JP3389316B2 - Absorbable biomaterial and method for producing the same - Google Patents

Absorbable biomaterial and method for producing the same

Info

Publication number
JP3389316B2
JP3389316B2 JP09017694A JP9017694A JP3389316B2 JP 3389316 B2 JP3389316 B2 JP 3389316B2 JP 09017694 A JP09017694 A JP 09017694A JP 9017694 A JP9017694 A JP 9017694A JP 3389316 B2 JP3389316 B2 JP 3389316B2
Authority
JP
Japan
Prior art keywords
biomaterial
bone
chitin
film
average pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09017694A
Other languages
Japanese (ja)
Other versions
JPH07116241A (en
Inventor
雄祐 吉原
洋一 西尾
経裕 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP09017694A priority Critical patent/JP3389316B2/en
Publication of JPH07116241A publication Critical patent/JPH07116241A/en
Application granted granted Critical
Publication of JP3389316B2 publication Critical patent/JP3389316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コラーゲンやキチンな
ど天然組織体から得られる材料からなり、骨欠損、損傷
及び抜歯等の外科的治療、整形外科手術に用いられる生
体材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biomaterial composed of a material obtained from a natural tissue such as collagen or chitin and used for surgical treatment such as bone defect, damage and tooth extraction, or orthopedic surgery.

【0002】[0002]

【従来の技術】従来より、コラーゲンやキチンなど生物
組織から得られる材料からなる生体材料を、骨欠損、損
傷箇所及び抜歯窩内等にブロック状で充填し、その部位
を補綴して形態を保つために用いたり、又は膜状の被覆
材としての創傷を封鎖し、感染等を防止する目的で用い
られてきた。
2. Description of the Related Art Conventionally, a biomaterial composed of a material obtained from a biological tissue such as collagen or chitin is filled in a block form in a bone defect, a damaged portion, an extraction tooth socket or the like, and the portion is prosthesized to maintain its shape. It has been used for the purpose of preventing the infection or the like by sealing the wound as a film-shaped covering material.

【0003】そうした生体材料のうち、ブロック状の充
填材として、例えば、特開昭62ー39506号の発明
の多孔質スポンジは、薬剤によりキチンを架橋してな
り、生体内で非吸収性であり、保形性に優れている。
Among such biomaterials, as a block-shaped filler, for example, the porous sponge of the invention of JP-A-62-39506 is a non-absorbable substance in vivo, which is formed by crosslinking chitin with a drug. Excellent shape retention.

【0004】また、特開平3ー23864号の発明の複
合材料は、ブロック状の充填材として用いられ、この複
合材料は、コラーゲンスポンジとポリ乳酸からなり、生
体内で吸収性である。
Further, the composite material of the invention of JP-A-3-23864 is used as a block-shaped filler, and this composite material is composed of collagen sponge and polylactic acid and is absorbable in vivo.

【0005】また、上記創傷被覆材として、例えば、特
開平2ー268766号の発明の積層材料は、キトサン
を薬剤で架橋してなる多孔質と非孔質のニ層膜状の創傷
被覆材であって、感染を防止するため外側が無孔質膜で
あり、他方創傷と密着するため内側が多孔質膜となって
いる。
As the above-mentioned wound dressing material, for example, the laminated material of the invention of JP-A-2-268766 is a wound dressing material in the form of a bilayer membrane of porous and non-porous material obtained by crosslinking chitosan with a drug. In order to prevent infection, the outer side is a non-porous membrane, while the inner side is a porous membrane to adhere to the wound.

【0006】[0006]

【従来技術の課題】しかしながら、上記従来技術には以
下のような課題があった。すなわち、上記多孔質スポン
ジは、欠損部に充填後、軟組織を縫合して患部封鎖する
為、欠損部へ軟組織が侵入することがあり、骨の生成が
遅れるという不具合、及び非吸収性であるため骨自身に
完全に置換されないので、感染の危険性および材料自体
が離脱してしまう危険性があり;上記複合材料は、アテ
ロコラーゲンに若干の抗原性があり、またポリ乳酸の分
解、吸収時に生体組織の炎症反応を引き起こすという不
具合があり;上記積層材料は、無孔質膜が細菌の侵入を
防ぐ一方、栄養分などを含む組織液を内外に流通させな
いので、生体内部(口腔内や骨欠損部など)へ適用でき
ないという不具合、その製法において溶解、凝固、中和
等の工程が複雑であるという不具合、及び薬剤処理を行
うので処理薬剤により生体へ悪影響を与える可能性があ
るという恐れがあった。
However, the above-mentioned prior art has the following problems. That is, since the porous sponge is filled in the defect portion and then sutures the soft tissue to seal the affected area, the soft tissue may invade the defect portion, delays bone formation, and is non-absorbable. Since it is not completely replaced by bone itself, there is a risk of infection and the risk of detachment of the material itself; the above-mentioned composite material has some antigenicity to atelocollagen, and also polylactic acid is decomposed and absorbed in living tissue. The above-mentioned laminated material prevents the invasion of bacteria by the non-porous membrane, but does not allow tissue fluid containing nutrients to flow in and out, so that the inside of the living body (in the oral cavity, bone defect part, etc.) Can not be applied to, the problem that the process of dissolution, coagulation, neutralization, etc. is complicated in the manufacturing method, and the chemical treatment causes adverse effects on the living body There is a possibility that there is a potential.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、熱架橋したキチン又はカルボキシルメチ
ルキチンからなり、厚さ20〜100μm、平均孔径2
〜20μmで多孔質の薄膜の一方面に、厚さ300〜1
000μm、平均孔径50〜500μmで多孔質の厚膜
を対面固着してなる吸収性生体材料を提供する。
In order to solve the above problems, the present invention comprises a thermally crosslinked chitin or carboxymethyl chitin, having a thickness of 20 to 100 μm and an average pore diameter of 2
˜20 μm, one side of the porous thin film has a thickness of 300 to 1
Provided is an absorbable biomaterial, which comprises a porous thick film face-to-face fixed with a pore size of 000 μm and an average pore diameter of 50 to 500 μm.

