方の側から酸化ガスおよび燃料ガスを
送り込み、他方の側から燃焼排ガスを排出するものが知
られている。
The flat plate type SOFC device is promising because it has a large effective battery area per unit volume. A large number of such flat-plate SOFC elements are arranged in parallel, each element is rigidly sealed to form a power generation chamber, and oxidizing gas and fuel gas are sent from one side of the power generation chamber and combustion exhaust gas is discharged from the other side. What is known is.

(発明が解決しようとする課題) しかし、各SOFC素子同士をリジッドに固定しシールし
たものは、気密な発電室を形成するためにSOFC素子同士
を互いに密封拘束した状態にあるため、作動時の高温に
よりSOFC素子の縁辺部には大きな熱歪応力が発生する。
特に、空気供給室と排ガス燃焼室との間に設けた隔壁に
よってSOFC素子の基部をリジッドに支持すると、これに
よる押え応力が大きく、脆弱なSOFC素子に亀裂を発生さ
せ易い。
(Problems to be solved by the invention) However, the one in which each SOFC element is fixed and sealed rigidly is in a state where the SOFC elements are hermetically bound to each other in order to form an airtight power generation chamber, Due to the high temperature, large thermal strain stress is generated at the edge of the SOFC element.
Particularly, when the base portion of the SOFC element is rigidly supported by the partition wall provided between the air supply chamber and the exhaust gas combustion chamber, the pressing stress due to this is large, and cracks are easily generated in the fragile SOFC element.

本発明の課題は、SOFC素子の縁辺部での応力を緩和
し、亀裂の発生を防止して、信頼性と耐久性とに優れた
固体電解質型燃料電池を提供することである。
An object of the present invention is to provide a solid oxide fuel cell that is excellent in reliability and durability by relaxing stress at the edge portion of the SOFC element and preventing the occurrence of cracks.

(課題を解決するための手段) 本発明は、固体電解質と、この固体電解質の一方の側
に設けられた空気電極と、他方の側に設けられた燃料電
極とを少なくとも有する固体電解質型燃料電池素子と; この固体電解質型燃料電池素子の内部に設けられたガ
ス流通路へとガスを供給するためのガス供給室と; 前記ガス流通路から排出された排ガスを燃焼反応させ
るための排ガス燃焼室とを有する固体電解質型燃料電池
において、 前記ガス供給室と前記排ガス燃焼室との間で前記固体
電解質型燃料電池素子の外周が多孔質材によって保持さ
れ、この多孔質材の表面が前記ガス供給室と前記排ガス
燃焼室とに対して実質的に露出しないように、前記表面
が気密質材によって被覆されていることを特徴とする固
体電解質型燃料電池に係るものである。
(Means for Solving the Problems) The present invention provides a solid oxide fuel cell having at least a solid electrolyte, an air electrode provided on one side of the solid electrolyte, and a fuel electrode provided on the other side. An element; a gas supply chamber for supplying a gas to a gas flow passage provided inside the solid oxide fuel cell device; and an exhaust gas combustion chamber for causing a combustion reaction of the exhaust gas discharged from the gas flow passage In the solid oxide fuel cell having, the outer periphery of the solid oxide fuel cell element is held by a porous material between the gas supply chamber and the exhaust gas combustion chamber, the surface of this porous material is the gas supply The present invention relates to a solid oxide fuel cell, wherein the surface is covered with an airtight material so as not to be substantially exposed to the chamber and the exhaust gas combustion chamber.

また、本発明は、固体電解質と、この固体電解質の一
方の側に設けられた空気電極と、他方の側に設けられた
燃料電極とを少なくとも有する固体電解質型燃料電池素
子と; この固体電解質型燃料電池素子の内部に設けられたガ
ス流通路へとガスを供給するためのガス供給室と; 前記ガス流通路から排出された排ガスを燃焼反応させ
るための排ガス燃焼室とを有する固体電解質型燃料電池
において、前記ガス供給室と前記排ガス燃焼室との間で
前記固体電解質型燃料電池素子の外周が、実質的にガス
不透過性の多孔質材によって保持されていることを特徴
とする固体電解質型燃料電池に係るものである。
The present invention also provides a solid electrolyte type fuel cell element having at least a solid electrolyte, an air electrode provided on one side of the solid electrolyte, and a fuel electrode provided on the other side; Solid electrolyte fuel having a gas supply chamber for supplying gas to a gas flow passage provided inside the fuel cell element; and an exhaust gas combustion chamber for performing a combustion reaction of exhaust gas discharged from the gas flow passage In the battery, the outer periphery of the solid oxide fuel cell element between the gas supply chamber and the exhaust gas combustion chamber is held by a substantially gas-impermeable porous material, a solid electrolyte Type fuel cell.

(実施例) 第1図はSOFCの一例を示す断面図(第2図のA−A断
面)、第2図は同じSOFCを横方向に切った断面図、第3
図は第2図のB−B線断面図、第4図はSOFC素子を集積
したSOFC装置を示す断面図である。
(Embodiment) FIG. 1 is a cross-sectional view showing an example of SOFC (cross-section AA of FIG. 2), FIG. 2 is a cross-sectional view of the same SOFC cut in the lateral direction, and FIG.
FIG. 4 is a sectional view taken along the line BB in FIG. 2, and FIG. 4 is a sectional view showing an SOFC device in which SOFC elements are integrated.

このSOFC素子11においては、第1図〜第3図の如く細
長い平板状の空気電極体3を支持体とし、空気電極体3
の第1図において下側の面には気密質インターコネクタ
ー12を膜状に形成し、上側の面と側面とには気密質固体
電解質膜9を形成し、気密質膜によって空気電極体3の
周囲を覆う。インターコネクター12は空気電極体3の下
側にSOFC素子11の末端まで形成させる。また気密質固体
電解質9も同じく空気電極体3の上側の面にSOFC素子11
の末端まで形成させる。空気電極体3が排ガス燃焼室7
内のCOガス、水蒸気等の還元ガスに弱いためである。固
体電解質膜9の上面と側面とに亘って、インターコネク
ター12に接触しないように、燃料電極膜10を設ける。
In this SOFC element 11, as shown in FIGS. 1 to 3, the elongated flat plate-shaped air electrode body 3 is used as a support body, and the air electrode body 3 is used.
In FIG. 1, the airtight interconnector 12 is formed in a film shape on the lower surface, and the airtight solid electrolyte membrane 9 is formed on the upper surface and the side surface. Cover the surroundings. The interconnector 12 is formed under the air electrode body 3 up to the end of the SOFC element 11. Similarly, the airtight solid electrolyte 9 is also provided on the upper surface of the air electrode body 3 with the SOFC element 11
To the end of. The air electrode body 3 is the exhaust gas combustion chamber 7
This is because it is vulnerable to CO gas and reducing gas such as water vapor. The fuel electrode membrane 10 is provided over the upper surface and the side surface of the solid electrolyte membrane 9 so as not to contact the interconnector 12.

SOFC素子11の保持は次のように行う。 The SOFC element 11 is held as follows.

即ち、SOFC素子11の第1図、第2図において左側の端
部付近に気密質隔壁24を設け、この気密質隔壁24に設け
られた貫通孔24a内へとSOFC素子11の端部を挿入する。
そして、この貫通孔24aとSOFC素子11の外周面との間の
隙間に多孔質材23を充填し、この多孔質材23によってSO
FC素子11の外周をソフトに保持する。気密質隔壁24およ
び多孔質材23の第1図、第2図において左側は酸化ガス
供給室21とされ、右側は排ガス燃焼室7とされる。
That is, the airtight partition 24 is provided near the left end of the SOFC element 11 in FIGS. 1 and 2, and the end of the SOFC element 11 is inserted into the through hole 24a provided in the airtight partition 24. To do.
Then, the gap between the through hole 24a and the outer peripheral surface of the SOFC element 11 is filled with the porous material 23, and the
The outer periphery of the FC element 11 is softly held. In FIG. 1 and FIG. 2 of the airtight partition wall 24 and the porous material 23, the left side is the oxidizing gas supply chamber 21, and the right side is the exhaust gas combustion chamber 7.

また、気密質隔壁24の酸化ガス供給室側には更に気密
質壁部25を設け、この気密質壁部25によって多孔質材23
の表面を被覆し、この表面が酸化ガス供給室21側へと露
出しないようにする。気密質壁部25のSOFC素子11外周に
近い縁部は、先端の尖った傾斜部25aとされており、傾
斜部25aの先端はSOFC素子11の外周に接触する。傾斜部2
5aはSOFC素子11を実質的に固定しない様に接触し、従っ
て、この接触部において局部的にSOFC素子11と傾斜部25
aとの間に隙間が生ずることを許容する。
Further, an airtight wall portion 25 is further provided on the oxidizing gas supply chamber side of the airtight partition wall 24, and the porous material 23 is formed by the airtight wall portion 25.
The surface of is covered so that this surface is not exposed to the oxidizing gas supply chamber 21 side. An edge portion of the airtight wall portion 25 near the outer periphery of the SOFC element 11 is a slant portion 25a having a sharp tip, and the tip of the slant portion 25a contacts the outer periphery of the SOFC element 11. Slope 2
5a makes contact so that the SOFC element 11 is not substantially fixed, and therefore the SOFC element 11 and the inclined portion 25 are locally contacted at this contact portion.
Allow a gap to form with a.

一方、SOFC素子11の外周には先端の尖った気密質傾斜
突出部22が設けられ、多孔質材23の排ガス燃焼室側の表
面が傾斜突出部22によって被覆され、多孔質材23の表面
が排ガス燃焼室7へと露出するのが防止される。また、
好ましくは多孔質の隔壁2を設け、排ガス燃焼室7と発
電室8とを区分すると共に、SOFC素子11を隔壁2によっ
てもソフトに支持する。
On the other hand, an airtight inclined projection 22 having a sharp tip is provided on the outer periphery of the SOFC element 11, the surface of the porous material 23 on the exhaust gas combustion chamber side is covered with the inclined projection 22, and the surface of the porous material 23 is Exposure to the exhaust gas combustion chamber 7 is prevented. Also,
Preferably, a porous partition wall 2 is provided to separate the exhaust gas combustion chamber 7 from the power generation chamber 8, and the SOFC element 11 is also softly supported by the partition wall 2.

多孔質材23としては、例えば、セラミックファイバー
フェルト、セラミックファイバーボード、耐火断熱レン
ガ、断熱キャスタブル等が好ましい。気密質壁部25の材
質としては、例えばアルミナ、ムライト、ジルコニア等
の耐火セメント、モルタル等が好ましい。傾斜突出部22
は、SOFC素子11の外周へとこの傾斜突出部を接着、貼
着、付着させることによって設けてよく、また予めSOFC
素子11の外周を厚めに形成しておき、その後に研削加工
によって傾斜突出部を削り出すことによって設けてもよ
い。
As the porous material 23, for example, ceramic fiber felt, ceramic fiber board, refractory heat insulating brick, heat insulating castable, etc. are preferable. As a material of the airtight wall portion 25, for example, refractory cement such as alumina, mullite, zirconia, mortar, or the like is preferable. Inclined protrusion 22
May be provided by adhering, adhering, or adhering this inclined protrusion to the outer periphery of the SOFC element 11.
Alternatively, the outer circumference of the element 11 may be formed to be thick, and then the inclined protrusion may be cut out by grinding.

気密質壁部25及び傾斜突出部25aは気密質隔壁24と一
体とし、アルミナ、ムライト、ジルコニア等の耐熱性材
料で形成することができる。又、気密質壁部25と傾斜突
出部25aとを、気密質隔壁24と多孔質材23との表面上に
耐火セメントで形成してもよい。
The airtight wall portion 25 and the inclined protruding portion 25a can be formed integrally with the airtight partition wall 24 and made of a heat resistant material such as alumina, mullite, or zirconia. Further, the airtight wall portion 25 and the inclined protruding portion 25a may be formed of refractory cement on the surfaces of the airtight partition wall 24 and the porous material 23.

平板状空気電極体3は、ドーピングされたか、又はド
ーピングされていないLaMnO3,CaMnO3,LaNiO3,LaCo
O3,LaCrO3等で製造でき、ストロンチウムを添加したLa
MnO3が好ましい。気密質固体電解質膜9は、一般にはイ
ットリア安定化ジルコニア等で製造できる。燃料電極膜
10は、一般にはニッケル−ジルコニアサーメット又はコ
バルト−ジルコニアサーメットが好ましい。
The flat air electrode body 3 is composed of doped or undoped LaMnO 3 , CaMnO 3 , LaNiO 3 , LaCo.
La that can be made of O 3 , LaCrO 3 etc. and has strontium added
MnO 3 is preferred. The airtight solid electrolyte membrane 9 can generally be manufactured from yttria-stabilized zirconia or the like. Fuel electrode membrane
Generally, 10 is preferably nickel-zirconia cermet or cobalt-zirconia cermet.

平板状空気電極体3の内側には複数列の酸化ガス輸送
路4A,4Bが設けられ、酸化ガス供給室21に面して酸化ガ
ス供給口16と閉塞部5とが交互に設けられている。SOFC
の動作時には、酸化ガスが矢印Eのように酸化ガス導入
孔16から酸化ガス輸送路4A内へと送られ、SOFC素子の発
電室側の端部へと達し、ここで反対方向へと方向転換し
て酸化ガス輸送路4B内を再び酸化ガス供給室21方向へと
向かって流れる。酸化ガス輸送路4Bの酸化ガス供給室21
側の端部には上記のように閉塞部5が設けられており、
かつ排ガス燃焼室7へと面して酸化ガス排出口6が設け
られている。従って、酸化ガスは、酸化ガス輸送路4A,4
Bを往復する間に空気電極体3および固体電解質膜9を
経て燃料電極膜10に酸素イオンを供給して燃料電極膜10
上で燃料と反応して発電に寄与し、酸素濃度の低下した
排酸化ガスが排出口6から排ガス燃焼室7へと排出され
る。一方、発電室8と排ガス燃焼室7との間では僅かの
差圧で排ガス燃焼室7へと燃料ガスの流れが生ずるよう
に設計されており、排ガス燃焼室7から発電室8への逆
流を防ぐ。燃料ガスは矢印Fのように発電室8内を流れ
て発電に利用され、反応によって生成した水蒸気、炭酸
ガスおよび未反応の燃料ガスの混合気体が隔壁2とSOFC
素子との隙間を通って排ガス燃焼室7へと流入し、ここ
で排酸化ガスと接触して燃焼し、酸化ガス輸送路4A内を
通過中の新鮮な酸化ガスを予熱する。
A plurality of rows of oxidizing gas transport paths 4A and 4B are provided inside the flat air electrode body 3, and an oxidizing gas supply port 16 and a closed portion 5 are alternately provided facing the oxidizing gas supply chamber 21. . SOFC
During the operation of, the oxidizing gas is sent from the oxidizing gas introduction hole 16 into the oxidizing gas transport path 4A as shown by the arrow E, reaches the end of the SOFC element on the power generation chamber side, and changes the direction here in the opposite direction. Then, it flows toward the oxidizing gas supply chamber 21 again in the oxidizing gas transport path 4B. Oxidizing gas supply chamber 21 of oxidizing gas transport path 4B
The closing portion 5 is provided at the side end as described above,
Moreover, the oxidant gas discharge port 6 is provided facing the exhaust gas combustion chamber 7. Therefore, the oxidizing gas is transferred to the oxidizing gas transport paths 4A, 4
While reciprocating in B, oxygen ions are supplied to the fuel electrode membrane 10 through the air electrode body 3 and the solid electrolyte membrane 9 to
The exhaust gas that has reacted with the fuel and contributes to power generation and has a reduced oxygen concentration is exhausted from the exhaust port 6 to the exhaust gas combustion chamber 7. On the other hand, it is designed such that the fuel gas flows to the exhaust gas combustion chamber 7 with a slight pressure difference between the power generation chamber 8 and the exhaust gas combustion chamber 7, and the reverse flow from the exhaust gas combustion chamber 7 to the power generation chamber 8 is generated. prevent. The fuel gas flows in the power generation chamber 8 as shown by an arrow F and is used for power generation. A mixed gas of steam, carbon dioxide gas and unreacted fuel gas generated by the reaction is generated in the partition wall 2 and the SOFC.
It flows into the exhaust gas combustion chamber 7 through the gap with the element, where it comes into contact with the exhaust oxidizing gas and burns, preheating the fresh oxidizing gas passing through the inside of the oxidizing gas transport path 4A.

空気電極体3と固体電解質膜9との界面で酸化ガスが
酸素イオンを生じ、これらの酸素イオンは固体電解質膜
9を通って燃料電極膜10へと移動し、燃料ガスと反応す
ると共に電子を燃料電極膜10へと放出する。そして、正
極である空気電極と接続したインコーコネクター12と、
負極である燃料電極膜10との間に負荷を接続して電力を
取り出す。
Oxidizing gas produces oxygen ions at the interface between the air electrode body 3 and the solid electrolyte membrane 9, and these oxygen ions move through the solid electrolyte membrane 9 to the fuel electrode membrane 10 to react with the fuel gas and generate electrons. It is released to the fuel electrode film 10. Then, the Inco connector 12 connected to the air electrode which is the positive electrode,
A load is connected between the anode and the fuel electrode film 10 to extract electric power.

第4図に示すようにスタックを形成する場合には、気
密質インターコネクター12を下側のSOFC素子11の燃料電
極膜10へとニッケルフェルト14を介して電気的に接続さ
せ、SOFC素子11の直列接続を行う。また、第4図におい
て横方向に隣接したSOFC素子11の燃料電極膜10同士をニ
ッケルフェルト13を介して電気的に接続し、隣接するSO
FC素子11の並列接続を行う。なお、第4図の例では便宜
上縦二列、横二列のみを示したが、SOFC素子の個数は自
由に変更できる。
When a stack is formed as shown in FIG. 4, the airtight interconnector 12 is electrically connected to the fuel electrode film 10 of the lower SOFC element 11 via the nickel felt 14, and the SOFC element 11 Connect in series. Further, in FIG. 4, the fuel electrode films 10 of the SOFC elements 11 which are laterally adjacent to each other are electrically connected to each other through the nickel felt 13 so that the adjacent SO
The FC elements 11 are connected in parallel. In the example of FIG. 4, only two columns and two columns are shown for convenience, but the number of SOFC elements can be freely changed.

本実施例の固体電極質型燃料電池によれば以下の効果
を奏しうる。
According to the solid electrode type fuel cell of the present embodiment, the following effects can be obtained.

(1)脆弱なセラミックスからなるSOFC素子11を保持す
るのに際し、基部の一端のみを固定保持し、しかも重要
なことに、多孔質材23によってSOFC素子11の外周を保持
している。
(1) When holding the SOFC element 11 made of fragile ceramics, only one end of the base is fixedly held, and importantly, the outer periphery of the SOFC element 11 is held by the porous material 23.

従って、従来のSOFCのようにSOFC素子の四周をリジッ
ドに固定する方法とは異なって構造的に過大な歪応力が
発生し難いうえ、多孔質材23によって保持を行っている
ので、SOFC素子11の歪応力を一層緩和し、この素子の損
傷を効果的に防止できる。
Therefore, unlike the method of fixing the four circumferences of the SOFC element to the rigid like the conventional SOFC, structurally excessive strain stress is unlikely to occur, and since it is held by the porous material 23, the SOFC element 11 The strain stress can be further alleviated, and damage to this element can be effectively prevented.

(2)酸化ガスを排ガス燃焼室7よりも加圧状態で供給
することにより、排酸化ガスは排ガス排出口6から連続
的に排出され、また燃料ガスも隔壁2とSOFC素子11との
隙間を通して排ガス燃焼室7内へと排出される構造のた
め、SOFC素子四周をシールし、固定する必要がなく、SO
FC素子11の一端をシールすればよい。
(2) By supplying the oxidizing gas under pressure from the exhaust gas combustion chamber 7, the exhaust oxidizing gas is continuously discharged from the exhaust gas discharge port 6, and the fuel gas also passes through the gap between the partition wall 2 and the SOFC element 11. Since the structure is such that it is discharged into the exhaust gas combustion chamber 7, it is not necessary to seal and fix the four circumferences of the SOFC element.
It is sufficient to seal one end of the FC element 11.

そして、上記したように、気密質壁部25と傾斜突出部
22とによって多孔質材23の表面を実質的に被覆している
ので、酸化ガス供給室21と排ガス燃焼室7との間のシー
ルは充分に行われる。この点を更に詳しく述べると、仮
に若干の新鮮な酸化ガスが気密質壁部25とSOFC素子11と
の隙間から多孔質材23へと侵入しても、この酸化ガスは
多孔質材23内で一旦拡散し、多孔質材23内を乱雑に移動
する。従って、酸化ガスは多孔質材23内を移動した後、
さらに気密質隔壁24と傾斜突出部22との隙間を通り抜け
なければならず、この機会は非常に少ないのである。更
に、多孔質材23内での圧力損失により、酸化ガスの排ガ
ス燃焼室7への移動を一層減少させることができる。
Then, as described above, the airtight wall portion 25 and the inclined protruding portion
Since the surface of the porous material 23 is substantially covered with 22 and 22, the sealing between the oxidizing gas supply chamber 21 and the exhaust gas combustion chamber 7 is sufficiently performed. To describe this point in more detail, even if some fresh oxidizing gas enters the porous material 23 through the gap between the airtight wall portion 25 and the SOFC element 11, this oxidizing gas remains in the porous material 23. Once diffused, they move randomly in the porous material 23. Therefore, after the oxidizing gas moves in the porous material 23,
In addition, it is necessary to pass through the gap between the airtight partition wall 24 and the inclined protrusion portion 22, and this opportunity is very small. Further, due to the pressure loss in the porous material 23, the movement of the oxidizing gas to the exhaust gas combustion chamber 7 can be further reduced.

このように、SOFC素子11をリジッドにシールする必要
がないので、これに起因する歪応力の発生が少なく、構
造体としての信頼性が向上する。
As described above, since it is not necessary to rigidly seal the SOFC element 11, strain stress due to this is less likely to occur, and the reliability as a structure is improved.

(3)気密質壁部25の先端を傾斜部25aとしているの
で、傾斜部25aの先端がSOFC素子11の外周と接触して
も、この接触面積は極めて小さく、従ってこの接触によ
る押え応力を小さくすることができる。
(3) Since the tip of the airtight wall portion 25 is the inclined portion 25a, even if the tip of the inclined portion 25a comes into contact with the outer periphery of the SOFC element 11, this contact area is extremely small, and therefore the pressing stress due to this contact is small. can do.

(4)排ガス燃焼室7を酸化ガス供給室21と隣接して設
けているので、例えば酸化ガス供給室21から漏洩してく
る酸化ガスは新鮮な燃料ガスとは直接接触せず、すでに
発電室8を通過して燃料残存率が小さくなり、水蒸気の
多い廃燃料ガスと接触する。従って、SOFC素子11の端部
での燃焼による局部的な急激な発熱を防ぐことができ、
熱歪発生によるSOFC素子の亀裂の発生が防止できる。ま
た過剰な局部発熱を防止しているため、SOFC素子の局部
的劣化が防止でき、SOFC素子の耐久性が向上する。
(4) Since the exhaust gas combustion chamber 7 is provided adjacent to the oxidizing gas supply chamber 21, for example, the oxidizing gas leaking from the oxidizing gas supply chamber 21 does not come into direct contact with fresh fuel gas, and the power generation chamber is already in use. After passing through No. 8, the residual fuel ratio becomes small and it comes into contact with the waste fuel gas containing a large amount of water vapor. Therefore, it is possible to prevent local rapid heat generation due to combustion at the end of the SOFC element 11,
It is possible to prevent cracking of the SOFC element due to thermal strain. Moreover, since excessive local heat generation is prevented, local deterioration of the SOFC element can be prevented, and the durability of the SOFC element is improved.

(5)従来、燃料ガス導入部付近では、まだ燃料の含有
量が多いため、電気化学的反応が活発であり、温度が上
昇し、この温度上昇によってますます反応が活発とな
る。一方、他端では、燃料ガスの濃度がかなり減少して
いるため、反応が不活発で温度が低く、この温度の低さ
からますます反応が不活発となる。しかも、反応した燃
料ガス中にはかなり、CO2・水蒸気等が含まれており、
これが電極面に付着して反応を阻害するため、ますます
温度が低下する。この傾向は、平板状SOFC素子の寸法が
大きくなるにつれて一層強くあらわれる。
(5) Conventionally, since the fuel content is still large in the vicinity of the fuel gas introduction part, the electrochemical reaction is active and the temperature rises, and the temperature rise causes the reaction to become more active. On the other hand, at the other end, since the concentration of the fuel gas is considerably reduced, the reaction is inactive and the temperature is low, and the low temperature makes the reaction even more inactive. Moreover, the reacted fuel gas contains a considerable amount of CO 2 , water vapor, etc.,
Since this adheres to the electrode surface and hinders the reaction, the temperature further decreases. This tendency becomes more pronounced as the size of the planar SOFC device increases.

これに対し、本実施例では、酸化ガス供給口16と閉塞
部5とを交互に設け、一旦酸化ガス供給口16より供給さ
れた酸化ガスをSOFC素子11の長手方向で往復させている
ので、電気化学反応の活発な部分が一部のみに集中せ
ず、比較的にSOFC素子全体に亘って分散する。従って、
SOFC素子の全体の温度勾配を小さくでき、SOFC素子およ
びSOFC素子並列接続スタック全体に亘って熱歪応力の低
減、発電の均一化と発電効果の向上を達成できる。
On the other hand, in the present embodiment, the oxidizing gas supply ports 16 and the closed portions 5 are alternately provided, and the oxidizing gas once supplied from the oxidizing gas supply port 16 is reciprocated in the longitudinal direction of the SOFC element 11. The active part of the electrochemical reaction is not concentrated in only a part, but is relatively dispersed over the entire SOFC element. Therefore,
The temperature gradient of the entire SOFC element can be reduced, and thermal strain stress can be reduced, power generation can be made uniform, and power generation effect can be improved throughout the SOFC element and the SOFC element parallel connection stack.

(6)各酸化ガス輸送路4bにおいて、隣接する排酸化ガ
ス排出口6を互いにSOFC素子1の横手方向の同一平面上
に設けず、SOFC素子11の横手方向平面に対して斜めに互
い違いに設けてある。従って、構造強度を低下させる排
出口6が横手方向に同一平面上に整列しないので、構造
力学上有利であり、SOFC素子11の曲げ応力に対する強度
低下を防止できる。
(6) In each oxidizing gas transport path 4b, adjacent exhaust oxidizing gas outlets 6 are not provided on the same plane in the lateral direction of the SOFC element 1, but are provided obliquely and alternately with respect to the horizontal plane of the SOFC element 11. There is. Therefore, the outlets 6 that reduce the structural strength are not aligned in the horizontal direction on the same plane, which is advantageous in structural mechanics and can prevent the strength of the SOFC element 11 from being reduced due to bending stress.

(7)燃料電極膜10をSOFC素子11の主面側だけでなく、
インターコネクター12と接触しない範囲内で側面の方に
も拡げて設けてあるので、更に電極面積を大きくでき
る。
(7) Not only the fuel electrode film 10 on the main surface side of the SOFC element 11,
The electrode area can be further increased because it is provided so as to expand to the side surface within the range where it does not contact the interconnector 12.

(8)発電室8および排ガス燃焼室7内において、空気
電極体3の外周面を、気密質インターコネクター12と気
密質固体電解質9とによって覆っているので、燃焼によ
って生成した還元ガスおよび水蒸気が空気電極体3に接
触してこれを劣化させるのを効果的に防止できる。
(8) In the power generation chamber 8 and the exhaust gas combustion chamber 7, since the outer peripheral surface of the air electrode body 3 is covered with the airtight interconnector 12 and the airtight solid electrolyte 9, the reducing gas and steam generated by the combustion are generated. It is possible to effectively prevent the air electrode body 3 from coming into contact with it and deteriorating it.

(9)SOFC素子をボックス型のマルチ−チャンネル構造
としているため、素子自体の構造強度を向上させうる。
(9) Since the SOFC element has a box-type multi-channel structure, the structural strength of the element itself can be improved.

上述の例では、燃料電極膜10を各素子11の主面(図面に
おいて上側面)および側面を覆うように設けたが、こう
した燃料電極膜を各SOFC素子11の主面(図面において上
側面)のみに設け、素子の側面へは延長しないようにす
ることもできる。そして、各SOFC素子間の電気的接続に
際しては、インターコネクターの下面と燃料電極膜の上
面とにニッケルフェルトを当接させ、第4図に示したも
のと同様に複数のSOFC素子を縦方向に配列してスタック
を形成し、各SOFC素子の直列接続を行う。そして、複数
のスタックで構成されたバンドと全体の電位の分布を均
一化する目的で、横方向に隣接するSOFC素子を一体物の
上記ニッケルフェルトで接続し、各スタック間を並列接
続することが望ましいが、同じく横方向に隣接するSOFC
素子の燃料電極膜同士を直接ニッケルフェルトで接続す
ることは行わず、例えば、SOFC素子を直接接続したスタ
ックを複数個構成し、各スタックの上端の燃料電極膜を
共通の金属電極で接続して集電し、各スタックの下端の
インターコネクターも共通の金属電極で接続して集電し
てもよい。
In the above example, the fuel electrode film 10 is provided so as to cover the main surface (upper side surface in the drawing) and the side surface of each element 11, but such a fuel electrode film is used for the main surface (upper side surface in the drawing) of each SOFC element 11. It is also possible to provide only on the side and not to extend to the side surface of the element. Then, at the time of electrical connection between the SOFC elements, nickel felt was brought into contact with the lower surface of the interconnector and the upper surface of the fuel electrode film, and a plurality of SOFC elements were vertically arranged in the same manner as shown in FIG. The SOFC elements are connected in series by arranging them to form a stack. Then, in order to equalize the distribution of the entire potential and the band composed of a plurality of stacks, SOFC elements that are laterally adjacent to each other are connected by the above-mentioned nickel felt of an integral body, and the stacks may be connected in parallel. Desirable but also laterally adjacent SOFCs
Do not connect the fuel electrode films of the elements directly with nickel felt.For example, configure multiple stacks with SOFC elements directly connected, and connect the fuel electrode films at the top of each stack with a common metal electrode. The current may be collected, and the interconnector at the lower end of each stack may be connected with a common metal electrode to collect the current.

このように、SOFC素子の側面に燃料電極膜を設けない
ようにすると、この側面には絶縁性の固体電解質膜のみ
が露出することとなり、従って例えば燃料電極膜とイン
ターコネクターとが電気的に短絡する危険がなく、実用
性が一層高い。
In this way, if the fuel electrode membrane is not provided on the side surface of the SOFC element, only the insulating solid electrolyte membrane is exposed on this side surface, and therefore, for example, the fuel electrode membrane and the interconnector are electrically short-circuited. There is no danger of it becoming more practical.

第5図は、複数のSOFC素子11を連結したスタックを示
す。第1図と同様の一部断面図である。本実施例のSOFC
においては、各SOFC素子11の構成等は第1図のSOFCと同
様なので説明を省略する。
FIG. 5 shows a stack in which a plurality of SOFC elements 11 are connected. FIG. 2 is a partial sectional view similar to FIG. 1. SOFC of this example
In the above, the configuration of each SOFC element 11 is the same as that of the SOFC in FIG.

本実施例のSOFCにおいても、酸化ガス室21と排ガス燃
焼室7との間のシール、隔壁構造として、独特の構成を
採用した。
Also in the SOFC of this embodiment, a unique structure is adopted as the seal and partition structure between the oxidizing gas chamber 21 and the exhaust gas combustion chamber 7.

即ち、第1図に示した気密質隔壁24は採用せず、その
代わりに多孔質材34を、隣接するSOFC素子11の隙間に充
填し、各SOFC素子11の端部外周を多孔質材34で覆い、SO
FC素子11を保持した。これにより、各SOFC素子11は、第
5図に示すように縦方向に積み重ねられた状態で多孔質
材11により柔軟に支持される。
That is, the airtight partition wall 24 shown in FIG. 1 is not adopted, but instead, the porous material 34 is filled in the gap between the adjacent SOFC elements 11, and the outer periphery of the end portion of each SOFC element 11 is filled with the porous material 34. Cover with SO
The FC element 11 was held. As a result, the SOFC elements 11 are flexibly supported by the porous material 11 in a vertically stacked state as shown in FIG.

そして、酸化ガス室21から排ガス燃焼室7への酸化ガ
スの漏れを防止するため、気密室材でシールを行う。即
ち、各SOFC素子11にそれぞれ気密質の傾斜突出部32また
は33を設け、上下に隣り合ったSOFC素子11の傾斜突出部
32と33とを接触させ、あるいは僅かな隙間を置いて離
し、多孔質材34の表面が排ガス燃焼室側へと実質的に露
出しないように覆う。また、多孔質材34の酸化ガス室側
表面には、断面三角形の気密質押え部材35を配設し、気
密質押え部材35のエツジをSOFC素子11の外周面と接触さ
せるか、あるいは僅かな隙間を置いて固定し、多孔質材
34の酸化ガス室側表面が実質的に露出しないように気密
質押え部材35で覆う。この気密質押え部材35は、例えば
耐火セメント、モルタル等で形成することが好ましく、
またSOFC素子11の末端部外周に小突起を設け、この小突
起で気密質押え部材35がスタックの外へと向かって位置
ズレしないように固定してもよい。
Then, in order to prevent the leakage of the oxidizing gas from the oxidizing gas chamber 21 to the exhaust gas combustion chamber 7, the airtight chamber material is used for sealing. That is, each of the SOFC elements 11 is provided with an airtight inclined protrusion 32 or 33, and the inclined protrusions of the SOFC elements 11 vertically adjacent to each other are provided.
32 and 33 are brought into contact with each other or separated with a slight gap therebetween so that the surface of the porous material 34 is covered so as not to be substantially exposed to the exhaust gas combustion chamber side. Further, on the surface of the porous material 34 on the side of the oxidizing gas chamber, an airtight holding member 35 having a triangular cross section is provided, and an edge of the airtight holding member 35 is brought into contact with the outer peripheral surface of the SOFC element 11, or a slight amount. Porous material fixed with a gap
The surface of the oxidizing gas chamber side of 34 is covered with an airtight holding member 35 so as not to be substantially exposed. The airtight holding member 35 is preferably formed of, for example, refractory cement, mortar, or the like,
Alternatively, a small protrusion may be provided on the outer periphery of the end portion of the SOFC element 11, and the small protrusion may be used to fix the airtightness holding member 35 so as not to shift its position toward the outside of the stack.

本実施例のSOFCにおいても、第1図のSOFCと同様の効
果を奏しうる。しかも、気密質隔壁24(第1図)を使用
せず、多孔質材34のみでSOFC素子11を保持していく構造
のため、構造が一層簡略であり、SOFC素子11の空間的集
積度を高めていくのも一層容易である。
The SOFC of this embodiment can also achieve the same effects as the SOFC of FIG. Moreover, since the structure in which the SOFC element 11 is held only by the porous material 34 without using the airtight partition wall 24 (FIG. 1), the structure is simpler and the spatial integration degree of the SOFC element 11 is improved. It is even easier to raise it.

気密質押え部材35を配設する代わりに、SOFC素子11の
外周に傾斜突出部を設け、これにより多孔質材34の表面
を覆ってもよく、または、耐火セメント、モルタル等を
薄く塗布して多孔質材34の表面を覆ってもよい。また、
水ガラス、コロイダルフィルターまたは鉄等の金属箔
を、気密質押え部材の代わりに設けてもよい。
Instead of disposing the airtight holding member 35, an inclined protrusion may be provided on the outer circumference of the SOFC element 11 to cover the surface of the porous material 34, or fire-resistant cement, mortar or the like may be thinly applied. The surface of the porous material 34 may be covered. Also,
Water glass, colloidal filter, or metal foil such as iron may be provided instead of the airtight holding member.

第6図は、更に他のSOFCを第1図と同様の断面で切っ
た断面図である。第1図のSOFCと同一機能部材には同一
符号を付し、その説明は省略する。
FIG. 6 is a cross-sectional view of another SOFC taken along the same cross-section as in FIG. The same functional members as those of the SOFC of FIG. 1 are designated by the same reference numerals, and the description thereof is omitted.

本実施例のSOFCにおいては、気密質材によって多孔質
材の表面を覆うことはせず、多孔質材43として、実質的
にガス不透過性の多孔質材を用いている。こうした多孔
質材は、具体的には、気孔のほとんどが閉気孔であって
開気孔が全く存在しないかほとんど存在せず、開気孔が
互いに連通していないために実質的にガス透過性がない
ものである。こうした多孔質材としては、例えば、アル
ナ、シリカ等のセラミックス中でガラスビーズ等を発砲
させて閉気孔を形成したものが好ましい。
In the SOFC of this example, the surface of the porous material is not covered with the airtight material, and a substantially gas-impermeable porous material is used as the porous material 43. Specifically, such a porous material has substantially no gas permeability because most of the pores are closed pores and there are no or almost no open pores, and the open pores are not in communication with each other. It is a thing. As such a porous material, for example, a material in which glass beads or the like are fired in ceramics such as Aruna or silica to form closed pores is preferable.

本実施例のSOFCによれば、実質的にガス不透過性の多
孔質材43によってSOFC素子11をリフトに保持し、しかも
同時に酸化ガス供給室21と排ガス燃焼室7との間のシー
ルを十分に行うことができるため、第1図のSOFCと同様
の効果を奏することができる。しかも、保持構造がより
簡略であるので、製造の観点からみて一層好ましい。
According to the SOFC of the present embodiment, the SOFC element 11 is held in the lift by the substantially gas impermeable porous material 43, and at the same time, the seal between the oxidizing gas supply chamber 21 and the exhaust gas combustion chamber 7 is sufficient. Therefore, the same effect as the SOFC in FIG. 1 can be obtained. Moreover, since the holding structure is simpler, it is more preferable from the viewpoint of manufacturing.

以上、特殊な構成の平板状SOFC素子に対して本発明を
適用した実施例について述べてきたが、例えば両端を開
放した円筒状SOFCの保持構造、一端を封止した袋管状の
円筒状SOFCの保持構造、一般的な平板状SOFCの保持構造
などに対して本発明を適用することができる。
As described above, although the embodiment in which the present invention is applied to the flat-plate SOFC element having the special structure has been described, for example, the holding structure of the cylindrical SOFC with both ends opened, the bag-shaped cylindrical SOFC with one end sealed The present invention can be applied to a holding structure, a general flat SOFC holding structure, and the like.

上述の実施例は、例えば次のように種々変更できる。 The above-described embodiment can be variously modified as follows, for example.

多孔質材の形状、寸法、構造、多孔質材の表面を被覆
する気密質材の形状、構造等は種々変更できる。
The shape, size and structure of the porous material and the shape and structure of the airtight material covering the surface of the porous material can be variously changed.

第1図〜第4図に示したように、SOFC素子11の側面へ
と燃料電極膜10を延設するに代わり、インターコネクタ
ー12をSOFC素子の側面へと、燃料電極膜10と接触しない
範囲内で延設してもよい。このとき、燃料電極膜10はイ
ンターコネクター12との短絡を避けるために必要に応じ
て後退させてよい。また、気密質インターコネクター12
を気密質固体電解質膜9上に設けてよく、又は固体電解
質膜9を後退させて両者が重ならないようにしてもよい
が、気密質固体電解質膜9と気密質インターコネクター
12との間から空気電極体3の表面が露出しないようにす
ることが好ましい。
As shown in FIG. 1 to FIG. 4, instead of extending the fuel electrode film 10 to the side surface of the SOFC element 11, the interconnector 12 is provided to the side surface of the SOFC element in a range not in contact with the fuel electrode film 10. You may extend inside. At this time, the fuel electrode membrane 10 may be retracted as necessary to avoid a short circuit with the interconnector 12. Also, the airtight interconnector 12
May be provided on the airtight solid electrolyte membrane 9, or the solid electrolyte membrane 9 may be set back so that they do not overlap, but the airtight solid electrolyte membrane 9 and the airtight interconnector
It is preferable that the surface of the air electrode body 3 is not exposed from between 12 and 12.

酸化ガス輸送路の数、断面形状等は種々変更してよい
が、第2図に示すように、酸化ガス輸送路4A,4Bは熱勾
配の観点から交互に設けるのが好ましい。
Although the number and sectional shape of the oxidizing gas transport paths may be variously changed, it is preferable that the oxidizing gas transport paths 4A and 4B are alternately provided from the viewpoint of thermal gradient as shown in FIG.

閉塞部5の形成に際しては、例えば有機物で型を作っ
て閉塞部5の形に空気電極材料を流し込み焼成して有機
物を消失させる方法、閉塞部5を個別に成形、焼成して
酸化ガス供給口へと接着、固着、貼着、嵌合する方法な
ど、種々の方法を採用できる。
When forming the blocking portion 5, for example, a method is used in which a mold is made of an organic material, and an air electrode material is poured into the shape of the blocking portion 5 to burn and the organic material disappears. The blocking portion 5 is individually molded and fired to supply an oxidizing gas supply port. Various methods such as a method of adhering, fixing, adhering, fitting, etc. can be adopted.

上述の例では空気電極体に酸化ガス輸送路を設け、こ
の上に固体電解質膜、燃料電極膜を順次形成したが、逆
に、平板状燃料電極体に燃料ガス輸送路を設け、この上
に固体電解質膜、空気電極膜を順次形成し、発電室内に
酸化ガスを流入させることもできる。
In the above example, the air electrode body was provided with the oxidizing gas transport passage, and the solid electrolyte membrane and the fuel electrode membrane were sequentially formed on this, but conversely, the flat fuel electrode body was provided with the fuel gas transport passage, and on top of this. It is also possible to sequentially form the solid electrolyte membrane and the air electrode membrane, and to allow the oxidizing gas to flow into the power generation chamber.

隔壁2を通気性の多孔体とすることにより発電室側の
気体を排ガス燃焼室側に流入させることもできる。
When the partition wall 2 is made of an air-permeable porous material, the gas on the power generation chamber side can be made to flow into the exhaust gas combustion chamber side.

多孔質平板状導電性電極支持体の上に多孔質空気電極
膜を形成し、更にその上に固体電解質を形成させ、上述
したものと同一の構造としてもよい。第1図では各SOFC
素子11を水平に支持したが、この発電装置全体を垂直に
してもよく、また所定角度傾けてもよい。
A porous air electrode film may be formed on the porous flat plate-shaped conductive electrode support, and a solid electrolyte may be further formed on the porous air electrode film to have the same structure as that described above. In Figure 1, each SOFC
Although the element 11 is supported horizontally, the entire power generation device may be vertical or may be tilted at a predetermined angle.

平板状SOFC素子の平面形状も正方形、長方形に限ら
ず、三角形、六角形、円形等であってもよい。
The planar shape of the planar SOFC element is not limited to a square or a rectangle, but may be a triangle, a hexagon, a circle, or the like.

又、板状SOFC素子の板状形態としては、平面以外に波
形、円錐、角錐、球面状等で勿論良い。
Further, the plate-like form of the plate-like SOFC element may be a corrugated shape, a conical shape, a pyramid shape, a spherical shape or the like other than the flat shape.

(発明の効果) 本発明に係る固体電解質型燃料電池によれば、ガス供
給室と排ガス燃焼室との間で固体電解質型燃料電池素子
の外周が多孔質材によって保持されているので、固体電
解質型燃料電池素子の四周をリジッドに固定する方法と
は異なり、構造的に過大な歪応力が発生し難く、歪応力
を緩和でき、固体電解質型燃料電池素子の損傷を効果的
に防止できる。
(Effect of the Invention) According to the solid oxide fuel cell of the present invention, since the outer periphery of the solid oxide fuel cell element is held by the porous material between the gas supply chamber and the exhaust gas combustion chamber, the solid electrolyte Unlike the method of rigidly fixing the four circumferences of the fuel cell element, the strain stress that is structurally excessive is unlikely to occur, the strain stress can be relaxed, and damage to the solid oxide fuel cell element can be effectively prevented.

しかも、多孔質材の表面を気密質材によって被覆し、
多孔質材の表面がガス供給室と排ガス燃焼室とに対して
実質的に露出しないようにしているので、ガス供給室か
ら排ガス燃焼室へと新鮮なガスが非常に漏れ難く、充分
にシールを行うことができる。したがって、固体電解質
型燃料電池素子をリジッドにシールする必要がないの
で、これに起因する歪応力の発生が少なく、構造体とし
ての信頼性が向上する。
Moreover, the surface of the porous material is covered with the airtight material,
Since the surface of the porous material is not substantially exposed to the gas supply chamber and the exhaust gas combustion chamber, it is very difficult for fresh gas to leak from the gas supply chamber to the exhaust gas combustion chamber, and a sufficient seal is provided. It can be carried out. Therefore, since it is not necessary to rigidly seal the solid oxide fuel cell device, strain stress caused by this is less likely to occur, and the reliability of the structure is improved.

また、本発明に係る固体電解質型燃料電池によれば、
ガス供給室と排ガス燃焼室との間で固体電解質型燃料電
池素子の外周が多孔質材によって保持されているので、
固体電解質型燃料電池素子の四周をリジッドに固定する
方法とは異なり、構造的に過大な歪応力が発生し難く、
歪応力を緩和でき、固体電解質型燃料電池素子の損傷を
効果的に防止できる。
Further, according to the solid oxide fuel cell of the present invention,
Since the outer periphery of the solid oxide fuel cell device is held by the porous material between the gas supply chamber and the exhaust gas combustion chamber,
Unlike the method of fixing the four circumferences of the solid oxide fuel cell device to the rigid, it is difficult for structurally excessive strain stress to occur,
The strain stress can be relaxed, and damage to the solid oxide fuel cell device can be effectively prevented.

しかも、多孔質材が実質的にガス不透過性であるの
で、ガス供給室から排ガス燃焼室へと新鮮なガスが非常
に漏れ難く、充分にシールを行うことができる。したが
って、固体電解質型燃料電池素子をリジッドにシールす
る必要がないので、これに起因する歪応力の発生が少な
く、構造体としての信頼性が向上する。
Moreover, since the porous material is substantially gas impermeable, it is very difficult for fresh gas to leak from the gas supply chamber to the exhaust gas combustion chamber, and sufficient sealing can be performed. Therefore, since it is not necessary to rigidly seal the solid oxide fuel cell device, strain stress caused by this is less likely to occur, and the reliability of the structure is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図はSOFC素子の保持状態を示す断面図(第2図のA
−A断面)、 第2図は第1図のSOFCを横方向に切って見た断面図、 第3図は第2図のB−B線断面図、 第4図はSOFC素子を直列、並列に接続した状態を示す断
面図、 第5図はSOFC素子を他の保持構造によって保持した状態
を示す断面図(第1図と同じ方向に切ったもの)、 第6図は他のSOFC素子の保持状態を示す断面図である。 2……(多孔質)隔壁 3……平板状空気電極体 4A……酸化ガス輸送路(往路) 4B……酸化ガス輸送路(復路) 5……閉塞部 6……排酸化ガス排出口 7……排ガス燃焼室 8……発電室 9……固体電解質膜 10……燃料電極膜 11……SOFC素子 12……気密質インターコネクター 13,14……ニッケルフェルト 21……酸化ガス室 22,32,33……気密質の傾斜突出部 23,34……多孔質材 24……気密質隔壁 24a……貫通孔 25……気密質壁部 35……気密質押え部材 43……実質的にガス不透過性の多孔質材 E……酸化ガスの流れ F……燃料ガスの流れ
FIG. 1 is a sectional view showing the holding state of the SOFC element (A in FIG. 2).
-A cross-section), Fig. 2 is a cross-sectional view of the SOFC of Fig. 1 cut laterally, Fig. 3 is a cross-sectional view taken along the line BB of Fig. 2, and Fig. 4 is a series of SOFC elements connected in series. Fig. 5 is a sectional view showing a state in which the SOFC element is held by another holding structure (cut in the same direction as in Fig. 1), and Fig. 6 is a sectional view showing another SOFC element. It is sectional drawing which shows a holding state. 2 ... (Porous) partition wall 3 ... Flat plate air electrode assembly 4A ... Oxidizing gas transport path (outgoing path) 4B ... Oxidizing gas transport path (return path) 5 ... Closure part 6 ... Exhaust oxidizing gas exhaust port 7 ...... Exhaust gas combustion chamber 8 …… Power generation chamber 9 …… Solid electrolyte membrane 10 …… Fuel electrode membrane 11 …… SOFC element 12 …… Airtight interconnector 13,14 …… Nickel felt 21 …… Oxidation gas chamber 22,32 , 33 …… Airtight slanted protrusion 23, 34 …… Porous material 24 …… Airtight partition 24a …… Through hole 25 …… Airtight wall 35 …… Airtight holding member 43 …… Substantially gas Impermeable porous material E ... flow of oxidizing gas F ... flow of fuel gas

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】固体電解質と、この固体電解質の一方の側
に設けられた空気電極と、他方の側に設けられた燃料電
極とを少なくとも有する固体電解質型燃料電池素子と; この固体電解質型燃料電池素子の内部に設けられたガス
流通路へとガスを供給するためのガス供給室と; 前記ガス流通路から排出された排ガスを燃焼反応させる
ための排ガス燃焼室とを有する固体電解質型燃料電池に
おいて、 前記ガス供給室と前記排ガス燃焼室との間で前記固体電
解質型燃料電池素子の外周が多孔質材によって保持さ
れ、この多孔質材の表面が前記ガス供給室と前記排ガス
燃焼室とに対して実質的に露出しないように、前記表面
が気密質材によって被覆されていることを特徴とする固
体電解質型燃料電池。
1. A solid electrolyte fuel cell element comprising at least a solid electrolyte, an air electrode provided on one side of the solid electrolyte, and a fuel electrode provided on the other side; Solid electrolyte fuel cell having a gas supply chamber for supplying gas to a gas flow passage provided inside the cell element; and an exhaust gas combustion chamber for causing a combustion reaction of exhaust gas discharged from the gas flow passage In, the outer periphery of the solid oxide fuel cell element is held by a porous material between the gas supply chamber and the exhaust gas combustion chamber, the surface of the porous material in the gas supply chamber and the exhaust gas combustion chamber A solid oxide fuel cell, wherein the surface is covered with an airtight material so as not to be substantially exposed.
【請求項2】固体電解質と、この固体電解質の一方の側
に設けられた空気電極と、他方の側に設けられた燃料電
極とを少なくとも有する固体電解質型燃料電池素子と; この固体電解質型燃料電池素子の内部に設けられたガス
流通路へとガスを供給するためのガス供給室と; 前記ガス流通路から排出された排ガスを燃焼反応させる
ための排ガス燃焼室とを有する固体電解質型燃料電池に
おいて、 前記ガス供給室と前記排ガス燃焼室との間で前記固体電
解質型燃料電池素子の外周が、実質的にガス不透過性の
多孔質材によって保持されていることを特徴とする固体
電解質型燃料電池。
2. A solid electrolyte fuel cell element comprising at least a solid electrolyte, an air electrode provided on one side of the solid electrolyte, and a fuel electrode provided on the other side; Solid electrolyte fuel cell having a gas supply chamber for supplying gas to a gas flow passage provided inside the cell element; and an exhaust gas combustion chamber for causing a combustion reaction of exhaust gas discharged from the gas flow passage In the above, the outer periphery of the solid oxide fuel cell element between the gas supply chamber and the exhaust gas combustion chamber is held by a substantially gas impermeable porous material. Fuel cell.
JP2075606A 1990-02-15 1990-03-27 Solid oxide fuel cell Expired - Lifetime JP2531824B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2075606A JP2531824B2 (en) 1990-03-27 1990-03-27 Solid oxide fuel cell
US07/649,988 US5185219A (en) 1990-02-15 1991-02-04 Solid oxide fuel cells
CA002036259A CA2036259C (en) 1990-02-15 1991-02-13 Solid oxide fuel cells
EP91301211A EP0442743B1 (en) 1990-02-15 1991-02-14 Solid oxide fuel cells
DE69121601T DE69121601T2 (en) 1990-02-15 1991-02-14 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2075606A JP2531824B2 (en) 1990-03-27 1990-03-27 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH03276564A JPH03276564A (en) 1991-12-06
JP2531824B2 true JP2531824B2 (en) 1996-09-04

Family

ID=13581038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2075606A Expired - Lifetime JP2531824B2 (en) 1990-02-15 1990-03-27 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2531824B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2783926B2 (en) * 1991-12-12 1998-08-06 日本碍子株式会社 Single cell of solid oxide fuel cell and power generator using the same
JPH0737595A (en) * 1993-07-21 1995-02-07 Fuji Electric Co Ltd Solid electrolyte type fuel cell
JP3447837B2 (en) * 1995-03-20 2003-09-16 日本碍子株式会社 Power generator
DK174654B1 (en) * 2000-02-02 2003-08-11 Topsoe Haldor As Solid oxide fuel cell and its applications
JP4574956B2 (en) * 2003-05-19 2010-11-04 本田技研工業株式会社 Fuel cell
US8097384B2 (en) * 2008-07-08 2012-01-17 Siemens Energy, Inc. Solid oxide fuel cell with transitioned cross-section for improved anode gas management at the open end
JP5390148B2 (en) * 2008-09-16 2014-01-15 一般財団法人ファインセラミックスセンター Gas seal structure having gas seal portion excellent in thermal cycle durability and method for producing the same
JP5952139B2 (en) * 2012-08-30 2016-07-13 京セラ株式会社 Cell stack device, fuel cell module and fuel cell device

Also Published As

Publication number Publication date
JPH03276564A (en) 1991-12-06

Similar Documents

Publication Publication Date Title
CA2036259C (en) Solid oxide fuel cells
US8703352B2 (en) Solid oxide fuel cell having a closed recessed structure
JP2528987B2 (en) Solid oxide fuel cell
JPH03241670A (en) Solid electrolyte type fuel cell
JP5319460B2 (en) Cell stack device, fuel cell module and fuel cell device
JP2531824B2 (en) Solid oxide fuel cell
JP4883733B1 (en) Fuel cell structure
JPH10189017A (en) Gas seal structure of honeycomb structure solid electrolyte fuel cell
JP2003163016A (en) Electrochemical equipment and conductive connector therefor
JPH04298963A (en) Solid electrolyte type fuel cell and manufacture thereof
JP2000164239A (en) Electrochemical cell unit and electrochemical cell
JP2528986B2 (en) Solid oxide fuel cell
JPH0589890A (en) Cell of solid electrolyte type fuel battery and power generating device using it
KR20140100041A (en) Flat-tubular solid oxide cell and sealing apparatus for the same
JPH1140181A (en) Start-stopage of solid electrolyte type fuel cell, and high temperature holding method during operation or stand-by state
JP2783926B2 (en) Single cell of solid oxide fuel cell and power generator using the same
JPH04262372A (en) Fuel cell device with solid electrolyte
JP2980921B2 (en) Flat solid electrolyte fuel cell
JP4282109B2 (en) Stack structure of solid oxide fuel cell
JP3958422B2 (en) Solid oxide fuel cell
KR100665391B1 (en) Advanced Planar Type of Solid Oxide Fuel Cells
JPH06196196A (en) Solid electrolyte type fuel cell
JP2013257973A (en) Solid oxide fuel cell stack
JP2654502B2 (en) Solid electrolyte fuel cell with mechanical seal structure
JPH04272662A (en) Solid electrolyte fuel cell device