JP3383993B2 - Method for producing carbon fiber reinforced carbon composite material and sliding material using the same - Google Patents

Method for producing carbon fiber reinforced carbon composite material and sliding material using the same

Info

Publication number
JP3383993B2
JP3383993B2 JP15828592A JP15828592A JP3383993B2 JP 3383993 B2 JP3383993 B2 JP 3383993B2 JP 15828592 A JP15828592 A JP 15828592A JP 15828592 A JP15828592 A JP 15828592A JP 3383993 B2 JP3383993 B2 JP 3383993B2
Authority
JP
Japan
Prior art keywords
carbon fiber
defibration
composite material
degree
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15828592A
Other languages
Japanese (ja)
Other versions
JPH05345671A (en
Inventor
一夫 丹羽
敏弘 深川
均 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP15828592A priority Critical patent/JP3383993B2/en
Priority to PCT/JP1993/000812 priority patent/WO1993025493A1/en
Priority to DE69324105T priority patent/DE69324105T2/en
Priority to EP93913533A priority patent/EP0598923B1/en
Priority to US08/196,140 priority patent/US5525558A/en
Publication of JPH05345671A publication Critical patent/JPH05345671A/en
Application granted granted Critical
Publication of JP3383993B2 publication Critical patent/JP3383993B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、摩擦係数を制御できる
炭素繊維強化炭素複合材(以下、C/C複合材という)
の製造方法、及びそれを用いた摺動材に関するものであ
る。
The present invention relates to a carbon fiber reinforced carbon composite material (hereinafter referred to as C / C composite material) whose friction coefficient can be controlled.
And a sliding member using the same.

【0002】[0002]

【従来の技術】従来、航空機や車両用のブレーキや車両
のクラッチ等の摺動材には金属製のディスクロータ等が
使用されてきた。しかし、近年、車両等の軽量化ならび
に耐熱性等の特性向上の目的から、C/C複合材がブレ
ーキのディスクロータ等の摺動材に用いられてきてい
る。一般に、C/C複合材は長繊維あるいは短繊維状の
炭素繊維に樹脂またはピッチを含浸あるいは混合し、加
圧加熱成形し、これを不活性雰囲気下600〜2500
℃で焼成して製造される。
2. Description of the Related Art Conventionally, metal disc rotors have been used as sliding materials for brakes for aircraft and vehicles and clutches for vehicles. However, in recent years, C / C composite materials have been used for sliding materials such as disc rotors of brakes for the purpose of reducing the weight of vehicles and improving the characteristics such as heat resistance. Generally, a C / C composite material is obtained by impregnating or mixing a long fiber or short fiber carbon fiber with a resin or pitch, press-molding the mixture, and then subjecting this to 600 to 2500 in an inert atmosphere.
It is manufactured by firing at ℃.

【0003】摩擦係数を制御する方法としては、例えば
特公昭60−54270号公報に見られるように、コー
ルタールまたはコールタールおよび/もしくはピッチと
フラン樹脂とを含浸させて制御する方法、又、特公平1
−59459号公報に見られるように比較的長い繊維
(4〜6cm)と短い繊維(0.015〜0.3cm)
をランダムに配向させる方法、さらに、特公平3−78
498号公報に見られるように円筒の軸と直角な面を横
切るように炭素繊維が配向している炭素繊維強化熱硬化
性樹脂複合材を円筒の軸と直角な方向へ切断し、焼成、
緻密化し、摺動面に対して炭素繊維が角度をもって配向
させる方法が知られている。
As a method of controlling the coefficient of friction, for example, as disclosed in Japanese Patent Publication No. 60-54270, a method of controlling by impregnating coal tar or coal tar and / or pitch with a furan resin, or a special method. Fairness 1
Relatively long fibers (4-6 cm) and short fibers (0.015-0.3 cm) as seen in -59459.
Method for randomly orienting, and Japanese Patent Publication No. 3-78
No. 498, a carbon fiber reinforced thermosetting resin composite material in which carbon fibers are oriented so as to cross a plane perpendicular to the axis of the cylinder is cut in a direction perpendicular to the axis of the cylinder, and fired.
A method of densifying and orienting carbon fibers at an angle with respect to a sliding surface is known.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記特
公昭60−54270号公報に記載の方法ではマトリッ
クスのみに注目して本質的な炭素繊維の配向性について
は言及されておらず、又、特公平1−59459号公報
に記載の方法では、2種類の異なった炭素繊維を混合し
なくてはならず、且つ炭素繊維長の具体的な効果も示さ
れていなかった。さらに、特公平3−78498号公報
に記載の方法では、円筒の軸と直角な面を横切るように
炭素繊維が配向したディスクを輪切りにしなければなら
ず、工程が複雑となる問題があった。さらに上記の方法
では摩擦係数の制御という観点からは、具体的な記載も
なく、単に一般的傾向を示しているだけであった。そこ
で、本発明では、これまで知られている上記の方法より
も簡便に摩擦係数を制御できるC/C複合材の製造方法
を提供し、C/C複合材の摺動材としての用途を拡大す
ることを目的とする。
However, in the method described in Japanese Patent Publication No. 60-54270, only the matrix is focused on and the essential orientation of the carbon fibers is not mentioned, and the Japanese Patent Publication No. In the method described in Japanese Patent Laid-Open No. 1-59459, two different kinds of carbon fibers have to be mixed, and the specific effect of the carbon fiber length has not been shown. Further, in the method described in Japanese Patent Publication No. 3-78498, a disk in which carbon fibers are oriented so as to cross a surface perpendicular to the axis of the cylinder has to be sliced, resulting in a complicated process. Further, in the above method, from the viewpoint of controlling the friction coefficient, there is no specific description, and only a general tendency is shown. Therefore, the present invention provides a method for producing a C / C composite material that can control the friction coefficient more easily than the above-described methods known so far, and expands the use of the C / C composite material as a sliding material. The purpose is to do.

【0005】[0005]

【課題を解決するための手段】発明者等は、上記の課題
を解決するために検討を繰り返した結果、短繊維状の炭
素繊維束を解繊して繊維が二次元ランダムに配向したシ
ートを作製するに当たって、炭素繊維束の解繊度合を変
化させると、各種強度や摩擦係数が変化し、例えば摩擦
係数であれば高解繊の場合はC/C複合材の摩擦係数が
低くなり、低解繊の場合は逆に摩擦係数が高くなること
を見い出し、本発明を完成するに至った。
Means for Solving the Problems As a result of repeated studies to solve the above problems, the inventors have defibrated short fiber-like carbon fiber bundles to produce a sheet in which the fibers are two-dimensionally randomly oriented. When the defibration degree of the carbon fiber bundle is changed during production, various strengths and friction coefficients change. For example, in the case of a high defibration, the friction coefficient of the C / C composite material is low and low when the defibration coefficient is high. On the contrary, in the case of defibration, it was found that the friction coefficient was high, and the present invention was completed.

【0006】即ち、本発明は、あらかじめ炭素繊維束の
解繊度合と摩擦係数等の機械特性との相関式を求めてお
き、所望の摩擦係数等に応じて該相関式を用いて作製す
べき炭素繊維束の解繊度合を決定し、それにしたがった
解繊度合の炭素繊維シートを作製、成形、緻密化するこ
とにより、所望の摩擦係数等を有するC/C複合材が製
造できる方法、ならびに該製造方法で製造されたC/C
複合材を用いた摺動材に関する。
That is, in the present invention, a correlation equation between the degree of defibration of the carbon fiber bundle and the mechanical characteristics such as the friction coefficient should be obtained in advance, and the correlation equation should be used in accordance with the desired friction coefficient. A method capable of producing a C / C composite material having a desired friction coefficient and the like by determining the defibration degree of a carbon fiber bundle, and producing, molding and densifying a carbon fiber sheet having a defibration degree according to the defibration degree, and C / C manufactured by the manufacturing method
The present invention relates to a sliding material using a composite material.

【0007】以下、本発明の詳細を説明する。本発明で
最も重要なことは、あらかじめ炭素繊維束の解繊度合と
各種機械的強度の相関式を求めることである。以下摩擦
係数を例にとって説明する。通常解繊度合と摩擦係数の
相関は、一次式で求める。具体的には下記式−1のよう
に示され、式−1の係数AおよびBを求め 解繊度合=A−B×摩擦係数 ・・・式−1 その際、係数A、Bの値は解繊度合の評価方法によって
も変化するし、また、使用する炭素繊維や樹脂などの原
料の種類あるいは解繊度合以外の製造条件を変更するこ
とによっても変化する。したがって、係数A、Bを求め
るに当たっては、以上の因子は特定の条件に固定し、解
繊度合のみを最低2種、好ましくは3種以上に変化させ
たC/C複合材をあらかじめ製造し、その摩擦係数を測
定し、解繊度合と摩擦係数の相関関係を調べておかなけ
ればならない。
The details of the present invention will be described below. The most important thing in the present invention is to previously obtain a correlation equation between the degree of defibration of the carbon fiber bundle and various mechanical strengths. The friction coefficient will be described below as an example. The correlation between the degree of defibration and the coefficient of friction is usually obtained by a linear equation. Specifically, it is expressed as in the following formula-1, and the coefficients A and B of the formula-1 are obtained, and the defibration degree = A−B × friction coefficient ... It also changes depending on the evaluation method of the degree of defibration, and also by changing the type of raw material such as carbon fiber or resin used or manufacturing conditions other than the degree of defibration. Therefore, in determining the coefficients A and B, the above factors are fixed to specific conditions, and a C / C composite material in which only the defibration degree is changed to at least 2 types, preferably 3 or more types is manufactured in advance, The friction coefficient must be measured and the correlation between the defibration degree and the friction coefficient must be investigated.

【0008】本発明で用いる炭素繊維としては、ピッチ
系、PAN系あるいはレーヨン系炭素繊維等のいずれの
ものも使用できる。なお、炭素繊維束に集束剤が付着し
ていると、繊維束が解繊されづらくなるため、解繊度合
を低くする場合には好ましいが、逆に解繊度合を高くす
る場合は好ましくない。炭素繊維の形態は通常2000
〜8000本の単繊維の束からなるトウ、ストランド、
ロービング、ヤーン等であり、これらをカッティングす
ることによって得られる短繊維状のものを用いる。本発
明においては、通常0.3〜100mm、好ましくは5
〜50mm程度の短繊維束を使用する。
As the carbon fiber used in the present invention, any of pitch type, PAN type and rayon type carbon fibers can be used. When the sizing agent is attached to the carbon fiber bundle, the fiber bundle becomes difficult to be defibrated. Therefore, it is preferable to reduce the defibration degree, but not to increase the defibration degree. The form of carbon fiber is usually 2000
Tow, strand consisting of ~ 8000 single fiber bundle,
A roving, a yarn, or the like, which is a short fiber obtained by cutting these is used. In the present invention, it is usually 0.3 to 100 mm, preferably 5
A short fiber bundle of about 50 mm is used.

【0009】次にこれらの炭素繊維束を解繊し、二次元
ランダムのシートを作製する。その際、必要に応じてS
iC、Al23、カーボンブラックなどの無機繊維、無
機物などを添加してもよい。炭素繊維束の解繊度合は、
目標とする摩擦係数から、あらかじめ求めておいた式−
1を用いて決定する。したがって、炭素繊維束を解繊す
る方法としては、解繊度合を広い範囲で制御できる方法
であることが好ましい。
Next, these carbon fiber bundles are defibrated to produce a two-dimensional random sheet. At that time, if necessary, S
Inorganic fibers such as iC, Al 2 O 3 and carbon black, and inorganic substances may be added. The degree of defibration of the carbon fiber bundle is
Formula calculated in advance from the target friction coefficient −
Determine using 1. Therefore, the method for defibrating the carbon fiber bundle is preferably a method capable of controlling the defibration degree in a wide range.

【0010】具体的な解繊方法としては、例えば、不織
布の製造で一般的な、ランダムウェッバーを使用し、炭
素繊維束を針山のついた対向する複数のシリンダーを通
過させて乾式で解繊する方法がある。この場合にはシリ
ンダーの回転速度等を上げることによって解繊度合を高
くすることができる。また、パルプ等の叩解処理に用い
るビーターや、解繊処理に用いるパルパーなどを使用
し、溶媒中に分散させた炭素繊維束を湿式で解繊した後
に抄紙、乾燥する方法もある。この場合には処理時間を
長くすることによって解繊度合を高くすることができ
る。
As a specific defibration method, for example, a random webber, which is commonly used in the manufacture of nonwoven fabrics, is used, and a carbon fiber bundle is defibrated by a dry method by passing through a plurality of opposed cylinders having needle threads. There is a way. In this case, the degree of defibration can be increased by increasing the rotation speed of the cylinder. There is also a method in which a beater used for beating of pulp or the like, a pulper used for defibration treatment, and the like are used to wet-defibrate the carbon fiber bundle dispersed in the solvent, and then papermaking and drying. In this case, the degree of defibration can be increased by increasing the treatment time.

【0011】次に、該炭素繊維シートにおける炭素繊維
束の解繊度合を評価し、期待した通りの解繊度合のシー
トが作製されているか否かを判定する。この結果を直ち
に製造条件に反映させることで、解繊度合の精度をより
高めることができるので、解繊度合の評価方法は簡便で
迅速であることが大切である。解繊度合の評価方法とし
ては、特に限定はしないが、例えば、解繊度合が高くな
るとシートのかさ高さが増加することに着目して、一定
面積、一定枚数、重量W(g)のシートを積層し、これ
に一定の荷重をかけた場合のシート全体の厚みt(m
m)を測定し、式−2に定義する解繊度指数xを求める
方法がある。 解繊度指数 x=t/W ・・・式−2
Next, the degree of defibration of the carbon fiber bundle in the carbon fiber sheet is evaluated to determine whether or not a sheet having the expected degree of defibration has been produced. Since the accuracy of the defibration degree can be further improved by immediately reflecting this result on the production conditions, it is important that the evaluation method of the defibration degree is simple and quick. The method for evaluating the degree of defibration is not particularly limited, but for example, focusing on the fact that the bulkiness of the sheet increases as the degree of defibration increases, a sheet having a certain area, a certain number of sheets, and a weight W (g) And the total thickness t (m
There is a method of measuring m) and obtaining the defibration index x defined in Formula-2. Disentanglement index x = t / W ... Formula-2

【0012】解繊度合が高くなるほどシート厚さtは大
きくなるため、解繊度指数xも大きくなる。この方法の
場合、シートに樹脂等を含浸した後でも評価を行うこと
ができる。ただし、炭素繊維や樹脂の種類、また両者の
割合によって解繊度指数xの値は変化するため、常に同
一の条件で評価する必要がある。解繊度評価のもう一つ
の例としては、解繊度が高くなると繊維間の隙間が減少
することに着目し、一定重量、一定面積のシートを使用
して光透過率T(%)を測定し、式−3に定義する解繊
度指数yを求める方法がある。 解繊度指数 y=100−T ・・・式−3
Since the sheet thickness t increases as the degree of defibration increases, the defibration index x also increases. In the case of this method, the evaluation can be performed even after the sheet is impregnated with a resin or the like. However, since the value of the defibration index x changes depending on the types of carbon fiber and resin and the ratio of both, it is necessary to always evaluate under the same conditions. As another example of the defibration degree evaluation, focusing on the fact that the gap between fibers decreases as the defibration degree increases, the light transmittance T (%) is measured using a sheet having a constant weight and a constant area, There is a method of obtaining the defibration index y defined in Expression-3. Disentanglement index y = 100-T ... Formula-3

【0013】解繊度度合が高くなるほど透過率Tは小さ
くなるため、解繊度指数yは大きくなる。この方法の場
合も、シートに樹脂等を含浸した後でも評価を行うこと
ができるが、シートの目付(単位面積当たりの重量)が
大きすぎる場合には、解繊度にかかわらず、光が透過で
きなくなるため、評価できるシートの目付に制限があ
る。
Since the transmittance T decreases as the degree of defibration increases, the defibration index y increases. This method can be evaluated even after impregnating the sheet with resin, etc., but if the sheet weight (weight per unit area) is too large, light can be transmitted regardless of the defibration degree. There is a limit to the basis weight of the sheet that can be evaluated.

【0014】シートの目付(1m2当りの重量)として
は、種々のものが取り得るが、取り扱い性、含浸性、均
一性を考えると10〜500g/m2が最適である。こ
の様にして得られた所望の解繊度合のシートにフェノー
ル樹脂、フラン樹脂、あるいは石油系、石炭系ピッチ等
のマトリックスを含浸させた後乾燥する。その際、マト
リックスはアルコール、アセトン、アントラセン油等の
溶媒に溶解して適正な粘度に調整したものを使用する。
Although various weights (weight per 1 m 2 ) of the sheet can be taken, 10-500 g / m 2 is optimal in view of handleability, impregnation property and uniformity. The thus-obtained sheet having a desired defibration degree is impregnated with a phenol resin, a furan resin, or a matrix such as petroleum-based or coal-based pitch and then dried. At this time, the matrix used is one that is dissolved in a solvent such as alcohol, acetone, or anthracene oil and adjusted to have an appropriate viscosity.

【0015】次いで、この乾燥したシートを積層して型
へ充填し100〜500℃の温度で加圧成形してV
f(繊維含有量)=5〜65%、好ましくは10〜55
%程度の成形体を得る。その後、N2ガスなどの不活性
ガス雰囲気中で1〜200℃/hの昇温速度で800〜
2500℃まで昇温し、焼成してC/C複合剤を得る。
上記焼成したC/C複合剤を適宜、例えば次の3種のマ
トリックスを単独又は組み合わせることにより緻密化処
理を行ない、さらに強度の向上を図るのが良い。
Then, the dried sheets are laminated, filled in a mold, and pressure-molded at a temperature of 100 to 500 ° C. to obtain V.
f (fiber content) = 5 to 65%, preferably 10 to 55
% Molding is obtained. Then, at a temperature rising rate of 1 to 200 ° C./h in an inert gas atmosphere such as N 2 gas, 800 to
The temperature is raised to 2500 ° C. and the mixture is fired to obtain a C / C composite agent.
It is preferable that the calcined C / C composite agent is appropriately subjected to a densification treatment by using, for example, the following three types of matrix alone or in combination to further improve the strength.

【0016】1)樹脂又はピッチによる緻密化処理 所定温度に加熱された槽に上記C/C複合材を載置し、
槽内を真空とした後、樹脂又は溶融ピッチを供給し、焼
成により生じた空隙にマトリックスを含浸する。この後
再度800〜2500℃の温度で焼成する。上記工程を
繰り返すことにより目的のC/C複合材の緻密化処理を
行う。 2)CVDによる緻密化処理 誘導加熱コイル等により反応器内に載置した上記C/C
複合材を加熱し、炭化水素類あるいはハロゲン化炭化水
素類の蒸気をH2ガス、Arガス或いはN2ガスと共に反
応器内へ供給し、生成する熱分解炭素で空隙を含浸し、
緻密化する。さらに必要に応じて黒鉛化処理を行い最終
的に所望の摩擦係数を有するC/C複合材が製造でき
る。
1) Densification treatment with resin or pitch The above C / C composite material is placed in a bath heated to a predetermined temperature,
After the inside of the tank is evacuated, resin or molten pitch is supplied, and the voids formed by firing are impregnated with the matrix. After that, firing is performed again at a temperature of 800 to 2500 ° C. By repeating the above steps, the target C / C composite material is densified. 2) Densification treatment by CVD The above C / C placed in the reactor by an induction heating coil or the like
The composite material is heated, steams of hydrocarbons or halogenated hydrocarbons are supplied into the reactor together with H 2 gas, Ar gas or N 2 gas, and voids are impregnated with the generated pyrolytic carbon,
Densify. Further, if necessary, graphitization treatment is performed to finally produce a C / C composite material having a desired friction coefficient.

【0017】そして、他の機械的特性、例えば圧縮強
度、引張強度、曲げ強度、衝撃強度についても同様にし
て解繊度合との相関関係を求めて、それに基いて解繊度
合を制御することによって所望の特性を有するC/C複
合材を得ることができる。一般に圧縮強度は解繊度指数
が大きい程、強度が高くなり、引張強度、曲げ強度、衝
撃強度に関しては、解繊度指数が小さい程、強度が高く
なる。
Further, for other mechanical properties such as compressive strength, tensile strength, bending strength and impact strength, the correlation with the defibration degree is similarly obtained, and the defibration degree is controlled based on the correlation. It is possible to obtain a C / C composite material having desired properties. In general, the higher the defibration index of compressive strength, the higher the strength, and the lower the defibration index of tensile strength, bending strength, and impact strength, the higher the strength.

【0018】[0018]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はその要旨を越えない限り、下記実施例に
よって限定されるものではない。 (実施例1)炭素繊維束の解繊度合を表す式−2の解繊
度指数xと摩擦係数との相関関係が、式−1においてA
=1.77、B=4.33となる下記の製造条件におい
て、目標の摩擦係数が0.26となるC/C複合材を製
造するため、式−4から解繊度指数xを計算し、目標解
繊度指数x=0.64を得た。 目標解繊度指数x=1.77−4.33×目標摩擦係数 ・・・式−4
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist. (Example 1) The correlation between the defibration index x and the friction coefficient of the equation-2, which represents the defibration degree of the carbon fiber bundle, is A
= 1.77, B = 4.33 under the following manufacturing conditions, in order to manufacture a C / C composite material having a target friction coefficient of 0.26, the defibration index x is calculated from Formula-4, The target defibration index x = 0.64 was obtained. Target defibration index x = 1.77-4.33 × target friction coefficient ... Equation-4

【0019】次に、30mm長に切断したフィラメント
数4000の集束剤を使用していないピッチ系炭素繊維
束をランダムウェッバーにて解繊し、炭素繊維束の解繊
度合が解繊度指数xが0.64、目付が200g/m2
の二次元ランダムに配向したシートを得た。次に該シー
トにエタノールで希釈したフェノール樹脂を含浸させた
後乾燥し、単位面積当たりで110g/m2のフェノー
ル樹脂を含浸したシートを作製した。
Next, a pitch-based carbon fiber bundle, which is cut into 30 mm length and has 4000 filaments and which does not use a sizing agent, is defibrated with a random webber, and the defibration index x of the defibration index x of the carbon fiber bundle is 0. .64, basis weight is 200 g / m 2
A two-dimensional randomly oriented sheet of was obtained. Next, the sheet was impregnated with a phenol resin diluted with ethanol and then dried to prepare a sheet impregnated with 110 g / m 2 of the phenol resin per unit area.

【0020】この状態のシートから95×95mmの大
きさのサンプル20枚を採取し、その重量W(g)を測
定した。次に、この20枚を端部をそろえて積層し、
2.2kgの荷重をかけた状態でウェップ20枚の厚さ
t(mm)を測定した。そして、Wおよびtから式−2
で定義した解繊度指数xを計算し、目標通りに解繊度指
数xが0.64であるシートが得られていることを確認
した。
Twenty samples having a size of 95 × 95 mm were taken from the sheet in this state, and the weight W (g) thereof was measured. Next, these 20 sheets are stacked with their ends aligned,
The thickness t (mm) of 20 webs was measured with a load of 2.2 kg applied. Then, from W and t, the expression-2 is obtained.
The defibration index x defined in the above was calculated, and it was confirmed that a sheet having a defibration index x of 0.64 was obtained as intended.

【0021】このシートを金型内へ積層し、250℃に
て加圧成形し、Vf〜50%の成形体を得た。この成形
体を加熱炉で2000℃まで焼成した後、高周波加熱装
置により550℃に加熱し、ジクロルエチレン蒸気を、
窒素ガスをキャリアーガスとして反応器内に導入して、
熱分解炭素により気孔を充填する緻密化処理を行った。
This sheet was laminated in a mold and pressure-molded at 250 ° C. to obtain a molded body having V f -50%. After firing this molded body to 2000 ° C. in a heating furnace, it is heated to 550 ° C. by a high frequency heating device, and dichloroethylene vapor is
Introducing nitrogen gas into the reactor as a carrier gas,
Densification treatment was performed to fill the pores with pyrolytic carbon.

【0022】次いで、ピッチを含浸した後、加熱炉で1
000℃で焼成した。さらに同様の含浸−焼成の操作を
再度繰り返した。その後に2000℃の処理を行って本
発明のC/C複合材を得た。このC/C複合材を用い
て、回転数5000rpm、面圧12kg/cm2の条
件下で慣性摩擦試験を100回繰り返し、摩擦係数を測
定した。このC/C複合材の摩擦係数を表−1に示す。
Then, after impregnating the pitch, 1 in a heating furnace
It was baked at 000 ° C. Further, the same impregnation-calcination operation was repeated again. Thereafter, a treatment at 2000 ° C. was performed to obtain a C / C composite material of the present invention. Using this C / C composite material, the inertia friction test was repeated 100 times under the conditions of a rotation speed of 5000 rpm and a surface pressure of 12 kg / cm 2 , and the friction coefficient was measured. The friction coefficient of this C / C composite material is shown in Table-1.

【0023】(実施例2)目標摩擦係数0.22となる
C/C複合材を製造するため、式−4より目標解繊度指
数0.82を得た。そして、実施例1と同様な方法でC
/C複合材を得た。このC/C複合材の摩擦係数を表−
1に示す。
(Example 2) In order to manufacture a C / C composite material having a target friction coefficient of 0.22, a target defibration index of 0.82 was obtained from the equation-4. Then, in the same manner as in Example 1, C
A / C composite material was obtained. Table of friction coefficient of this C / C composite
Shown in 1.

【0024】(実施例3)目標摩擦係数0.165とな
るC/C複合材を製造するため、式−4より目標解繊度
指数1.06を得た。そして、実施例1と同様な方法で
C/C複合材を得た。このC/C複合材の摩擦係数を表
−1に示す。
(Example 3) In order to manufacture a C / C composite material having a target friction coefficient of 0.165, a target defibration index of 1.06 was obtained from the equation-4. Then, a C / C composite material was obtained in the same manner as in Example 1. The friction coefficient of this C / C composite material is shown in Table-1.

【0025】[0025]

【発明の効果】本発明により、各種の用途・要求に応じ
た機械的特性、特に摩擦係数を有するC/C複合材を容
易に得ることができる。
According to the present invention, it is possible to easily obtain a C / C composite material having mechanical properties, especially a friction coefficient, according to various uses and requirements.

【0026】[0026]

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−140211(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/83 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-3-140211 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C04B 35/83

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の単繊維からなる短繊維状の炭素繊
維束を解繊し、繊維が二次元ランダムに配向したシート
を作製し、樹脂又はピッチを含浸後、積層して成形した
後に、焼成、緻密化処理して炭素繊維強化炭素複合材を
製造するに当たって、炭素繊維束の解繊度合とこれを用
いて得られる炭素繊維強化炭素複合材の摩擦係数との相
関を求めておき、この相関に基いて、所期の摩擦係数を
有する炭素繊維強化炭素複合材が得られるように用いる
炭素繊維束の解繊度合を制御することを特徴とする
法。
1. A short fiber-shaped carbon fiber bundle composed of a plurality of single fibers is defibrated to prepare a sheet in which fibers are two-dimensionally randomly oriented, impregnated with a resin or pitch, and then laminated and molded, use fired, in manufacturing the carbon fiber reinforced carbon composite material is treated densified fineness case and this solution of the carbon fiber bundle
With the friction coefficient of carbon fiber reinforced carbon composites obtained by
Seki, and based on this correlation, calculate the desired coefficient of friction.
Used to obtain a carbon fiber-reinforced carbon composite material having the following features: <br /> A method characterized by controlling the degree of defibration of a carbon fiber bundle
Law.
【請求項2】 炭素繊維束の解繊度合を、これを用いて
作製したシートのかさ高さにより測定することを特徴と
する請求項1記載の方法。
2. The degree of defibration of carbon fiber bundles
Characterized by measuring the bulk height of the produced sheet
The method of claim 1, wherein
【請求項3】 炭素繊維束の解繊度合を、これを用いて
作製したシートの光透過率により測定することを特徴と
する請求項1記載の方法。
3. The degree of defibration of carbon fiber bundles
The method according to claim 1, wherein the light transmittance of the produced sheet is measured.
【請求項4】 請求項1ないし3のいずれかの方法で製
造された炭素繊維強化炭素複合材を用いた摺動材。
4. A method according to any one of claims 1 to 3.
Sliding member using granulated carbon fiber-reinforced carbon composite material.
JP15828592A 1992-06-16 1992-06-17 Method for producing carbon fiber reinforced carbon composite material and sliding material using the same Expired - Lifetime JP3383993B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP15828592A JP3383993B2 (en) 1992-06-17 1992-06-17 Method for producing carbon fiber reinforced carbon composite material and sliding material using the same
PCT/JP1993/000812 WO1993025493A1 (en) 1992-06-16 1993-06-16 Method of manufacturing carbon fiber-reinforced composite carbon material, carbon fiber-reinforced composite carbon material, and sliding material
DE69324105T DE69324105T2 (en) 1992-06-16 1993-06-16 METHOD FOR PRODUCING CARBON FIBER ARMED CARBON COMPOSITE MATERIAL, CARBON FIBER ARMORED CARBON COMPOUND MATERIAL AND SLIDING MATERIAL
EP93913533A EP0598923B1 (en) 1992-06-16 1993-06-16 Method of manufacturing carbon fiber-reinforced composite carbon material, carbon fiber-reinforced composite carbon material, and sliding material
US08/196,140 US5525558A (en) 1992-06-16 1993-06-16 Process for producing carbon fiber reinforced carbon composite material, carbon fiber reinforced carbon composite material and sliding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15828592A JP3383993B2 (en) 1992-06-17 1992-06-17 Method for producing carbon fiber reinforced carbon composite material and sliding material using the same

Publications (2)

Publication Number Publication Date
JPH05345671A JPH05345671A (en) 1993-12-27
JP3383993B2 true JP3383993B2 (en) 2003-03-10

Family

ID=15668258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15828592A Expired - Lifetime JP3383993B2 (en) 1992-06-16 1992-06-17 Method for producing carbon fiber reinforced carbon composite material and sliding material using the same

Country Status (1)

Country Link
JP (1) JP3383993B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255234B1 (en) * 1997-01-30 2001-07-03 Hitco Carbon Composites, Inc. Ultra low friction carbon/carbon composites for extreme temperature applications
JP4673571B2 (en) 2004-04-02 2011-04-20 本田技研工業株式会社 Friction member for friction engagement device and method for manufacturing the same

Also Published As

Publication number Publication date
JPH05345671A (en) 1993-12-27

Similar Documents

Publication Publication Date Title
US5578255A (en) Method of making carbon fiber reinforced carbon composites
US5525558A (en) Process for producing carbon fiber reinforced carbon composite material, carbon fiber reinforced carbon composite material and sliding material
EP0647793B1 (en) Asbestos-free friction material
JP3383993B2 (en) Method for producing carbon fiber reinforced carbon composite material and sliding material using the same
JP3395261B2 (en) Method for producing carbon fiber reinforced carbon composite material, carbon fiber reinforced composite material, and sliding material using the same
JP3339075B2 (en) Carbon fiber reinforced carbon composite, method for producing the same, and sliding material using the same
JP3433473B2 (en) Carbon fiber reinforced carbon composite, method for producing the same and sliding material using the same
JP2012153575A (en) Carbon fiber-reinforced silicon carbide-based ceramic and method for producing the same
JP3218829B2 (en) Brake sliding part
JP3383989B2 (en) Method for producing carbon fiber reinforced carbon composite
JP3383990B2 (en) Carbon fiber reinforced carbon composite and sliding material using the same
JP2906484B2 (en) Carbon fiber reinforced carbon composite and method for producing the same
JP3560065B2 (en) Carbon fiber reinforced carbon composite and sliding material using the same
SU952887A1 (en) Process for producing carbon friction product
JP2969957B2 (en) Brake sliding part
JP3383991B2 (en) Carbon fiber reinforced carbon composite and sliding material using it
JP3859748B2 (en) Aircraft brake materials
JP3484711B2 (en) Method for producing carbon fiber reinforced carbon composite
JP3383992B2 (en) Carbon fiber reinforced carbon composite and sliding material using the same
JPH08120600A (en) Sheet and its production
JPH09278553A (en) Production of carbon composite material reinforced with carbon fiber
JP2864304B2 (en) Brake sliding part
JPH04231739A (en) Brake sliding part
JP4014237B2 (en) Brake sliding part
JPH10167848A (en) Sliding member of brake

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121227

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121227

Year of fee payment: 10