JP4014237B2 - Brake sliding part - Google Patents

Brake sliding part Download PDF

Info

Publication number
JP4014237B2
JP4014237B2 JP08358596A JP8358596A JP4014237B2 JP 4014237 B2 JP4014237 B2 JP 4014237B2 JP 08358596 A JP08358596 A JP 08358596A JP 8358596 A JP8358596 A JP 8358596A JP 4014237 B2 JP4014237 B2 JP 4014237B2
Authority
JP
Japan
Prior art keywords
brake
stator
composite material
sliding
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08358596A
Other languages
Japanese (ja)
Other versions
JPH09278554A (en
Inventor
巌 山本
敏弘 深川
昭 小原
明彦 葭谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP08358596A priority Critical patent/JP4014237B2/en
Publication of JPH09278554A publication Critical patent/JPH09278554A/en
Application granted granted Critical
Publication of JP4014237B2 publication Critical patent/JP4014237B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、強度及び摩擦、摺動特性に優れ、熱伝導性も良好な炭素繊維強化炭素複合材(以下C/C複合材)で形成されたブレーキ摺動部に関するものである。
【0002】
【従来の技術】
一般のブレーキ材料は回転体と固定体を摩擦接合することにより運動エネルギーを熱エネルギーへ変換させ、運動している物体を減速、さらには停止させる機能を持っているものである。
近年、高速化や大型化による重量増により、特に航空機用ブレーキ材としては、C/C複合材が、その優れた熱伝導率と、大きな熱容量、高強度等から、多くの飛行機で実用化される様になってきている。
【0003】
一般にC/C複合材はPAN系、ピッチ系、或いはレーヨン系などの長又は短炭素繊維にフェノール樹脂、フラン樹脂などの熱硬化性樹脂或いはピッチ類などの熱可塑性樹脂等を含浸又は混合して加熱成形したものを非酸化性ガス雰囲気において焼成し、更に緻密化、黒鉛化処理することにより製造されている。
【0004】
【発明が解決しようとする課題】
そしてC/Cブレーキ材として望まれる特性としては、第1に定められた停止距離以内に停止できる制動能力を有する材料であること、すなわち、適度な摩擦係数を有する材料であることである。
第2に制動時に過大な制動トルク値を発生し、いわゆるガク効きを起こさしめたり、ブレーキ材回りに過大な荷重を負わせたりしない性状を有していないことが望まれる。すなわち、過大な摩擦係数を有しない材料でかつ瞬時摩擦係数が適度な値を示す材料であることである。
【0005】
第3は、摩耗量が少ないことが必要である。C/C複合材はマトリックス炭素と炭素繊維からなるものであるが、ブレーキ材として使用した時には摺動面から炭素繊維又はマトリックス炭素がはがれ落ちることにより摩耗し、使用回数に限界があるが、これを大幅に改良し、ブレーキの寿命を延ばすことである。
第4に、ブレーキアッセンブリとして組立てられ、ブレーキングされた時に、取り付け部にかかる圧縮応力に耐えられる十分な圧縮強度(摺動面に平行な方向の圧縮強度)を有していることである。
最後に摺動により発生した熱で、ブレーキディスクの温度が上がり過ぎないように、熱容量、摺動面に平行な方向の熱伝導率が大きいことが必要である。
【0006】
【課題を解決するための手段】
そこで発明者等は、上記の課題を解決すべく鋭意検討を繰り返した結果、炭素繊維強化炭素複合材で形成された環状ディスク形状のC/C複合材からなるステータとロータからなるブレーキ摺動部であって、
(1)慣性式摩擦試験機を使用して、平均摺動面直径83.5mmのロータとステータ からなる試験片をホルダーに固定し、摺動面速度22m/sで回転させたロータ をブレーキ圧力としての摺動面圧力150psiでステータに押しつけ摺動させ たときの、平均摩擦係数が、0.18〜0.26
ブレーキ圧力が設定値に達する時間までのブレーキング初期の瞬時動摩擦係数が 、0.35以下
(2)同様にして摺動させたときの、摩耗量が3×10-4mm/回/面以下
(3)環状ディスクロータ及びステータの摺動面に平行な方向の圧縮強度が、10kg /mm2
あるものを知得した。
【0007】
以下、本発明を詳細に説明する。
本発明に用いる炭素繊維は、ピッチ系の炭素繊維で公知のものが使用できるが、望ましくは、炭素繊維の引張弾性率が10〜25t/mm2 のものであり、不活性ガス雰囲気下で1600〜2000℃で焼成すると引張弾性率が50t/mm2 以上に変換される性質を有するものであるとさらに望ましい。
【0008】
用いられる炭素繊維の形態としては、複数の単繊維からなるトウ、ストランド、ロービング、ヤーン等の形態であり、これをカッティングすることにより得られる短繊維を用いることが好ましい。これら短繊維は、複数の単繊維の束から形成されており、本発明においては、通常0.3〜100mm、好ましくは5〜50mm程度の短繊維を使用する。C/C複合材とする際に該短繊維を開繊し、分散し、単繊維が2次元的にランダム配向した(2次元ランダム)シートを作製し、マトリックス物質を炭素繊維の間に充填させることが好ましい。
【0009】
ここで、上記短繊維状炭素繊維を乾式開繊し、2次元ランダムシートを製造する具体的な製造方法としては、例えば、紡績において一般的な機械的に炭素繊維をモノフィラメント化し、シートを作製するランダムウェーバーを使用して製造したり、またはエアーにより開繊し、シートを製造する方法などがある。
【0010】
また上記短繊維状炭素繊維を湿式開繊し、2次元ランダムシートを製造する方法としては、例えば、パルプ等の叩解処理に通常使用されているビーターや開繊処理に用いられるパルパーを使用し、溶媒中で短繊維状炭素繊維を開繊後、例えば底部にスクリーンを有する型枠等に少量ずつ供給したり、開繊後攪拌等の手段で均一に分散させ、金網等で抄紙後、乾燥させて作製させる方法が挙げられる。短繊維状の炭素繊維を均一に分散させる溶媒としては、好ましくは水、あるいはアセトン、炭素数1から5のアルコールアントラセン油等を用いることができるが、その他の有機溶媒を用いてもよい。又該溶媒中にフェノール樹脂、フラン樹脂あるいは、ピッチ等を分散もしくは溶解させておくと、炭素繊維同志が接着された状態となり、次工程での取扱をより容易とするので好ましい。更に、繊維素グリコール酸ナトリウム、ポリビニルアルコール、ヒドロキシセルロース等の増粘剤を溶媒中に加えておくと、その効果が更に増大するので好ましい。
【0011】
2次元ランダムシートの目付(1m2当たりの重量)としては、目的に応じて種々のものが取り得るが、取り扱い性、含浸性、均一性を考えると10〜500g/m2が最適である。
このようにして得られた2次元ランダムシートにフェノール樹脂、フラン樹脂、あるいは石油系、石炭系ピッチ等のマトリックスを含浸させた後に乾燥する。その際、マトリックスはアルコール、アセトン、アントラセン油等の溶媒に溶解して適正な粘度に調整したものを使用する。
【0012】
次いで、この乾燥したシートを積層して目的に応じた金型に充填し、100〜500℃の温度範囲で加圧成形して、Vf(炭素繊維含有量)=5〜65%、好ましくは10〜65%、さらに好ましくは35〜50%程度の成形体を得る。その後、N2 ガスなどの不活性ガス雰囲気中で1〜200℃/hrの昇温速度で800〜2200℃まで、好ましくは1800〜2200℃まで昇温する1次焼成を経て、C/C複合材を得る。
【0013】
上記の焼成したC/C複合材には多数の空隙があり、このままでは特性的に実用に供することができない。そこで、この空隙を低減するために本発明では、CVDによる緻密化処理を行い、次いでピッチ又は樹脂をマトリックスとして緻密化処理を行う。
【0014】
CVDによる緻密化処理は、誘導加熱コイル又は抵抗加熱等により反応器内に載置した上記C/C複合材を加熱し、メタン又は、プロパンの様な炭化水素類あるいはハロゲン化炭化水素類の蒸気をH2 ガス、ArガスあるいはN2 ガスと共に反応器内へ供給し生成する熱分解炭素で空隙に含浸し、緻密化する。
【0015】
ピッチ又は樹脂による緻密化処理は、CVDによる緻密化処理後のC/C複合材を載置した槽を所定温度に加熱し、槽内を真空とした後に溶融したピッチ又は樹脂を供給し加圧することにより空隙に含浸する。この後、700〜2100℃好ましくは700〜1000℃の温度で焼成する。このピッチ又は樹脂の含浸及び焼成という緻密化処理を繰り返すことにより目的のC/C複合材の緻密化処理を行う。さらに必要に応じ、黒鉛化処理を行うことができる。
【0016】
上記緻密化処理は、CVDによる緻密化処理によって体積が10〜35%好ましくは10〜25%増加するまで緻密化する。次いで、ピッチ又は樹脂の含浸及び焼成による緻密化処理により嵩密度が、通常1.60〜1.80、好ましくは1.65〜1.75になるまで緻密化される。
【0017】
そして、緻密化処理後に最終熱処理を行う場合は、最終熱処理後の嵩密度が1.60〜1.80、好ましくは1.65〜1.75になるように緻密化される。該最終熱処理温度は、1400〜2100℃、好ましくは1500〜1800℃で行われる。
【0018】
このようにして製造されたC/C複合材は、ロックウェル硬度計で測定した硬度が、70〜125HRP、好ましくは85〜120HRP、Vf(炭素繊維の体積含有率)としては10〜50%、好ましくは30〜45%である。
また、圧縮強度10Kg/mm2 以上、好ましくは12Kg/mm2 以上、熱伝導率30W/m・K以上、好ましくは35W/m・K以上、さらに好ましくは40W/m・K以上である。
このようにして製造されたC/C複合材を用いて、環状ディスクロータ及びステータを製造し、組み合わせて得られるブレーキ摺動部は、平均摩擦係数が0.18〜0.26、好ましくは0.19〜0.24、瞬時動摩擦係数が、0.35以下摩耗量が3×10-4mm/回/面、好ましくは2×10-4mm/回/面以下であり、優れた性能を有するものである。
【0019】
以下にC/C複合材の評価方法について説明する。
(ブレーキ性能試験)慣性式摩擦試験機を使用して、C/C複合材で形成された固定ディスク(ステータ)と回転ディスク(ロータ)からなる試験片(平均摺動面直径83.5mm)をホルダーに固定し、互いに摺動させて摩擦試験を実施する(図1)。
試験条件は、ブレーキ圧力(摺動面圧力として)150psi、摺動面速度=22m/s(単位面積当たりの吸収エネルギーE=2.0 ×103 J/cm2)で実施し、平均摩擦係数、ブレーキング初期(ブレーキ圧力が設定値に達する時間まで)の瞬時摩擦係数、摩耗量を測定する。
(強度)JIS−K7208に準拠して測定した。
(熱伝導率)JIS−R1611に準拠して、レーザーフラッシュ法を用いて測定した。
【0020】
【実施例】
以下、本発明を、実施例を用いて、より詳細に説明するが、本発明はその要旨を越えない限り、実施例に限定されるものではない。
【0021】
(実施例1)
30mm長に切断したピッチ系炭素繊維(三菱化学製「ダイアリード」K321)を乾式開繊し、2次元ランダムに配向した300g/m2の炭素繊維シートを得た。このシートへエタノールで希釈したフェノール樹脂を含浸させた後、乾燥して、目付量580g/m2のフェノール樹脂を含浸したシートを作製した。このシートを金型内へ積層し、280℃にて加圧成形し、Vf≒42%の成形体を得た。この成形体を2000℃で1次焼成した後、前述のCVDによる緻密化処理(CVD体積%≒17%)を行い、続いて樹脂を含浸して、不活性雰囲気で1000℃で焼成して炭化する緻密化工程を複数回繰り返し、1600℃の最終熱処理を行って、嵩密度≒1.70、Vf≒40%、ロックウェル硬度93〜104HRPのC/C複合材からなる環状ディスクロータ及びステータを得た。得られた環状ディスクロータ及びステータを組み合わせて、ブレーキ摺動部を製造した。
【0022】
このブレーキ摺動部の性能試験を行ったところ、平均摩擦係数0.20:瞬時摩擦係数0.31、摩耗量1.0×10-4mm/回/面、熱伝導率44W/m・K、圧縮強度13.4kg/m2 の結果を得た。
【0023】
(比較例1)
実施例1と同様の成形体を同条件で1次焼成した後、ピッチのみで緻密化処理を行い実施例1と同条件で最終熱処理し、嵩密度≒1.72、Vf≒40%、ロックウェル硬度100〜110HRPのC/C複合材を得、ブレーキ摺動部を製造した。
【0024】
このブレーキ摺動部の性能試験を行ったところ、平均摩擦係数0.25、瞬時摩擦係数0.39、摩耗量3.3×10-4mm/回/面、熱伝導率60W/m・K、圧縮強度17.7kg/mm2 と、実施例1に比べ、圧縮強度及び熱伝導率は向上しているものの、摩擦・摩耗特性が大きく劣る結果となった。
【0025】
(比較例2)
PAN系炭素繊維(東レ製「トレカ」T300)にフェノール樹脂を含浸した後に乾 燥し30mm長に切断したトウプリプレグを作製し、金型内へ充填し、280℃にて加圧成形し、Vf≒40%の成形体を得た。この成形体を2000℃で1次焼成した後、前述のCVDによる緻密化処理(CVD体積%≒20%)を行い、続いてピッチを含浸して、不活性雰囲気で1000℃で焼成して炭化する緻密化工程を複数回繰り返し、1600℃の最終熱処理を行って、嵩密度≒1.68、Vf≒40%、ロックウェル硬度100〜110HRPのC/C複合材を得、ブレーキ摺動部を製造した。
【0026】
このブレーキ摺動部の性能試験を行ったところ、実施例1とVfも硬度も同等であったが、平均摩擦係数0.22、瞬時摩擦係数0.37、摩耗量6.8×10-4mm/回/面、熱伝導率20 W/m・K、圧縮強度9.8kg/mm2 と、実施例1に比べ、大きく劣る結果となった。
【図面の簡単な説明】
【図1】本発明に用いたブレーキ材の試験方法の説明図。
【符号の説明】
1 ロータディスク
2 ステータディスク
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a brake sliding portion formed of a carbon fiber reinforced carbon composite material (hereinafter referred to as C / C composite material) that has excellent strength, friction, and sliding characteristics and also has good thermal conductivity.
[0002]
[Prior art]
A general brake material has a function of converting kinetic energy into heat energy by friction-joining a rotating body and a fixed body, and decelerating and further stopping a moving object.
In recent years, due to the increase in weight due to higher speed and larger size, C / C composite materials have been put to practical use on many airplanes due to their excellent thermal conductivity, large heat capacity, high strength, etc., especially as aircraft brake materials. It is becoming like this.
[0003]
In general, a C / C composite material is obtained by impregnating or mixing a long or short carbon fiber such as PAN, pitch, or rayon with a thermosetting resin such as phenol resin or furan resin or a thermoplastic resin such as pitch. It is manufactured by calcining a heat-molded product in a non-oxidizing gas atmosphere, further densifying and graphitizing.
[0004]
[Problems to be solved by the invention]
The characteristics desired as the C / C brake material are a material having a braking ability capable of stopping within a first defined stopping distance, that is, a material having an appropriate friction coefficient.
Secondly, it is desirable that an excessive braking torque value is generated at the time of braking, so that it does not have a property that does not cause a so-called cracking effect or impose an excessive load around the brake material. That is, it is a material that does not have an excessive friction coefficient and that has an appropriate instantaneous friction coefficient.
[0005]
Third, it is necessary that the amount of wear is small. The C / C composite material is composed of matrix carbon and carbon fiber, but when used as a brake material, the carbon fiber or matrix carbon is worn away by peeling off from the sliding surface. Is to greatly improve the service life of the brake.
Fourth, when assembled as a brake assembly and braked, it has sufficient compressive strength (compressive strength in a direction parallel to the sliding surface) to withstand compressive stress applied to the mounting portion.
Finally, it is necessary that the heat capacity and the thermal conductivity in the direction parallel to the sliding surface be large so that the temperature of the brake disk does not rise excessively due to the heat generated by the sliding.
[0006]
[Means for Solving the Problems]
Accordingly, the inventors have repeatedly studied eagerly to solve the above-described problems, and as a result, the brake sliding portion comprising a stator and a rotor made of an annular disk-shaped C / C composite material formed of a carbon fiber reinforced carbon composite material. Because
(1) Using an inertia friction tester, a test piece consisting of a rotor having an average sliding surface diameter of 83.5 mm and a stator is fixed to a holder, and the rotor rotated at a sliding surface speed of 22 m / s is brake pressure. When the sliding surface pressure is 150 psi , the average friction coefficient is 0.18 to 0.26.
Braking initial instantaneous dynamic friction coefficient of the time the brake pressure reaches the set value, 0.35 or less (2) when slid in the same manner, the amount of wear, 3 × 10 -4 mm / dose / surface the following (3) annular disc rotor and compressive strength in the direction parallel to the sliding surface of the stator, 10 kg / mm 2 or more on
It has become known what is.
[0007]
Hereinafter, the present invention will be described in detail.
As the carbon fibers used in the present invention, pitch-based carbon fibers can be used, but desirably, the carbon fiber has a tensile modulus of 10 to 25 t / mm 2 and is 1600 in an inert gas atmosphere. It is more desirable if it has the property that the tensile modulus is converted to 50 t / mm 2 or more when fired at ˜2000 ° C.
[0008]
The form of carbon fiber used is in the form of tows, strands, rovings, yarns, etc. made of a plurality of single fibers, and it is preferable to use short fibers obtained by cutting them. These short fibers are formed from a bundle of a plurality of single fibers, and in the present invention, short fibers of about 0.3 to 100 mm, preferably about 5 to 50 mm are used. When the C / C composite material is used, the short fibers are opened and dispersed to produce a sheet in which single fibers are randomly oriented two-dimensionally (two-dimensional random), and a matrix material is filled between carbon fibers. It is preferable.
[0009]
Here, as a specific production method for producing the two-dimensional random sheet by dry-opening the short fibrous carbon fiber, for example, a carbon fiber is mechanically monofilamentated in spinning, and a sheet is produced. There is a method of manufacturing a sheet by using a random weber or by opening with air.
[0010]
Further, as a method of producing a two-dimensional random sheet by wet-opening the short fibrous carbon fiber, for example, using a beater or pulper that is usually used for beating treatment of pulp or the like, After opening the short carbon fibers in a solvent, for example, supply them little by little to a form having a screen at the bottom, or evenly disperse by means such as stirring after opening, and after making paper with a wire mesh etc., dry The method of making it is mentioned. As the solvent for uniformly dispersing the short-fiber carbon fibers, water, acetone, alcohol anthracene oil having 1 to 5 carbon atoms or the like can be preferably used, but other organic solvents may be used. In addition, it is preferable to disperse or dissolve phenol resin, furan resin, pitch, or the like in the solvent, because the carbon fibers are adhered to each other, and handling in the next process becomes easier. Furthermore, it is preferable to add a thickener such as sodium fibrin glycolate, polyvinyl alcohol, or hydroxycellulose to the solvent because the effect is further increased.
[0011]
As the basis weight (weight per 1 m 2 ) of the two-dimensional random sheet, various materials can be taken depending on the purpose, but 10 to 500 g / m 2 is optimal in consideration of handling property, impregnation property, and uniformity.
The two-dimensional random sheet thus obtained is impregnated with a matrix such as phenol resin, furan resin, petroleum-based or coal-based pitch and then dried. At that time, the matrix used is one that is dissolved in a solvent such as alcohol, acetone, anthracene oil or the like and adjusted to an appropriate viscosity.
[0012]
Next, the dried sheets are laminated and filled in a mold according to the purpose, and pressure-molded in a temperature range of 100 to 500 ° C., and Vf (carbon fiber content) = 5 to 65%, preferably 10 A molded body of about -65%, more preferably about 35-50% is obtained. After that, through primary firing in which the temperature is raised to 800 to 2200 ° C., preferably 1800 to 2200 ° C. at an increase rate of 1 to 200 ° C./hr in an inert gas atmosphere such as N 2 gas, the C / C composite Get the material.
[0013]
The fired C / C composite material has a large number of voids, and cannot be put into practical use as it is. Therefore, in the present invention, in order to reduce the voids, a densification process by CVD is performed, and then a densification process is performed using pitch or resin as a matrix.
[0014]
In the densification process by CVD, the C / C composite material placed in the reactor is heated by induction heating coil or resistance heating, and the like, and the vapor of hydrocarbons such as methane or propane or halogenated hydrocarbons. Is impregnated into the voids with pyrolytic carbon produced by supplying H 2 gas, Ar gas or N 2 gas into the reactor.
[0015]
In the densification treatment with pitch or resin, the tank on which the C / C composite material after the densification treatment by CVD is heated to a predetermined temperature, the inside of the tank is evacuated, and then the melted pitch or resin is supplied and pressurized. So that the voids are impregnated. Thereafter, baking is performed at a temperature of 700 to 2100 ° C., preferably 700 to 1000 ° C. The densification process of the target C / C composite material is performed by repeating the densification process such as impregnation and firing of the pitch or resin. Furthermore, a graphitization process can be performed as needed.
[0016]
The densification treatment is performed until the volume is increased by 10 to 35%, preferably 10 to 25% by the densification treatment by CVD. Next, densification is performed until the bulk density is normally 1.60 to 1.80, preferably 1.65 to 1.75, by a densification treatment by impregnation and firing of pitch or resin.
[0017]
When the final heat treatment is performed after the densification treatment, the bulk density after the final heat treatment is 1.60 to 1.80, preferably 1.65 to 1.75. The final heat treatment temperature is 1400 to 2100 ° C, preferably 1500 to 1800 ° C.
[0018]
The C / C composite material thus produced has a hardness measured with a Rockwell hardness meter of 70 to 125 HRP, preferably 85 to 120 HRP, and Vf (volume content of carbon fiber) of 10 to 50%. Preferably it is 30 to 45%.
The compressive strength 10 Kg / mm 2 or more, preferably 12 Kg / mm 2 or more, the thermal conductivity of 30 W / m · K or more, preferably 35W / m · K or more, more preferably 40W / m · K or more.
The brake sliding portion obtained by manufacturing and combining the annular disk rotor and the stator using the C / C composite material thus manufactured has an average friction coefficient of 0.18 to 0.26, preferably 0. 19 to 0.24, instantaneous dynamic friction coefficient is 0.35 or less, wear amount is 3 × 10 −4 mm / turn / surface, preferably 2 × 10 −4 mm / turn / surface or less, and excellent performance It is what you have.
[0019]
Below, the evaluation method of a C / C composite material is demonstrated.
(Brake performance test) Using an inertia friction tester, a test piece (average sliding surface diameter 83.5 mm) consisting of a fixed disk (stator) and a rotating disk (rotor) formed of a C / C composite material Affix to the holder and slide against each other to perform the friction test (FIG. 1).
Test conditions were as follows: brake pressure (as sliding surface pressure) 150 psi, sliding surface speed = 22 m / s (absorbed energy per unit area E = 2.0 × 10 3 J / cm 2 ), average friction coefficient, brake Measure the instantaneous friction coefficient and wear amount at the beginning of braking (until the time when the brake pressure reaches the set value).
(Strength) Measured according to JIS-K7208.
(Thermal conductivity) Measured using a laser flash method in accordance with JIS-R1611.
[0020]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, this invention is not limited to an Example, unless the summary is exceeded.
[0021]
Example 1
Pitch-based carbon fiber ("Dialead" K321 manufactured by Mitsubishi Chemical Corporation) cut to a length of 30 mm was dry-opened to obtain a 300 g / m 2 carbon fiber sheet that was two-dimensionally randomly oriented. The sheet was impregnated with a phenol resin diluted with ethanol and then dried to prepare a sheet impregnated with a phenol resin having a basis weight of 580 g / m 2 . This sheet was laminated in a mold and pressure molded at 280 ° C. to obtain a molded body with Vf≈42%. This molded body is first fired at 2000 ° C. and then subjected to the above-described densification treatment by CVD (CVD volume% ≈17%), followed by impregnation with resin and firing at 1000 ° C. in an inert atmosphere to carbonize. The annular disk rotor and stator made of a C / C composite material having a bulk density of approximately 1.70, Vf of approximately 40%, and Rockwell hardness of 93 to 104 HRP are performed by repeating the densification process multiple times and performing a final heat treatment at 1600 ° C. Obtained. A brake sliding part was manufactured by combining the obtained annular disk rotor and stator.
[0022]
When the performance test of this brake sliding part was conducted, the average friction coefficient 0.20: instantaneous friction coefficient 0.31, wear amount 1.0 × 10 −4 mm / time / surface, thermal conductivity 44 W / m · K As a result, a compressive strength of 13.4 kg / m 2 was obtained.
[0023]
(Comparative Example 1)
A green body similar to that in Example 1 was subjected to primary firing under the same conditions, followed by densification treatment using only the pitch and final heat treatment under the same conditions as in Example 1. Bulk density≈1.72, Vf≈40%, lock A C / C composite material having a well hardness of 100 to 110 HRP was obtained, and a brake sliding part was manufactured.
[0024]
When the performance test of this brake sliding part was conducted, the average friction coefficient was 0.25, the instantaneous friction coefficient was 0.39, the wear amount was 3.3 × 10 −4 mm / time / surface, and the thermal conductivity was 60 W / m · K. The compressive strength was 17.7 kg / mm 2, and although the compressive strength and thermal conductivity were improved as compared with Example 1, the friction and wear characteristics were greatly inferior.
[0025]
(Comparative Example 2)
A PAN-based carbon fiber (Toray "Torca" T300 manufactured by Toray) was impregnated with a phenol resin, dried, cut to a length of 30 mm, filled into a mold, pressed into a mold, and pressure-molded at 280 ° C. ≈40% molded body was obtained. This molded body is first fired at 2000 ° C., and then subjected to the above-mentioned densification treatment by CVD (CVD volume% ≈20%), subsequently impregnated with pitch, and fired at 1000 ° C. in an inert atmosphere for carbonization. The final heat treatment at 1600 ° C. is repeated a plurality of times to obtain a C / C composite material having a bulk density of 1.68, Vf of 40%, and Rockwell hardness of 100 to 110 HRP, and the brake sliding portion is Manufactured.
[0026]
When the performance test of this brake sliding part was conducted, Vf and Example 1 had the same hardness, but the average friction coefficient was 0.22, the instantaneous friction coefficient was 0.37, and the wear amount was 6.8 × 10 −4. Compared to Example 1, the results were significantly inferior to Example 1 in mm / time / surface, thermal conductivity of 20 W / m · K, and compressive strength of 9.8 kg / mm 2 .
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a test method for a brake material used in the present invention.
[Explanation of symbols]
1 Rotor disk 2 Stator disk

Claims (2)

炭素繊維強化炭素複合材で形成された環状ディスクロータとステータから成るブレーキ摺動部であって、
(1)慣性式摩擦試験機を使用して、平均摺動面直径83.5mmのロータとステータ からなる試験片をホルダーに固定し、摺動面速度22m/sで回転させたロータ をブレーキ圧力としての摺動面圧力150psiでステータに押しつけ摺動させ たときの、平均摩擦係数が、0.18〜0.26
ブレーキ圧力が設定値に達する時間までのブレーキング初期の瞬時動摩擦係数が 、0.35以下
(2)同様にして摺動させたときの、摩耗量が3×10-4mm/回/面以下
(3)環状ディスクロータ及びステータの摺動面に平行な方向の圧縮強度が、10kg /mm2 以上
の炭素繊維強化炭素複合材であることを特徴とするブレーキ摺動部。
A brake sliding portion composed of an annular disk rotor and a stator formed of a carbon fiber reinforced carbon composite material,
(1) Using an inertia friction tester, a test piece consisting of a rotor having an average sliding surface diameter of 83.5 mm and a stator is fixed to a holder, and the rotor rotated at a sliding surface speed of 22 m / s is brake pressure. When the sliding surface pressure is 150 psi , the average friction coefficient is 0.18 to 0.26.
Braking initial instantaneous dynamic friction coefficient of the time the brake pressure reaches the set value, 0.35 or less (2) when slid in the same manner, the amount of wear, 3 × 10 -4 mm / dose / surface (3) A brake sliding portion characterized by being a carbon fiber reinforced carbon composite material having a compressive strength in a direction parallel to the sliding surfaces of the annular disk rotor and the stator of 10 kg / mm 2 or more.
環状ディスクロータ及びステータとして、摺動面に平行な方向の熱伝導率が、35W/m・K以上である請求項1記載のブレーキ摺動部。  The brake sliding portion according to claim 1, wherein the annular disk rotor and the stator have a thermal conductivity in a direction parallel to the sliding surface of 35 W / m · K or more.
JP08358596A 1996-04-05 1996-04-05 Brake sliding part Expired - Lifetime JP4014237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08358596A JP4014237B2 (en) 1996-04-05 1996-04-05 Brake sliding part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08358596A JP4014237B2 (en) 1996-04-05 1996-04-05 Brake sliding part

Publications (2)

Publication Number Publication Date
JPH09278554A JPH09278554A (en) 1997-10-28
JP4014237B2 true JP4014237B2 (en) 2007-11-28

Family

ID=13806581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08358596A Expired - Lifetime JP4014237B2 (en) 1996-04-05 1996-04-05 Brake sliding part

Country Status (1)

Country Link
JP (1) JP4014237B2 (en)

Also Published As

Publication number Publication date
JPH09278554A (en) 1997-10-28

Similar Documents

Publication Publication Date Title
US5578255A (en) Method of making carbon fiber reinforced carbon composites
US4178413A (en) Fiber reinforced carbon and graphite articles and a method of producing said articles
JP4297138B2 (en) Carbon fiber reinforced SiC composite and sliding material
WO1993025493A1 (en) Method of manufacturing carbon fiber-reinforced composite carbon material, carbon fiber-reinforced composite carbon material, and sliding material
CN112225575B (en) High-performance carbon/carbon combined hot pressing die
JP4014237B2 (en) Brake sliding part
JP3433473B2 (en) Carbon fiber reinforced carbon composite, method for producing the same and sliding material using the same
JP3218829B2 (en) Brake sliding part
JPH09278553A (en) Production of carbon composite material reinforced with carbon fiber
JP3859748B2 (en) Aircraft brake materials
JP2783807B2 (en) Carbon fiber reinforced carbon composite material and method for producing the same
JP3395261B2 (en) Method for producing carbon fiber reinforced carbon composite material, carbon fiber reinforced composite material, and sliding material using the same
JP4066896B2 (en) Carbon fiber reinforced carbon composite material and sliding material using the same
JP3560065B2 (en) Carbon fiber reinforced carbon composite and sliding material using the same
JPH10167848A (en) Sliding member of brake
JP2906484B2 (en) Carbon fiber reinforced carbon composite and method for producing the same
JP3383992B2 (en) Carbon fiber reinforced carbon composite and sliding material using the same
JPH01188468A (en) Carbon fiber-reinforced carbon composite material and its production
JP3339075B2 (en) Carbon fiber reinforced carbon composite, method for producing the same, and sliding material using the same
JP3625486B2 (en) Molded insulation
JP3484711B2 (en) Method for producing carbon fiber reinforced carbon composite
JP3383990B2 (en) Carbon fiber reinforced carbon composite and sliding material using the same
JP3383989B2 (en) Method for producing carbon fiber reinforced carbon composite
JP2969957B2 (en) Brake sliding part
JP3383991B2 (en) Carbon fiber reinforced carbon composite and sliding material using it

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term