【0008】また、このような材料を得るため、キチン
又はカルボキシルメチルキチンの溶液を凍結乾燥して上
記厚膜を形成した後、該溶液を上記厚膜の一方面に塗布
して上記薄膜とし、これらを熱架橋することを特徴とす
る上記吸収性生体用材料の製造方法提供する。
In order to obtain such a material, a solution of chitin or carboxymethyl chitin is freeze-dried to form the thick film, and then the solution is applied to one surface of the thick film to form the thin film, Provided is a method for producing the above-mentioned absorbable biomaterial, which comprises thermally crosslinking these.

【0009】[0009]

【実施例】以下、本発明の実施例を説明する。キチン又
はカルボキシルメチルキチンの溶液を例えば円筒状の容
器やシャレーなどの容器内に入れて凍結乾燥し、これに
必要に応じてプレス成形を施し30°以下の温度で風乾
した後、好ましくは架橋温度120°〜180°の真空
中にて、約24時間加熱する熱架橋させる工程で吸収性
生体材料を製造する。
EXAMPLES Examples of the present invention will be described below. A solution of chitin or carboxymethyl chitin is put into a container such as a cylindrical container or a chalet and freeze-dried, and if necessary, press molding is performed and air-drying is performed at a temperature of 30 ° C. or lower, preferably at a crosslinking temperature. The absorbable biomaterial is manufactured by a process of heat-crosslinking by heating in a vacuum of 120 ° to 180 ° for about 24 hours.

【0010】このようにして製造される生体材料は、生
体親和性に優れたキチン又はカルボキシルメチルキチン
を原料とし、且つ架橋用の薬剤を用いずに製造されるの
で生体内で安全であるとともに、真空中で熱架橋したこ
とにより、経時的に生体内で分解し、この分解されたキ
チン又はカルボキシルメチルキチンが毛細血管生成を促
進し、これによりブロック状として骨欠損部、抜歯窩な
どに充填すると、充填箇所が天然の骨によって完全に修
復するという性質を有している。
The biomaterial produced in this manner is safe in vivo because it is produced from chitin or carboxymethylchitin, which has excellent biocompatibility, as a raw material and does not use a crosslinking agent. Due to thermal crosslinking in vacuum, it decomposes in vivo over time, and this decomposed chitin or carboxymethyl chitin promotes the formation of capillaries, which results in a block-like filling of bone defects, tooth extraction sockets, etc. The filling point has the property of being completely restored by natural bone.

【0011】また、この生体材料は、上述のように比較
的容易に製造でき、ブロック状の生体用材料としての他
にも、例えば、シャレー内に薄く延ばして凍結乾燥させ
ることによって、膜状の生体材料を得ることができ、こ
れを用いて骨欠損部、抜歯窩などを被覆する。
The biomaterial can be manufactured relatively easily as described above, and in addition to being a block-shaped biomaterial, for example, it can be thinly spread in a chalet and freeze-dried to form a film. A biomaterial can be obtained, which is used to cover bone defects, tooth extraction sockets, and the like.

【0012】この一層膜状の生体材料は、溶液の濃度等
を調整したり、凍結乾燥後に必要に応じ圧縮成形を加え
ることにより、膜厚、平均孔径および密度を適宜コント
ロールすることが可能で、それらをコントロールするこ
とによって、栄養分を含む組織液は流通させるが軟組織
は侵入させないという骨生成を促進する環境を必要期
間、作り出し、これにより天然骨による完全な骨修復が
できる。
This single-layer membrane-shaped biomaterial can be controlled in thickness, average pore size and density by adjusting the concentration of the solution or the like, or by adding compression molding if necessary after freeze-drying, By controlling them, an environment that promotes bone formation is created for a necessary period of time, in which tissue fluid containing nutrients is circulated but soft tissue is not infiltrated, which enables complete bone repair by natural bone.

【0013】また、凍結乾燥後に上記溶液を塗布する作
業を加えることによって、凍結乾燥を経ずに形成され、
より大きな平均孔径を有する膜を上記一層膜状の生体材
料に付加した二層膜状の生体材料を得ることができ、こ
の二層膜状の生体材料は、骨髄細胞及び各種細胞が吸着
するべく付加される膜の膜厚および平均孔径を適宜コン
トロールし、これを前記被覆材として用いることによっ
て、この膜の表面部位にて活発な骨生成がおこり、更に
骨が生成し易い環境を提供できる。
Further, by adding a work of applying the above solution after freeze-drying, it is formed without undergoing freeze-drying,
A bilayer biomaterial can be obtained by adding a membrane having a larger average pore size to the monolayer biomaterial, and the bilayer biomaterial should be adsorbed by bone marrow cells and various cells. By appropriately controlling the film thickness and average pore diameter of the added film and using this as the coating material, active bone formation occurs at the surface portion of this film, and an environment where bone formation is more likely can be provided.

【0014】さらに研究の結果、120°Cより低い熱
架橋温度による生体材料は、溶解速度が早く、骨生成が
活発になるのを待たずに溶解してしまうことがあるとと
もに、機械的強度が小さく、他方180°Cより高い熱
架橋温度によるものでも、機械的強度が小さいことを知
見した。
As a result of further research, a biomaterial having a thermal crosslinking temperature lower than 120 ° C. has a high dissolution rate and may dissolve without waiting for bone formation to become active, and has a high mechanical strength. It has been found that the mechanical strength is small, even though it is small and on the other hand due to the thermal crosslinking temperature higher than 180 ° C.

【0015】なお、熱架橋したキチン又はカルボキシル
メチルキチンからなる前記生体材料は、吸水性が高く、
また架橋薬剤を一切用いないので、不可避的に混入する
物質以外、キチン又はカルボキシルメチルキチン以外の
ものは検出されない。これに対して、薬剤によって架橋
したキチン又はカルボキシルメチルキチンの生体材料
は、吸水性が低く、生体内で非吸収性であるとともに、
化学的方法等で分析した場合、架橋薬剤が検出される。
The biomaterial made of heat-crosslinked chitin or carboxymethyl chitin has high water absorption,
Further, since no cross-linking agent is used at all, substances other than inevitable contaminants other than chitin or carboxymethyl chitin are not detected. On the other hand, a biomaterial of chitin or carboxymethyl chitin cross-linked by a drug has low water absorption and is non-absorbable in vivo,
When analyzed by a chemical method or the like, a cross-linking drug is detected.

【0016】次に、前記生体材料の使用例を、図によっ
て詳しく説明する。図1は生体材料の一使用状態を示
し、同図(a)に示す如く骨折した骨Bを固定用プレー
トPで固定した後、(b)に示す如く、キチン又はカル
ボキシルメチルキチンを熱架橋してなり、厚さ10〜1
000μm 、平均孔径5〜1000μm で、多孔質状且
つ一層膜状の生体材料1を骨折箇所B1 の全周囲(プレ
ートPの箇所を除く)に、極微量の瞬間接着材を用いて
張り付けた。
Next, an example of using the biomaterial will be described in detail with reference to the drawings. FIG. 1 shows one usage state of a biomaterial, in which a fractured bone B is fixed by a fixing plate P as shown in FIG. 1A, and then chitin or carboxymethyl chitin is thermally crosslinked as shown in FIG. 1B. Tena, thickness 10-1
A porous and single-layered biomaterial 1 having a diameter of 000 μm and an average pore diameter of 5 to 1000 μm was attached to the entire circumference of the fracture site B1 (excluding the site of the plate P) using an extremely small amount of an instant adhesive.

【0017】このような生体材料1は以下のような作用
を有していた。すなわち、生体材料1は、上記膜厚と平
均孔径により、骨折箇所B1 に対し栄養分を含む組織液
は流通させるが軟組織は侵入させず、これによって軟組
織に骨増生を阻害されることなく良好に骨生成を促進す
る環境を提供するので、早期且つ緻密なる骨生成が実現
した。また、上記生体材料1はキチン又はその誘導体を
薬剤を用いずに熱架橋してなるものであるため、生体親
和性を有するとともに安全で、さらに生体内でゆっくり
と溶解していくので患部治癒後は、分解して体内に吸収
され、これを手術などで取り出す必要がない。
Such a biomaterial 1 had the following actions. That is, the biomaterial 1 allows the tissue fluid containing nutrients to flow to the fracture site B 1 but does not allow soft tissue to invade the bone fracture site B 1 due to the above-mentioned film thickness and average pore size, thereby allowing the soft tissue to satisfactorily prevent bone growth and prevent bone growth. Providing an environment that promotes production, early and precise bone formation was achieved. In addition, since the biomaterial 1 is obtained by thermally crosslinking chitin or a derivative thereof without using a drug, it has biocompatibility, is safe, and dissolves slowly in vivo. Is decomposed and absorbed in the body, and it is not necessary to remove it by surgery.

【0018】図2には、上記生体材料1の別使用状態を
示し、歯肉Sを切り開き、その下の歯槽骨Dの欠損空隙
1 を一層膜状の生体材料1でもってカバーした。この
ようにすることによって、上述のように良好に骨生成を
促進する環境を提供し、早期且つ緻密なる骨生成による
骨欠損空隙D1 の治療ができた。
FIG. 2 shows another usage state of the biomaterial 1, in which the gingiva S is cut open, and the defect void D 1 of the alveolar bone D thereunder is covered with the biomaterial 1 in the form of a film. By doing so, it was possible to provide an environment that favorably promotes bone formation as described above, and to treat the bone defect void D 1 due to early and dense bone formation.

【0019】図3乃至図4に、上記生体材料1の別使用
状態を示し、両図において骨Bの骨欠損空隙B2 中には
自家骨片B3 が充填され、この骨欠損空隙B2 を生体用
材料1でカバーした。
FIGS. 3 to 4 show other usage states of the biomaterial 1, and in both figures, the bone defect void B 2 of the bone B is filled with autogenous bone fragments B 3 and the bone defect void B 2 Was covered with biomaterial 1.

【0020】なお、図4に示すように、骨欠損空隙B2
には自家骨片B3 とともにその残存空隙を埋めるべく、
キチン又はその誘導体を熱架橋してなり、平均孔径10
〜1000μm の多孔質且つブロック状の生体材料2を
充填しても良い。このようなブロック状の生体材料2
は、骨生成の足場となるとともに生体内で分解されると
毛細血管生成を促進し、分解した箇所に骨を早期に増生
させる。これにより、充填箇所が天然の骨によって完全
に修復することができ、それと同時に、自家骨片B3
揺動することを阻止するので、早期且つ緻密なる骨生成
による骨欠損空隙B2 の治療ができる。
As shown in FIG. 4, the bone defect void B 2
In order to fill the remaining void with autogenous bone fragment B 3 ,
Thermally cross-linked chitin or its derivatives, with an average pore size of 10
Porous and block-shaped biomaterial 2 of up to 1000 μm may be filled. Such a block-shaped biomaterial 2
Is a scaffold for bone formation and promotes the formation of capillaries when it is decomposed in vivo, and causes bone to grow at an early stage at the decomposed site. As a result, the filling site can be completely repaired by the natural bone, and at the same time, the autogenous bone fragment B 3 is prevented from oscillating, so that the bone defect void B 2 is treated by the early and dense bone formation. You can

【0021】図5には、図4の如く膜状の生体材料1と
ブロック状の生体材料2を組み合わせて用いた別の使用
態様を示し、同図に示す如く切り開いた歯肉Sを介して
ブロック状の生体材料2を抜歯後の欠損空隙D2 中全体
に充填し、この欠損空隙D2を一層膜状の生体材料1で
カバーした。
FIG. 5 shows another mode of use in which the membrane-shaped biomaterial 1 and the block-shaped biomaterial 2 are used in combination as shown in FIG. 4, and the block is formed through the gingiva S that is cut open as shown in FIG. The biomaterial 2 in the shape of a tooth was filled in the entire void D 2 after tooth extraction, and this void D 2 was covered with the biomaterial 1 in the form of a film.

【0022】次に、図6には、キチン又はカルボキシル
メチルキチンを熱架橋してなり且つ異なる平均孔径を有
する多孔質性状の2つの膜を一体とした、二層膜状の生
体材料3とその一使用状態を示し、この生体材料3は、
前記一層膜状の生体材料1と同様な性状、すなわち厚さ
20〜100μm 、平均孔径2〜20μmで多孔質の薄
膜3aの一方面に、厚さ300〜1000μm 、平均孔
径50〜500μm で多孔質の厚膜3bが対面固着して
なる。
Next, FIG. 6 shows a biomaterial 3 in the form of a two-layered film in which two porous membranes formed by thermally cross-linking chitin or carboxymethyl chitin and having different average pore sizes are integrated, and the biomaterial 3. In one use state, this biomaterial 3 is
Properties similar to those of the single-layered film-shaped biomaterial 1, that is, one side of the porous thin film 3a having a thickness of 20 to 100 μm and an average pore diameter of 2 to 20 μm, and a thickness of 300 to 1000 μm, and an average pore diameter of 50 to 500 μm. The thick film 3b is fixed face-to-face.

【0023】また、その使用状態の一例として、図6に
示す如く、歯槽骨Dが一部欠損した部位に、切開した歯
肉Sにより、残存する歯槽骨内に人工歯根のフィクスチ
ャーFを埋入した後、上記薄膜3aを歯肉Sに、また厚
膜3bを歯槽骨Dにそれぞれ対面するようにして、前記
二層膜状の生体材料3でもって欠損空隙D1 をカバーし
た。
As an example of the usage state, as shown in FIG. 6, an artificial tooth root fixture F is embedded in the remaining alveolar bone by the incised gingiva S at a part where the alveolar bone D is partially lost. After that, the thin film 3a was faced to the gingiva S and the thick film 3b was faced to the alveolar bone D, respectively, and the defect void D 1 was covered with the bilayer biomaterial 3 as described above.

【0024】このような二層膜状の生体材料3は以下の
ような作用を有する。すなわち、上記薄膜3aは前記一
層膜状の生体材料1の如く、上記欠損空隙D1 に対し、
上記厚膜3bを通して栄養分を含む組織液は流通させる
が軟組織は侵入せず、これによって軟組織に骨生成を阻
害されることなく良好に骨生成を促進する環境を提供す
るとともに、厚膜3bはその膜厚と平均孔径によって、
骨髄細胞及び各種細胞がその孔内に吸着しやすく、した
がってこの部分に新生骨が生成し易くなっている。
The biomaterial 3 in the form of a two-layer film as described above has the following actions. That is, the thin film 3a has the same shape as the single-layered film-shaped biomaterial 1 with respect to the defective void D 1 .
Tissue fluid containing nutrients is circulated through the thick film 3b, but soft tissue does not invade, thereby providing the soft tissue with an environment that favorably promotes bone formation without inhibiting the bone formation, and the thick film 3b forms the membrane. Depending on thickness and average pore size,
Bone marrow cells and various cells are easily adsorbed in the pores, and thus new bone is easily generated in this portion.

【0025】また、図6に示す如く、上記欠損空隙D1
内に前記ブロック状の生体材料2を充填し、これを併用
することができる。
Further, as shown in FIG. 6, the above-mentioned defective void D 1
The block-shaped biomaterial 2 can be filled inside and used together.

【0026】さらに、次のことが判明した。〔A〕上記
一層膜状の生体材料1および二層膜状の生体材料3の薄
膜3aにおいて、 ・膜厚が1000μm より大きいか、又は平均孔径が1
0μm より小さい場合、組織液の流通が不活発となり、 ・膜厚が10μm より小さい場合、機械的強度が小さく
なり、 ・平均孔径が1000μm より大きい場合、軟組織を流
通させてしまうことから、膜厚10〜1000μm 、平
均孔径5〜1000μm であることが望ましい。
Furthermore, the following has been found. [A] In the thin film 3a of the above-mentioned single-layer biomaterial 1 and double-layer biomaterial 3, the film thickness is larger than 1000 μm or the average pore diameter is 1
When it is smaller than 0 μm, the circulation of the tissue fluid becomes inactive. When the film thickness is smaller than 10 μm, the mechanical strength becomes small, and when the average pore size is larger than 1000 μm, the soft tissue is circulated. ˜1000 μm, average pore size 5 to 1000 μm is desirable.

【0027】〔B〕上記二層膜状の生体材料3の膜厚3
bにおいて、 ・平均孔径が10〜1000μm の場合、骨髄細胞及び
各種細胞が孔内に吸着し易く、 ・平均孔径が10μm より小さい場合、乃至膜厚が50
μm より小さい場合、骨髄細胞及び各種細胞の吸着量が
少なく、 ・平均孔径が1000μm より大きい場合、乃至膜厚が
5000μm より大きい場合、機械的強度が小さくなる
ことから、 膜厚50〜5000μm 、平均孔径10〜1000μm
であることが望ましい。
[B] The film thickness 3 of the above-mentioned bilayer biomaterial 3
In b, -When the average pore diameter is 10 to 1000 µm, bone marrow cells and various cells are easily adsorbed in the pores-When the average pore diameter is smaller than 10 µm, or the film thickness is 50
If it is smaller than μm, the adsorbed amount of bone marrow cells and various cells is small. ・ If the average pore size is larger than 1000 μm or the film thickness is larger than 5000 μm, the mechanical strength becomes small. Therefore, the film thickness is 50 to 5000 μm, the average. Pore diameter 10-1000 μm
Is desirable.

【0028】なお、本実施例では、一層膜状、ブロック
状および二層膜状の生体材料1,2,3を単独で、或い
は組み合わせて用いた例を示したが、本発明はこれらの
性状、組合せに限定されるものではなく、患部の状態に
合わせて、骨生成に最適な環境を提供するべく、キチン
又はカルボキシルメチルキチンを熱架橋してなる生体材
料を最適な性状に形成し、かつ最適な性状の組合せによ
って用いることができ、いずれの性状であっても生体内
でゆっくりと溶解していくので患部治癒後は、分解して
体内に吸収され、これを手術などで取り出す必要がな
い。
In the present embodiment, an example was shown in which single-layer membrane-shaped, block-shaped, and double-layer membrane-shaped biomaterials 1, 2 and 3 were used alone or in combination, but the present invention shows these characteristics. , Is not limited to the combination, in order to provide an optimal environment for bone formation in accordance with the condition of the affected area, a biomaterial formed by thermally crosslinking chitin or carboxymethyl chitin is formed into optimal properties, and It can be used according to the optimal combination of properties, and it dissolves slowly in vivo regardless of the properties, so after healing of the affected area it is decomposed and absorbed into the body, and it is not necessary to take it out by surgery etc. .

【0029】また、生体材料の密度としては0.07〜
0.7g/cm3 であることが好ましい。密度が0.07g/
cm3 より小さい場合、生体材料の機械的強度が小さく且
つ吸収速度が早すぎるので患部治癒前に消失してしまう
恐れがあり、また密度を0.7より大きくしようとして
キチン又はカルボキシルメチルキチンの量を増やすと水
に対し飽和状態となってしまい、完全に溶かすためには
薬剤を用いなければいけないという不具合がある。鋭意
検討の結果、上記密度が0.2〜0.6g/cm3 であれ
ば、機械強度的にも安定したものとなり、さらに好まし
いものとなることが判った。
The density of the biomaterial is 0.07-
It is preferably 0.7 g / cm 3 . Density is 0.07g /
If it is smaller than cm 3 , the mechanical strength of the biomaterial is small and the absorption rate is too fast, so it may disappear before healing of the affected area, and the amount of chitin or carboxymethyl chitin may be increased to increase the density to more than 0.7. If the amount is increased, it becomes saturated with water, and there is a problem that a drug must be used to completely dissolve it. As a result of diligent studies, it has been found that if the above-mentioned density is 0.2 to 0.6 g / cm 3 , the mechanical strength becomes stable, which is more preferable.

【0030】実施例1 以下の順序で、前記一層膜状の生体材料1を作成した: カルボキシルメチル化度60%のカルボキシルメチル
キチン(以下CMキチンとする)粉末を蒸留水に溶解
し、3.0wt%水溶液を調整した。 φ10cmの6個のガラスシャレーに、上記水溶液2
0gづつを注入、展延した。 上記ガラスシャレーをー20℃にて急速冷凍し、凍結
乾燥した。 ガラスシャレーから取り出したCMキチン体を30℃
以下の温度で風乾した。
Example 1 The above-mentioned one-layered film-shaped biomaterial 1 was prepared in the following order: A carboxylmethyl chitin (hereinafter referred to as CM chitin) powder having a carboxylmethylation degree of 60% was dissolved in distilled water, and A 0 wt% aqueous solution was prepared. The above aqueous solution 2 in 6 glass chalets of φ10 cm
0 g each was injected and spread. The glass chalet was flash frozen at -20 ° C and freeze-dried. CM chitin body taken out from the glass chalet at 30 ℃
Air dried at the following temperatures.

【0031】120℃、140℃、160℃、180
℃の温度で、24時間、真空中にて、上記CMキチン体
に熱架橋処理を施した。
120 ° C., 140 ° C., 160 ° C., 180
The CM chitin body was subjected to a thermal crosslinking treatment in a vacuum at a temperature of ° C for 24 hours.

【0032】それぞれの生体材料1の膜厚および平均孔
径は表1に示す通りであった。
The film thickness and average pore size of each biomaterial 1 are shown in Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】実施例2 カルボキシルメチル化度60%のCMキチン粉末を蒸留
水に溶解し、10.0wt%水溶液20gを調整し、この
水溶液を縦、横、高さがそれぞれ1.0cm×1.0c
m×1.0cmの立方体状の内形状を有する金型(不図
示)2個に注入し、ー20℃にて急速冷凍し、凍結乾燥
を行った。これらのCMキチン体の一方のみにプレス成
形を施し、厚みを約半分程とし、これらを金型から取り
出し30°以下の温度で風乾した。そして、140℃で
24時間、真空中にてCMキチン体に熱架橋処理を施し
たところ、厚みが、それぞれ100μm と200μm の
生体材料が得られた。
Example 2 CM chitin powder having a carboxymethylation degree of 60% was dissolved in distilled water to prepare 20 g of a 10.0 wt% aqueous solution, and this aqueous solution was 1.0 cm × 1. 0c
Two molds (not shown) each having a cubic internal shape of m × 1.0 cm were poured, and the mixture was rapidly frozen at −20 ° C. and freeze-dried. Only one of these CM chitin bodies was press-molded to have a thickness of about half, and they were taken out of the mold and air-dried at a temperature of 30 ° or less. Then, when the CM chitin body was subjected to thermal crosslinking treatment in vacuum at 140 ° C. for 24 hours, biomaterials having thicknesses of 100 μm and 200 μm, respectively were obtained.

【0035】これら吸収性材料の密度は0.0352g
/0.2cm3 →約0.176g/cm3と0.0352g/
0.1cm3 →約0.352g/cm3 であった。
The density of these absorbent materials is 0.0352 g
/0.2cm 3 → about 0.176g / cm 3 and 0.0352g /
It was 0.1 cm 3 → about 0.352 g / cm 3 .

【0036】実施例3 50%脱アセチル化したキチン1.0gを蒸留水に溶解
し、1.0wt%の水溶液を調整し、その他は実施例1と
同様な方法で、前記一層膜状の生体用材料1を作製し
た。その結果、平均孔径は実施例1の生体材料1より多
少大きめとなることを観察した。
Example 3 1.0 g of 50% deacetylated chitin was dissolved in distilled water to prepare a 1.0 wt% aqueous solution. Material 1 was prepared. As a result, it was observed that the average pore size was slightly larger than that of the biomaterial 1 of Example 1.

【0037】実施例4 図7に示す如く、φ5mmのシリンダ状の本体11の下
端に把手12aを備えた押し出し用の蓋12と上端に空
気孔13aを備えた上蓋13を備えてなる容器10を用
い、実施例1の方法に準じてφ1.6〜1.8mmの円
筒状をしたブロック状の生体材料2を作製した。それぞ
れの生体材料2の膜厚および平均孔径は表2に示す通り
であった。
Embodiment 4 As shown in FIG. 7, a container 10 comprising a cylinder-shaped main body 11 of φ5 mm having an extruding lid 12 having a handle 12a at its lower end and an upper lid 13 having an air hole 13a at its upper end is provided. In accordance with the method of Example 1, a cylindrical block-shaped biomaterial 2 having a diameter of 1.6 to 1.8 mm was produced. The film thickness and average pore diameter of each biomaterial 2 were as shown in Table 2.

【0038】[0038]

【表2】 [Table 2]

【0039】実施例5 凍結乾燥後、CMキチン溶液をCMキチン体の一方面に
塗布する以外、実施例1と同様な方法で前記生体材料3
を作製した。それぞれの生体材料3における前記薄膜3
aと厚膜3bの膜厚および平均孔径は表3に示す通りで
あった。
Example 5 After freeze-drying, the biomaterial 3 was prepared in the same manner as in Example 1 except that the CM chitin solution was applied to one side of the CM chitin body.
Was produced. The thin film 3 in each biomaterial 3
The film thickness and average pore diameter of a and the thick film 3b are as shown in Table 3.

【0040】[0040]

【表3】 [Table 3]

【0041】動物実験1 図8に示すように、術前に1週間の飼育期間を設けたN
ZWラビット:12週齢の脛骨内側面の骨Bに円柱状の
骨欠損B4 (φ2.0mm)を形成し、この骨欠損B4
からの出血を圧迫、止血後、骨膜を除去し、実施例5で
作製した二層膜状の生体材料3であって、予め5×5m
mのサイズにトリミングした生体材料3で上記骨欠損B
4 を瞬間接着材を極微量用いカバーし、この後、筋肉、
皮膚を迅速に縫合した。
Animal Experiment 1 As shown in FIG. 8, N, which had a breeding period of 1 week before the operation, was used.
ZW Rabbit: A cylindrical bone defect B 4 (φ2.0 mm) was formed in the bone B on the medial side of the tibia at the age of 12 weeks, and this bone defect B 4
The biomaterial 3 in the form of a two-layered membrane prepared in Example 5, which has a thickness of 5 × 5 m in advance
The bone defect B with the biomaterial 3 trimmed to a size of m
4 is covered with a very small amount of instant adhesive, and after this, muscle,
The skin was quickly sutured.

【0042】術後、4週間後に上記NZWラビットを屠
殺し、脛骨部を採取し、通法に従って脱灰標本を作製し
た。なお、染色はH・E染色、及びPAS染色を行い、
光学顕微鏡による観察を行った。
Four weeks after the operation, the NZW rabbit was sacrificed, the tibia was collected, and a decalcified specimen was prepared according to a conventional method. In addition, as for the staining, HE staining and PAS staining are performed,
Observation with an optical microscope was performed.

【0043】その結果、図10の組織標本像の模式図に
示すように、外表面側において新生骨が中央で癒合して
上記骨欠損B4 が封鎖されたことが確認され、このうち
架橋温度140℃、160℃の生体材料3による標本で
は、新生骨が骨欠損B4 をほぼ埋め尽くすようになって
いた。
As a result, as shown in the schematic view of the image of the tissue sample in FIG. 10, it was confirmed that the new bones were fused at the center on the outer surface side and the bone defect B 4 was blocked. In the specimen of the biomaterial 3 at 140 ° C. and 160 ° C., the new bone almost completely filled up the bone defect B 4 .

【0044】動物実験2 動物実験1と同様に形成、調整された骨欠損B4 から、
実施例4で作製されたブロック状の生体材料2を図9に
示す如く充填し、同様な方法で組織標本を作製、観察し
た。
Animal Experiment 2 From bone defect B 4 formed and adjusted in the same manner as in Animal Experiment 1,
The block-shaped biomaterial 2 produced in Example 4 was filled as shown in FIG. 9, and a tissue sample was produced and observed by the same method.

【0045】本実験においても、熱架橋温度140℃、
160℃の生体材料2による標本で、新生骨B5 が最も
密に生成していた。ただし、全体的に言って、動物実験
1の標本のほうが本実験の標本よりも新生骨の生成が緻
密であった。
Also in this experiment, the thermal crosslinking temperature of 140 ° C.,
In the specimen of biomaterial 2 at 160 ° C., new bone B 5 was most densely formed. However, as a whole, the specimen of the animal experiment 1 produced new bone more densely than the specimen of this experiment.

【0046】叙上のように、本発明の請求項1に係る吸
収性生体材料は、生体との親和性に優れ且つ骨生成が十
分発生すると生体内で分解していく多孔質の吸収材料で
あり、二層の膜の厚みと平均孔径をコントロールするこ
とによって、骨が生成し易い環境を提供することができ
る。また、キチン又はカルボキシルメチルキチンの溶液
を凍結乾燥して上記厚膜を形成した後、該溶液を上記厚
膜の一方面に塗布して上記薄膜とし、これらを熱架橋す
ることを特徴とする本発明の請求項2の発明による上記
吸収性生体材料を製造することが可能である。
As described above, the absorbable biomaterial according to claim 1 of the present invention is a porous absorbable material which has excellent affinity with the living body and is decomposed in the living body when sufficient bone formation occurs. By controlling the thickness of the two-layer membrane and the average pore size, it is possible to provide an environment in which bone is easily generated. Also, a solution of chitin or carboxymethyl chitin is freeze-dried to form the thick film, the solution is applied to one surface of the thick film to form the thin film, and the thin film is thermally crosslinked. It is possible to manufacture the absorbable biomaterial according to the invention of claim 2.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の一層膜状の生体材料についての
一使用状態を示す図である。
FIG. 1 is a diagram showing one usage state of a single-layer film biomaterial according to an embodiment of the present invention.

【図2】本発明実施例の一層膜状の生体材料についての
別使用状態を示す図である。
FIG. 2 is a diagram showing another usage state of the single-layer film biomaterial according to the embodiment of the present invention.

【図3】本発明実施例の一層膜状の生体材料についての
別使用状態を示す図である。
FIG. 3 is a diagram showing another usage state of the single-layer film biomaterial according to the embodiment of the present invention.

【図4】本発明実施例の一層膜状およびブロック状の生
体材料を併用する一使用状態を示す図である。
FIG. 4 is a diagram showing one use state in which the single-layer film-shaped and block-shaped biomaterials of the present invention are used together.

【図5】本発明実施例の一層膜状およびブロック状の生
体材料を併用する別使用状態を示す図である。
FIG. 5 is a diagram showing another usage state in which the single-layer membrane-shaped biomaterial and the block-shaped biomaterial according to the embodiment of the present invention are used together.

【図6】本発明実施例の二層膜状の生体材料についての
一使用状態を示す図である。
FIG. 6 is a diagram showing one usage state of a biomaterial having a two-layered membrane form according to an embodiment of the present invention.

【図7】本発明実施例のブロック状の生体用材料を作製
するのに用いた容器の断面図である。
FIG. 7 is a cross-sectional view of a container used for producing a block-shaped biomaterial according to an example of the present invention.

【図8】動物実験1の方法を示すNZWラビットの脛骨
の水平断面図である。
FIG. 8 is a horizontal cross-sectional view of the tibia of an NZW rabbit showing the method of Animal Experiment 1.

【図9】動物実験2の方法を示すNZWラビットの脛骨
の水平断面図である。
FIG. 9 is a horizontal cross-sectional view of the tibia of an NZW rabbit showing the method of Animal Experiment 2.

【図10】動物実験1における組織標本像の模式図であ
る。
FIG. 10 is a schematic diagram of a tissue specimen image in Animal Experiment 1.

【符号の説明】[Explanation of symbols]

1,2,3 生体材料 3a 薄膜 3b 厚膜 10 容器 11 本体部 12 押し出し用の蓋 12a 把手 13 上蓋 13a 空気孔 B 骨 B1 骨折箇所 B2 骨欠損空隙 B3 自家骨片 B4 骨欠損 B5 新生骨 D 歯槽骨 D1 欠損空隙 F フィクスチャー P プレート S 歯肉1,2,3 Biomaterial 3a Thin film 3b Thick film 10 Container 11 Main body 12 Extrusion lid 12a Handle 13 Upper lid 13a Air hole B Bone B 1 Fracture site B 2 Bone defect void B 3 Autogenous bone fragment B 4 Bone defect B 5 New bone D Alveolar bone D 1 Defect void F Fixture P Plate S Gingiva

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−123390(JP,A) 特開 平3−41131(JP,A) 特開 平7−184987(JP,A) 実開 平5−63615(JP,U) (58)調査した分野(Int.Cl.7,DB名) A61L 27/00 - 27/60 A61F 13/00 - 13/84 A61L 15/00 - 15/64 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP 5-123390 (JP, A) JP 3-41131 (JP, A) JP 7-184987 (JP, A) Actual flat 5- 63615 (JP, U) (58) Fields surveyed (Int.Cl. 7 , DB name) A61L 27/00-27/60 A61F 13/00-13/84 A61L 15/00-15/64

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】熱架橋したキチン又はカルボキシルメチル
キチンからなり、厚さ20〜100μm、平均孔径2〜
20μmで多孔質の薄膜の一方面に、厚さ300〜10
00μm、平均孔径50〜500μmで多孔質の厚膜を
対面固着してなる吸収性生体材料。
1. Heat-crosslinked chitin or carboxymethyl
Made of chitin, thickness 20 ~ 100μm, average pore size 2 ~
One side of the porous thin film having a thickness of 20 μm has a thickness of 300 to 10
00μm, 50-500μm average pore size, porous thick film
An absorptive biomaterial that adheres face-to-face .
【請求項2】キチン又はカルボキシルメチルキチンの溶
液を凍結乾燥して厚膜を形成した後、該溶液を上記厚膜
の一方面凍結乾燥せずに塗布して薄膜とし、これらを
熱架橋することを特徴とする吸収性生体用材料の製造方
法。
2. A solution of chitin or carboxymethyl chitin is freeze-dried to form a thick film , and the solution is added to the thick film.
Apply it on one side without freeze-drying to form a thin film.
A method for producing an absorbable biomaterial, which comprises thermally crosslinking .
JP09017694A 1993-08-31 1994-04-27 Absorbable biomaterial and method for producing the same Expired - Fee Related JP3389316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09017694A JP3389316B2 (en) 1993-08-31 1994-04-27 Absorbable biomaterial and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-216546 1993-08-31
JP21654693 1993-08-31
JP09017694A JP3389316B2 (en) 1993-08-31 1994-04-27 Absorbable biomaterial and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07116241A JPH07116241A (en) 1995-05-09
JP3389316B2 true JP3389316B2 (en) 2003-03-24

Family

ID=26431679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09017694A Expired - Fee Related JP3389316B2 (en) 1993-08-31 1994-04-27 Absorbable biomaterial and method for producing the same

Country Status (1)

Country Link
JP (1) JP3389316B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3261997A (en) * 1996-06-27 1998-01-14 Novartis Ag Thermally immobilized polysaccharide derivatives
US7592017B2 (en) 2000-03-10 2009-09-22 Mast Biosurgery Ag Resorbable thin membranes
US6773723B1 (en) * 2000-08-30 2004-08-10 Depuy Acromed, Inc. Collagen/polysaccharide bilayer matrix
JP4836318B2 (en) * 2000-11-24 2011-12-14 京セラ株式会社 Artificial dental root with periodontal ligament formation ability
US7897832B2 (en) * 2001-06-14 2011-03-01 Hemcon Medical Technologies, Inc. Compositions, assemblies, and methods applied during or after a dental procedure to ameliorate fluid loss and/or promote healing, using a hydrophilic polymer sponge structure such as chitosan
US8048444B2 (en) 2002-07-31 2011-11-01 Mast Biosurgery Ag Apparatus and method for preventing adhesions between an implant and surrounding tissues
US7767222B2 (en) 2002-07-31 2010-08-03 Mast Biosurgery Ag Apparatus and method for preventing adhesions between an implant and surrounding tissues
US7704520B1 (en) 2002-09-10 2010-04-27 Mast Biosurgery Ag Methods of promoting enhanced healing of tissues after cardiac surgery
AU2009240510B2 (en) 2008-04-24 2014-08-21 Medtronic, Inc. Rehydratable polysaccharide particles and sponge
EP2340002B1 (en) 2008-10-06 2015-03-25 Providence Health System - Oregon Foam medical devices and methods
US20160143663A1 (en) * 2014-11-24 2016-05-26 Stryker European Holdings I, Llc Strut plate and cabling system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0776287B2 (en) * 1989-07-07 1995-08-16 日本水産株式会社 Method for producing porous chitin molding
JP2984112B2 (en) * 1991-10-31 1999-11-29 京セラ株式会社 Bone filler
JP2553396Y2 (en) * 1991-12-25 1997-11-05 京セラ株式会社 Artificial root
JP3214969B2 (en) * 1993-12-27 2001-10-02 京セラ株式会社 Prosthetic components

Also Published As

Publication number Publication date
JPH07116241A (en) 1995-05-09

Similar Documents

Publication Publication Date Title
ES2700677T3 (en) Compositions for bone implant that can initially be deformed plastically
Kuo et al. Guided tissue regeneration for using a chitosan membrane: an experimental study in rats
EP1948260B8 (en) Composite material, especially for medical use, and method for producing the same
US20070190110A1 (en) Agents and devices for providing blood clotting functions to wounds
JP3389316B2 (en) Absorbable biomaterial and method for producing the same
JP2003513711A (en) Resorbable bone implant material and method for producing the same
CA3006693C (en) Resorbable crosslinked collagen material and inorganic ceramic particles sandwiched between two layers of elastic pretensed collagen material
US10835640B2 (en) Resorbable crosslinked form stable membrane for use outside the oral cavity
JP7483782B2 (en) Bone graft substitutes
TWI400100B (en) Medical equipment and manufacturing methods thereof
JP2004081739A (en) Composition for hemostasis of hydroxy apatite polymer composite material
JP2004026653A (en) Hemostatic composition of hydroxyapatite polymer composite material
CN111317867A (en) Nerve conduit and preparation method thereof
WO1989008466A1 (en) Medical material permitting cells to enter thereinto and artificial skin
US20060095139A1 (en) Composite prosthetic implant
JPH07236688A (en) Composite material of bioabsorptive plastic and collagen
JP2023056154A (en) Production method of collagen sponge and collagen sponge produced by the production method
JP4345296B2 (en) Anti-adhesion membrane
JP3450131B2 (en) Bone repair material
KR20140111256A (en) Chitosan dental surgical membrane and method of making
JP4671596B2 (en) Porous bone repair material and method for producing the same
JPWO2018115128A5 (en)
WO2010067604A1 (en) Material for bone-regeneration and manufacturing method therefor
US20200268938A1 (en) Novel bone putty compositions and methods of use thereof
TWM563272U (en) Skin repair film for minimally invasive skin with high biocompatibility micro scaffold

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees