JP3385608B2 - Optical fiber fluorescent thermometer - Google Patents

Optical fiber fluorescent thermometer

Info

Publication number
JP3385608B2
JP3385608B2 JP13259898A JP13259898A JP3385608B2 JP 3385608 B2 JP3385608 B2 JP 3385608B2 JP 13259898 A JP13259898 A JP 13259898A JP 13259898 A JP13259898 A JP 13259898A JP 3385608 B2 JP3385608 B2 JP 3385608B2
Authority
JP
Japan
Prior art keywords
optical fiber
optical
temperature
outer diameter
cap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13259898A
Other languages
Japanese (ja)
Other versions
JPH11311576A (en
Inventor
明 伊藤
市川  章
Original Assignee
株式会社高岳製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社高岳製作所 filed Critical 株式会社高岳製作所
Priority to JP13259898A priority Critical patent/JP3385608B2/en
Publication of JPH11311576A publication Critical patent/JPH11311576A/en
Application granted granted Critical
Publication of JP3385608B2 publication Critical patent/JP3385608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバ式蛍光
温度計に関するものである。
TECHNICAL FIELD The present invention relates to an optical fiber type fluorescence thermometer.

【0002】[0002]

【従来の技術】最初に光ファイバ式蛍光温度計の温度検
出部の一般的な構成と、温度測定の原理を説明する。
2. Description of the Related Art First, a general structure of a temperature detecting portion of an optical fiber type fluorescent thermometer and a principle of temperature measurement will be described.

【0003】光ファイバ式蛍光温度計の温度検出部13
は一般に図5に示すように、ガラス管15と、キャップ
12と、蛍光体1とにより、光ファイバ素線17および
光ファイバ被覆16から成る光ファイバ4の先端上に以
下の如く構成されている。光ファイバ4の先端部分の光
ファイバ被覆16を所定の長さだけ取り除き、その取り
除いた部分にガラス管15を取り付ける。次にエポキシ
樹脂14により蛍光体1を、ガラス管15および光ファ
イバ素線17に接着する。更にキャップ12を蛍光体1
を覆うようにガラス管15に固定する。
Temperature detection unit 13 of optical fiber type fluorescent thermometer
In general, as shown in FIG. 5, the glass tube 15, the cap 12, and the phosphor 1 are formed on the tip of the optical fiber 4 including the optical fiber wire 17 and the optical fiber coating 16 as follows. . The optical fiber coating 16 on the tip portion of the optical fiber 4 is removed by a predetermined length, and the glass tube 15 is attached to the removed portion. Next, the phosphor 1 is bonded to the glass tube 15 and the optical fiber element wire 17 with the epoxy resin 14. Further, the cap 12 is attached to the phosphor 1.
It is fixed to the glass tube 15 so as to cover.

【0004】この蛍光体1に光ファイバ4を介して信号
処理装置9から励起光を送ると、蛍光体1が励起されて
蛍光を発する。この蛍光の発光スペクトルや蛍光の減衰
時間は温度依存性があるので、この蛍光を同じ光ファイ
バ4を通して信号処理装置で受光し、蛍光の発光スペク
トル分析やパルス励起光の送光による蛍光の減衰時間計
測などによって、蛍光体1の温度が算出されている。
When excitation light is sent from the signal processing device 9 to the phosphor 1 through the optical fiber 4, the phosphor 1 is excited and emits fluorescence. Since the emission spectrum of this fluorescence and the decay time of the fluorescence have temperature dependence, this fluorescence is received by the signal processing device through the same optical fiber 4, and the decay time of the fluorescence due to the emission spectrum analysis of the fluorescence and the sending of the pulse excitation light is performed. The temperature of the phosphor 1 is calculated by measurement or the like.

【0005】光ファイバ式蛍光温度計による温度測定
は、蛍光体1の温度が温度測定対象物の温度と同じにな
るように直接または間接的に温度検出部13を温度測定
対象物に接触させておこなわれる。一方光ファイバ4は
可とう性が高いので、温度測定対象物に対して光ファイ
バ4が垂直となるように押しあてて温度検出部13を温
度測定対象物に接触させようとすると、光ファイバ4に
たわみが生じる。本来、温度検出部13と温度測定対象
物との接触を繰り返すときにこのたわみの再現性がない
ために、測定対象物との間の接触不良による測定誤差を
生じることがある。また、温度測定対象と蛍光体の間に
距離があるので温度勾配による誤差が生じる。この距離
に比べて光ファイバ4の径が小さい場合には、光ファイ
バ4が温度測定対象物に対し平行になるように温度検出
部13を温度測定対象物に貼付ける方法がとられてい
る。また、どうしても温度測定対象物に対し光ファイバ
4が垂直になるように温度検出部13を接触させたい場
合には、再現性を確保するため接着剤等により固定する
方法がとられている。
In the temperature measurement by the optical fiber type fluorescent thermometer, the temperature detecting portion 13 is brought into contact with the temperature measuring object directly or indirectly so that the temperature of the phosphor 1 becomes the same as the temperature of the temperature measuring object. It is carried out. On the other hand, since the optical fiber 4 is highly flexible, if the temperature detection unit 13 is pressed against the temperature measurement target object so that the optical fiber 4 is perpendicular to the temperature measurement target object, Deflection occurs. Originally, when the temperature detection unit 13 and the temperature measurement target are repeatedly contacted with each other, there is no reproducibility of the deflection, so that a measurement error may occur due to a poor contact with the measurement target. Moreover, since there is a distance between the temperature measurement target and the phosphor, an error occurs due to the temperature gradient. When the diameter of the optical fiber 4 is smaller than this distance, the temperature detecting unit 13 is attached to the temperature measurement object so that the optical fiber 4 is parallel to the temperature measurement object. Further, when it is inevitable to bring the temperature detecting unit 13 into contact with the temperature measurement object so that the optical fiber 4 is perpendicular to the temperature measurement target, a method of fixing with an adhesive or the like is used to ensure reproducibility.

【0006】光ファイバ式蛍光温度計は、光ファイバ4
と接続するガラス管15の外径が光ファイバ4の外径と
概ね同じ大きさであり、温度検出部13の熱容量が小さ
いことから、従来から用いられている熱電対等の温度セ
ンサより温度測定誤差が小さく応答の速い測定が可能で
あること、原理的に電磁誘導によるノイズの影響がない
こと、などの特長を有することから、微細な物体の温度
測定や、高電界、強電磁界中の温度測定などに多く用い
られている。
The optical fiber type fluorescent thermometer comprises an optical fiber 4
Since the outer diameter of the glass tube 15 connected to the optical fiber 4 is approximately the same as the outer diameter of the optical fiber 4 and the heat capacity of the temperature detection unit 13 is small, a temperature measurement error from a conventional temperature sensor such as a thermocouple is used. Has the advantages of small size, high response speed, and in principle no influence of noise due to electromagnetic induction. Therefore, temperature measurement of minute objects, temperature measurement in high electric field or strong electromagnetic field is possible. It is often used for.

【0007】温度測定対象物に対して光ファイバ4が垂
直となるように適切な力で温度検出部13を温度測定対
象物に接触させることが困難なため、光ファイバ4が温
度測定対象物に対し平行になるように温度検出部13を
温度測定対象物に固定する方法がとられている。この場
合、温度測定点が固定される設備等で、温度検出部13
を固定しても良い場合には適用できるが、流れ生産ライ
ン上の物体の温度測定などの温度測定対象物が移動する
場合においては、光ファイバ式蛍光温度計に優れた特徴
があるにも関わらず使用できない。
Since it is difficult to bring the temperature detecting portion 13 into contact with the temperature measuring object with an appropriate force so that the optical fiber 4 is perpendicular to the temperature measuring object, the optical fiber 4 is not attached to the temperature measuring object. A method of fixing the temperature detection unit 13 to the temperature measurement target object so as to be parallel to it is adopted. In this case, if the temperature measuring point is fixed, the temperature detecting unit 13
It is applicable when the temperature can be fixed, but in the case where the temperature measurement object such as the temperature measurement of the object on the flow production line moves, the optical fiber type fluorescence thermometer has excellent characteristics. Can not be used without.

【0008】そこで、光ファイバが温度測定対象物に対
し固定することなく、温度測定対象物に対して光ファイ
バが垂直となるように適切な力で温度検出部を温度測定
対象物に接触させることにより、正確な温度測定が容易
におこなえる光ファイバ式蛍光温度計が提案されてい
る。
Therefore, without fixing the optical fiber to the temperature measuring object, the temperature detecting portion is brought into contact with the temperature measuring object with an appropriate force so that the optical fiber is perpendicular to the temperature measuring object. Has proposed an optical fiber type fluorescence thermometer which can easily perform accurate temperature measurement.

【0009】図4はその提案の光ファイバ蛍光温度計の
一例を示す図である。第2の光学体7aを固定した固定
ホルダ6のもう一端に信号処理装置9を接続した第2の
光ファイバ8を、この第2の光ファイバ8の光ファイバ
素線端面と第2の光学体7aとが対向するように固定す
るとともに、第1の光学体7bを固定した可動ホルダ3
のもう一端にキャップ12で覆われた蛍光体1を接続し
て第1の光ファイバ4を、この第1の光ファイバ4の光
ファイバ素線の端面と第1の光学体7bとが対向するよ
うに固定し、アクチュエータ5を介して第1、第2の光
学体7b、7aが対向するように固定ホルダ6と可動ホ
ルダ3とが接続されている。また、第1の光ファイバ4
の可動ホルダ3と蛍光体1との間の部分は剛体2で覆う
構造となっている。
FIG. 4 is a diagram showing an example of the proposed optical fiber fluorescence thermometer. The second optical fiber 8 in which the signal processing device 9 is connected to the other end of the fixed holder 6 to which the second optical body 7a is fixed is provided with an end face of the optical fiber of the second optical fiber 8 and the second optical body. The movable holder 3 is fixed so that the first optical member 7b and the first optical member 7b are fixed.
The phosphor 1 covered with the cap 12 is connected to the other end of the first optical fiber 4 so that the end face of the optical fiber element wire of the first optical fiber 4 and the first optical body 7b face each other. The fixed holder 6 and the movable holder 3 are connected so that the first and second optical bodies 7b and 7a face each other via the actuator 5. In addition, the first optical fiber 4
The structure between the movable holder 3 and the phosphor 1 is covered with the rigid body 2.

【0010】蛍光体1に対する励起光は、信号処理装置
9から発せられ、第2の光ファイバ8を通り第2の光フ
ァイバ8の端面に到達する。第2の光ファイバ8より出
射した励起光は集光機能を有した第2の光学体7aによ
り平行光とされ、第2、第1の光学体7a、7b間を空
間伝搬した後、第2の光学体7aに対向した位置に配置
された集光機能を有した第1の光学体7bにより集光さ
れ第1の光ファイバ4に入射され、第1の光ファイバ4
を通り蛍光体1に到達する。蛍光体1では前述した原理
により温度測定対象物の温度に応じた蛍光を発する。こ
の蛍光は励起光と同じ経路を通り信号処理装置9に到達
する。信号処理装置9では到達した蛍光から温度測定対
象物の温度を算出、表示する。
Excitation light for the phosphor 1 is emitted from the signal processing device 9, passes through the second optical fiber 8, and reaches the end face of the second optical fiber 8. The excitation light emitted from the second optical fiber 8 is collimated by the second optical body 7a having a condensing function, spatially propagates between the second and first optical bodies 7a, 7b, and then the second optical body 7a. The first optical body 7b having a condensing function, which is arranged at a position facing the optical body 7a of FIG.
And reaches the phosphor 1. The phosphor 1 emits fluorescence according to the temperature of the temperature measurement object according to the principle described above. This fluorescence reaches the signal processing device 9 through the same path as the excitation light. The signal processing device 9 calculates and displays the temperature of the temperature measurement object from the reached fluorescence.

【0011】温度測定対象物に対して第1の光ファイバ
4が垂直になるようにキャップ12を温度測定対象物に
押し当てると、キャップ12が温度測定対象物から受け
る余分な力は剛体2および可動ホルダ3を介してアクチ
ュエータ5に伝達され、ここで吸収される。
When the cap 12 is pressed against the temperature measurement object so that the first optical fiber 4 is perpendicular to the temperature measurement object, the extra force that the cap 12 receives from the temperature measurement object is generated by the rigid body 2 and the rigid body 2. It is transmitted to the actuator 5 via the movable holder 3 and absorbed there.

【0012】流れ生産ライン上の物体の温度測定などの
温度測定対象物が移動する場合においては、アクチュエ
ータ5の力を温度測定対象物の重さより小さくしておく
と、温度測定対象物の質量による余分な力がキャップ1
2、剛体2、可動ホルダ3、を介してアクチュエータ5
により吸収され、適切な圧力で温度検出部1を温度測定
対象物に接触させることができるため、容易に温度測定
対象物の温度を再現性よく検出できる。
When the temperature measurement object such as the temperature measurement of the object on the flow production line moves, if the force of the actuator 5 is set to be smaller than the weight of the temperature measurement object, the mass of the temperature measurement object is affected. Extra power is cap 1
2, the rigid body 2, the movable holder 3, and the actuator 5
The temperature of the temperature measurement target can be easily detected with good reproducibility because the temperature detection unit 1 can be brought into contact with the temperature measurement target with an appropriate pressure.

【0013】[0013]

【発明が解決しようとする課題】上述の様な提案による
光ファイバ式蛍光温度計を試作し、その応答を測定する
と、キャップが温度測定対象物に接触してから蛍光体が
温度測定対象物の温度に到達するまでに約10秒かか
る。流れ生産ライン上の物体が温度測定対象である場合
には、タクトタイムが温度測定時間によって制限される
ことになる。この場合では、タクトタイムを10秒以下
にすることができないという問題点がある。
When the optical fiber type fluorescent thermometer according to the above-mentioned proposal is prototyped and its response is measured, the phosphor contacts the temperature measuring object and then the phosphor is measured. It takes about 10 seconds to reach the temperature. If the object on the flow production line is the object of temperature measurement, the takt time will be limited by the temperature measurement time. In this case, there is a problem that the tact time cannot be set to 10 seconds or less.

【0014】そこで本発明では、キャップと剛体の形状
を適切にすることにより、より応答の速い光ファイバ式
蛍光温度計を提供することを目的とする。
Therefore, it is an object of the present invention to provide an optical fiber type fluorescence thermometer having a faster response by appropriately adjusting the shapes of the cap and the rigid body.

【0015】[0015]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の第1の発明では、光ファイバの先端に蛍
光体を取り付け、この蛍光体を保護するキャップで覆っ
た温度検出部と、蛍光体に光ファイバを介して励起光を
供給するとともに蛍光体からの蛍光信号の温度依存性を
用いて温度検出部の温度を演算する信号処理回路と、温
度検出部と信号処理回路を光学的に接続する光ファイバ
とから構成される光ファイバ式蛍光温度計において、温
度検出部と第1の光学体とを光学的に接続させる第1の
光ファイバと第1の光ファイバの温度検出部側を保持す
る剛体と第1の光ファイバの第1の光学体側と第1の光
学体を保持させる可動ホルダとで構成される可動部と、
信号処理回路と第1の光学体とを光学的に接続させる第
2の光ファイバと第1の光学体と対向して配設される第
2の光学体と可動部を摺動しガイドさせる固定ホルダと
で構成される固定部と、固定部内に配設された可動部を
摺動し保持させるアクチュエータとを設け、第1の光フ
ァイバを保持させる剛体およびキャップのいずれかに段
差を設ける。すなわち、キャップまたは剛体の外径を変
えることによって、キャップを介して蛍光体に熱を伝わ
り易くし、蛍光体から剛体側に熱を逃げにくくすること
により、応答の速い温度測定を行うことができる。
In order to achieve the above object, according to the first aspect of the present invention, a temperature detecting portion is provided with a phosphor attached to the tip of an optical fiber and covered with a cap for protecting the phosphor. And a signal processing circuit that supplies excitation light to the phosphor through an optical fiber and calculates the temperature of the temperature detection unit using the temperature dependence of the fluorescence signal from the phosphor, the temperature detection unit and the signal processing circuit. In a fiber optic fluorescence thermometer composed of an optical fiber optically connected, a first optical fiber for optically connecting a temperature detection unit and a first optical body, and temperature detection of the first optical fiber A movable portion configured to include a rigid body that holds the side of the first optical fiber, a first optical body side of the first optical fiber, and a movable holder that holds the first optical body;
A second optical fiber that optically connects the signal processing circuit and the first optical body, and a second optical body that is disposed so as to face the first optical body and a fixed portion that slides and guides the movable portion. A fixed portion including a holder and an actuator that slides and holds a movable portion arranged in the fixed portion are provided, and a step is provided on either the rigid body or the cap that holds the first optical fiber. That is, by changing the outer diameter of the cap or the rigid body, heat can be easily transferred to the phosphor through the cap, and it is difficult for the heat to escape from the phosphor to the rigid body side, so that the temperature measurement with a quick response can be performed. .

【0016】第2の発明では、剛体側の蛍光体の外径を
第1の光学体側の外径より細くし、キャップの外径も剛
体の蛍光体側と大略同じ径にする。すなわち、剛体の蛍
光体側およびキャップの外径を細くすることにより、温
度検出部の熱容量を小さくして、温度測定対象物から伝
わる熱で蛍光体の温度が容易に変化し、かつ、光学体側
へ熱が伝わりにくくして、温度測定対象物への接触時に
応答の速い温度測定を行うことができる。
In the second invention, the outer diameter of the rigid phosphor is smaller than that of the first optical member, and the outer diameter of the cap is substantially the same as that of the rigid phosphor. That is, by making the outer diameter of the rigid phosphor side and the cap small, the heat capacity of the temperature detection part is reduced, the temperature of the phosphor easily changes due to the heat transferred from the temperature measurement target, and This makes it difficult for heat to be transferred and enables quick temperature measurement when contacting the temperature measurement target.

【0017】第3の発明では、キャップの外径を剛体の
外径より細くすることで、温度検出部の熱容量を小さく
するとともに、剛体側へ熱が伝わり易くして温度測定対
象物への接触および開離時に応答の速い温度測定を行う
ことができる。
In the third invention, by making the outer diameter of the cap smaller than the outer diameter of the rigid body, the heat capacity of the temperature detecting portion is reduced, and heat is easily transmitted to the rigid body side so that the temperature measuring object can be contacted. Further, it is possible to perform temperature measurement with a quick response at the time of opening.

【0018】第4の発明では、剛体の蛍光体側の外径を
第1の光学体の外径およびキャップの外径より細くする
ことで、光学体側へ熱が伝わりにくくして、温度測定対
象物に接触するときの応答の速い温度測定を行うことが
できる。
In the fourth aspect of the invention, the outer diameter of the rigid body on the phosphor side is made smaller than the outer diameter of the first optical body and the outer diameter of the cap, thereby making it difficult for heat to be transferred to the optical body side and for measuring the temperature measurement object. It is possible to perform temperature measurement with a fast response when contacting with.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。図1は、本発明の光ファイバ蛍光式温度計
の一例を示す図である。ここでは、図4と異なる点につ
いて説明する。蛍光体1を覆うキャップ20の外径と第
1の光ファイバ4を保持する剛体21のキャップ側の外
径は剛体21の第1の光学体側の外径よりおおよそ半分
まで細くする。これによって、温度検出部22を温度測
定対象物に押し当てる時、熱は温度測定対象物からキャ
ップ20を介して、蛍光体1へ伝わる。この時、図4に
示す従来技術と比べて、温度検出部22の熱容量が小さ
くなっているので、蛍光体1の温度はより速く変化す
る。このため、温度測定の応答がより速くなる。本発明
では、剛体21のキャップ側の外径を剛体21の第1の
光学体側の外径より細ければ細いほどこの効果は顕著に
なるが光ファイバを保持する機能および加工の難易度よ
り、適宜第2の径を決める。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. FIG. 1 is a diagram showing an example of the optical fiber fluorescent thermometer of the present invention. Here, differences from FIG. 4 will be described. The outer diameter of the cap 20 that covers the phosphor 1 and the outer diameter of the rigid body 21 that holds the first optical fiber 4 on the cap side are approximately half the outer diameter of the rigid body 21 on the first optical body side. Thereby, when the temperature detection unit 22 is pressed against the temperature measurement target, heat is transferred from the temperature measurement target to the phosphor 1 via the cap 20. At this time, since the heat capacity of the temperature detection unit 22 is smaller than that of the conventional technique shown in FIG. 4, the temperature of the phosphor 1 changes faster. Therefore, the temperature measurement response becomes faster. In the present invention, this effect becomes more remarkable as the outer diameter of the rigid body 21 on the cap side is smaller than the outer diameter of the rigid body 21 on the first optical body side, but from the function of holding the optical fiber and the difficulty of processing, The second diameter is appropriately determined.

【0020】また、キャップ20の材料として熱伝導の
良い金属、例えばアルミニウム、銅やセラミクス(窒化
アルミ)を、剛体の材料として熱伝導の悪いセラミク
ス、例えばジルコニアを用いるとこの効果はさらに著し
くなる。
This effect becomes even more remarkable when a metal having a good thermal conductivity such as aluminum, copper or ceramics (aluminum nitride) is used as the material of the cap 20, and a ceramic having a poor thermal conductivity such as zirconia is used as the material of the rigid body.

【0021】図2は、本発明の他の実施例である。キャ
ップ24の外径を剛体25よりおおよそ半分まで細くす
る。この時、温度検出部の熱容量は小さくなる一方で、
剛体の熱容量は変わらない。従って、温度測定対象物に
押し当てた時は、前述の様に応答が速くなる。また、温
度測定対象物から離れる時も、剛体25を通じて、光学
体側へ熱が伝わり、応答が速くなる。この場合でもキャ
ップ24の材料として熱伝導の良い金属を、剛体25の
材料として熱伝導の良くない材料を選ぶことで、その効
果はさらに著しくなる。
FIG. 2 shows another embodiment of the present invention. The outer diameter of the cap 24 is made thinner than the rigid body 25 by about half. At this time, while the heat capacity of the temperature detection unit becomes smaller,
The heat capacity of a rigid body does not change. Therefore, when pressed against the temperature measurement target, the response becomes faster as described above. Further, even when the temperature measuring object is separated, heat is transmitted to the optical body side through the rigid body 25, and the response becomes faster. Even in this case, the effect becomes more remarkable by selecting a metal having good heat conduction as the material of the cap 24 and a material having poor heat conduction as the material of the rigid body 25.

【0022】図3は本発明の他の実施例である。剛体2
8のキャップ側のみおおよそ半分まで細くしてある。こ
のため、前述の様にキャップ28および蛍光体1から熱
が逃げにくく、温度測定対象物に押し当てる時の応答が
従来例に比べて速くなる。前述と同様に材料を選ぶこと
で効果は顕著になる。
FIG. 3 shows another embodiment of the present invention. Rigid body 2
Only the cap side of 8 is thinned to about half. Therefore, as described above, it is difficult for heat to escape from the cap 28 and the phosphor 1, and the response when pressing against the temperature measurement target is faster than in the conventional example. The effect becomes remarkable by selecting the material similarly to the above.

【0023】実際に試作した、本発明の応答の結果は、
図1に示すもので、押し当てる時が2.2秒、離れる時
が5.6秒、図2に示すもので、それぞれ4.6秒、
4.8秒、図3に示すものでそれぞれ3.4秒、7.2
秒と従来より速くなった。
The result of the response of the present invention, which was actually produced, is
As shown in FIG. 1, it is 2.2 seconds when pressed, 5.6 seconds when released, 4.6 seconds each as shown in FIG.
4.8 seconds, as shown in FIG. 3, 3.4 seconds and 7.2, respectively.
Seconds and faster than before.

【0024】[0024]

【発明の効果】温度検出部を構成するキャップおよび光
ファイバを保持する剛体の外径を変えて、段差を設ける
ことにより、熱の流れを制御でき、応答の速い温度測定
を実現する。
EFFECTS OF THE INVENTION By changing the outer diameter of the rigid body holding the cap and the optical fiber constituting the temperature detecting section and providing the step, the heat flow can be controlled, and the temperature measurement with a quick response is realized.

【0025】また、キャップおよび剛体の一部の径を剛
体の他端の径より細くすることで温度検出部の熱容量を
小さくすることが可能になり、温度測定対象物に接触さ
せる時の応答を速くできる。
Further, by making the diameter of a part of the cap and the rigid body smaller than the diameter of the other end of the rigid body, it becomes possible to reduce the heat capacity of the temperature detecting portion, and the response at the time of contact with the temperature measurement object can be improved. Can be fast

【0026】また、キャップの径のみ剛体より細くする
ことで、温度測定対象物への接触および開離時の両方の
応答を速くできる。
Further, by making only the diameter of the cap smaller than that of the rigid body, it is possible to speed up both the response to the temperature measurement object and the response to the opening.

【0027】また、剛体のキャップ側のみ径を細くして
も、温度測定対象物に押し当てた時の応答を速くでき
る。
Further, even if the diameter of only the cap side of the rigid body is reduced, the response when pressed against the temperature measurement object can be made faster.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光ファイバ式蛍光温度計の一例を示す
図である。
FIG. 1 is a diagram showing an example of an optical fiber type fluorescence thermometer of the present invention.

【図2】本発明の光ファイバ式蛍光温度計の他の一例を
示す図である。
FIG. 2 is a diagram showing another example of the optical fiber type fluorescence thermometer of the present invention.

【図3】本発明の光ファイバ式蛍光温度計の他の一例を
示す図である。
FIG. 3 is a diagram showing another example of the optical fiber type fluorescence thermometer of the present invention.

【図4】従来の光ファイバ式蛍光温度計の一例を示す図
である。
FIG. 4 is a diagram showing an example of a conventional optical fiber type fluorescence thermometer.

【図5】従来の光ファイバ式蛍光温度計の他の一例を示
す図である。
FIG. 5 is a diagram showing another example of a conventional optical fiber type fluorescence thermometer.

【符号の説明】[Explanation of symbols]

1 蛍光体 2、21、25、29 剛体 3 可動ホルダ 4 第1の光ファイバ 5 アクチュエータ 6 固定ホルダ 7a 第2の光学体 7b 第1の光学体 8 第2の光ファイバ 9 信号処理装置 11 固定部 12、20、24、28 キャップ 13、22、26、30 温度検出部 10、23、27、31 可動部 1 phosphor 2, 21, 25, 29 rigid body 3 Movable holder 4 First optical fiber 5 actuators 6 Fixed holder 7a Second optical body 7b First optical body 8 Second optical fiber 9 Signal processing device 11 Fixed part 12, 20, 24, 28 caps 13, 22, 26, 30 Temperature detector 10, 23, 27, 31 Moving part

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01K 11/20 G01K 11/12 G01J 5/08 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01K 11/20 G01K 11/12 G01J 5/08

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光ファイバの先端に蛍光体を取り付け前記
蛍光体を保護するキャップで覆った温度検出部と、前記
蛍光体に前記光ファイバを介して励起光を供給するとと
もに前記蛍光体からの蛍光信号の温度依存性を用いて前
記温度検出部の温度を演算する信号処理回路と、前記温
度検出部と前記信号処理回路を光学的に接続する光ファ
イバとから構成される光ファイバ式蛍光温度計におい
て、 前記温度検出部と第1の光学体とを光学的に接続させる
第1の光ファイバと前記第1の光ファイバの温度検出部
側を保持する剛体と前記第1の光ファイバの前記第1の
光学体側と前記第1の光学体を保持させる可動ホルダと
で構成される可動部と、 前記信号処理回路と前記第1の光学体とを光学的に接続
させる第2の光ファイバと前記第1の光学体と対向して
配設される第2の光学体と前記可動部を摺動しガイドさ
せる固定ホルダとで構成される固定部と、 前記固定部内に配設された前記可動部を摺動し保持させ
るアクチュエータと、を設け、 前記第1の光ファイバを保持させる剛体およびキャップ
のいずれかに段差を設けたことを特徴とする光ファイバ
式蛍光温度計。
1. A temperature detection unit in which a fluorescent substance is attached to the tip of an optical fiber and is covered with a cap for protecting the fluorescent substance, and excitation light is supplied to the fluorescent substance via the optical fiber and at the same time from the fluorescent substance. An optical fiber type fluorescent temperature composed of a signal processing circuit that calculates the temperature of the temperature detection unit using the temperature dependence of the fluorescence signal, and an optical fiber that optically connects the temperature detection unit and the signal processing circuit. In the meter, a first optical fiber that optically connects the temperature detection unit and the first optical body, a rigid body that holds the temperature detection unit side of the first optical fiber, and the first optical fiber A movable part composed of a first optical body side and a movable holder for holding the first optical body; and a second optical fiber for optically connecting the signal processing circuit and the first optical body. The first optical body A fixed portion composed of a second optical body arranged to face each other and a fixed holder that slides and guides the movable portion, and the movable portion arranged in the fixed portion slides and holds. An optical fiber type fluorescence thermometer, wherein an actuator is provided, and a step is provided on either the rigid body or the cap that holds the first optical fiber.
【請求項2】剛体の蛍光体側の外径を第1の光学体側の
外径より細くしキャップの外径も剛体の蛍光体側と大略
同じ径にしたことを特徴とする請求項1記載の光ファイ
バ式蛍光温度計。
2. The light according to claim 1, wherein the outer diameter of the rigid phosphor side is smaller than that of the first optical body, and the outer diameter of the cap is substantially the same as that of the rigid phosphor side. Fiber type fluorescent thermometer.
【請求項3】キャップの外径を剛体の外径より細くした
ことを特徴とする請求項1記載の光ファイバ式蛍光温度
計。
3. The optical fiber type fluorescence thermometer according to claim 1, wherein the outer diameter of the cap is smaller than the outer diameter of the rigid body.
【請求項4】剛体の蛍光体側の外径を第1の光学体側の
外径およびキャップの外径より細くしたことを特徴とす
る請求項1記載の光ファイバ式温度計。
4. The optical fiber thermometer according to claim 1, wherein the outer diameter of the rigid body on the phosphor side is smaller than the outer diameter of the first optical body and the outer diameter of the cap.
JP13259898A 1998-04-28 1998-04-28 Optical fiber fluorescent thermometer Expired - Fee Related JP3385608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13259898A JP3385608B2 (en) 1998-04-28 1998-04-28 Optical fiber fluorescent thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13259898A JP3385608B2 (en) 1998-04-28 1998-04-28 Optical fiber fluorescent thermometer

Publications (2)

Publication Number Publication Date
JPH11311576A JPH11311576A (en) 1999-11-09
JP3385608B2 true JP3385608B2 (en) 2003-03-10

Family

ID=15085092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13259898A Expired - Fee Related JP3385608B2 (en) 1998-04-28 1998-04-28 Optical fiber fluorescent thermometer

Country Status (1)

Country Link
JP (1) JP3385608B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071473A (en) * 2000-09-04 2002-03-08 Anritsu Keiki Kk Fluorescent optical fiber thermometer
US8021521B2 (en) * 2005-10-20 2011-09-20 Applied Materials, Inc. Method for agile workpiece temperature control in a plasma reactor using a thermal model
JP6885587B2 (en) * 2017-06-01 2021-06-16 安立計器株式会社 Fluorescent fiber optic thermometer
CN112363418A (en) * 2019-07-23 2021-02-12 西安和其光电科技股份有限公司 Fluorescent optical fiber temperature controller and temperature control method thereof

Also Published As

Publication number Publication date
JPH11311576A (en) 1999-11-09

Similar Documents

Publication Publication Date Title
US4988212A (en) Fiberoptic sensing of temperature and/or other physical parameters
CA2772019C (en) Miniature fiber optic temperature sensors
US5146083A (en) High temperature fiber optic microphone having a pressure-sensing reflective membrane under tensile stress
US5356218A (en) Probe for providing surface images
EP0243482A1 (en) Fiberoptic sensing of temperature and/or other physical parameters
JP2002518667A (en) Fiber optic pressure sensor (and variants) and method of manufacturing flexible reflective member
US8011827B1 (en) Thermally compensated dual-probe fluorescence decay rate temperature sensor
US5200610A (en) Fiber optic microphone having a pressure sensing reflective membrane and a voltage source for calibration purpose
US5975757A (en) Method and apparatus for providing surface images
CA2522366C (en) Aligning and measuring temperatures in melting by means of optical fibers
WO2009081748A1 (en) Radiometric temperature measuring method and radiometric temperature measuring system
JP3385608B2 (en) Optical fiber fluorescent thermometer
CA2028352A1 (en) High temperature sensor
KR910001090B1 (en) The board of tr fiber coupler temperature transducer
EP4275011A1 (en) Systems and methods for fiber optic fourier spectrometry measurement
JPH10318829A (en) Infrared sensor
JPH11211580A (en) Optical fiber type fluorescence thermometer
JPH08145780A (en) Vibration sensor
EP0216812B1 (en) A measuring device
JP2021128163A (en) Micro-opto-mechanical system sensor, system, and manufacturing method
JP2006071549A (en) Temperature sensor
JP6578391B2 (en) Semiconductor manufacturing equipment component, semiconductor manufacturing equipment component temperature distribution measuring method, and semiconductor manufacturing equipment temperature distribution measuring device
JP2000221011A (en) Optical fiber type strain gage
JPS61234322A (en) Detector section of optical temperature sensor
JPH10227697A (en) Noncontact temperature measuring sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees