JP3395261B2 - Method for producing carbon fiber reinforced carbon composite material, carbon fiber reinforced composite material, and sliding material using the same - Google Patents

Method for producing carbon fiber reinforced carbon composite material, carbon fiber reinforced composite material, and sliding material using the same

Info

Publication number
JP3395261B2
JP3395261B2 JP17687293A JP17687293A JP3395261B2 JP 3395261 B2 JP3395261 B2 JP 3395261B2 JP 17687293 A JP17687293 A JP 17687293A JP 17687293 A JP17687293 A JP 17687293A JP 3395261 B2 JP3395261 B2 JP 3395261B2
Authority
JP
Japan
Prior art keywords
composite material
carbon fiber
sheet
carbon
defibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17687293A
Other languages
Japanese (ja)
Other versions
JPH0733542A (en
Inventor
巌 山本
一夫 丹羽
敏弘 深川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP17687293A priority Critical patent/JP3395261B2/en
Publication of JPH0733542A publication Critical patent/JPH0733542A/en
Application granted granted Critical
Publication of JP3395261B2 publication Critical patent/JP3395261B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、摩擦特性及び機械特性
にすぐれた炭素繊維強化炭素複合材(以下、C/C複合
材という)の製造方法、及びそれを用いた摺動材に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a carbon fiber reinforced carbon composite material (hereinafter referred to as C / C composite material) having excellent friction characteristics and mechanical characteristics, and a sliding material using the same. is there.

【0002】[0002]

【従来の技術】従来、航空機や車両用のブレーキや車両
のクラッチ等の摺動材には金属製のディスクロータ等が
使用されてきた。しかし近年、車両等の軽量化ならびに
耐熱性等の特性向上の目的から、C/C複合材がブレー
キのディスクロータ等の摺動材に用いられてきている。
2. Description of the Related Art Conventionally, metal disc rotors have been used as sliding materials for brakes for aircraft and vehicles and clutches for vehicles. However, in recent years, C / C composite materials have been used for sliding materials such as disc rotors of brakes for the purpose of reducing the weight of vehicles and improving the characteristics such as heat resistance.

【0003】一般にC/C複合材はPAN系、ピッチ
系、或いはレーヨン系などの長短炭素繊維にフェノール
樹脂、フラン樹脂などの熱硬化性樹脂或いはピッチ類な
どの熱可塑性樹脂等を含浸、又は混合して加熱成形した
ものを非酸化性雰囲気において焼成し、更に緻密化、黒
鉛化処理することにより製造されている。
Generally, a C / C composite material is obtained by impregnating or mixing PAN-based, pitch-based or rayon-based long and short carbon fibers with a thermosetting resin such as phenol resin or furan resin or a thermoplastic resin such as pitch. It is manufactured by firing the molded product in a non-oxidizing atmosphere, and further densifying and graphitizing.

【0004】[0004]

【発明が解決しようとする課題】そしてブレーキ材とし
て望まれる摩擦特性としては、トルク波形が滑らかで且
つ摺動中のどの速度においても摩擦係数が一定、即ちト
ルク波形が矩形(図1参照)であることが望まれる。と
ころが、一般のC/C複合材では高温になると摩擦係数
が低下する所謂フェード現象がおこるため、高エネルギ
ーレベル、高圧力といった高負荷条件では摺動中にブレ
ーキ材の温度が上昇し、摩擦係数が低下するためにトル
ク波形は凹状(図2参照)となり、安定した摩擦係数が
得られないという難点があった。また摩擦係数について
は高レベルが望まれるが、そのために硬度を下げると摩
耗量が増大するという難点があった。
The friction characteristics desired as a brake material are that the torque waveform is smooth and the friction coefficient is constant at any speed during sliding, that is, the torque waveform is rectangular (see FIG. 1). Is desired. However, in a general C / C composite material, a so-called fade phenomenon occurs in which the friction coefficient decreases when the temperature becomes high. Therefore, under high load conditions such as high energy level and high pressure, the temperature of the brake material increases during sliding, and the friction coefficient increases. However, the torque waveform becomes concave (see FIG. 2) due to the decrease in the friction coefficient, and a stable friction coefficient cannot be obtained. Further, a high level of friction coefficient is desired, but for that reason, there is a drawback that the wear amount increases when the hardness is lowered.

【0005】[0005]

【課題を解決するための手段】そこで発明者等は、上記
の課題を解決するために検討を繰り返した結果、短繊維
状の炭素繊維束を解繊して繊維が2次元ランダムに配向
したシートを作製するに当たって、炭素繊維束の解繊度
合を変化させると、摩擦係数が変化し、低解繊の場合は
C/C複合材の摩擦係数が高くなり、高解繊の場合は逆
に低くなることを見い出した。次いで樹脂又はピッチを
含浸させる際に、炭素繊維に集束剤が付着していると炭
素繊維との接着性が低下する。そこで、実質的に集束剤
が付着していない短繊維状炭素繊維を用い、かつ特定の
熱処理を行うことにより高摩擦係数かつ低摩耗、更にト
ルクカーブも安定した炭素繊維強化炭素複合材とそれを
用いた摺動材が得られることを見出し、本発明に到達し
た。即ち、本発明の目的は高摩擦係数且つ低摩耗、更に
トルクカーブが安定したC/C複合材及びそれを用いた
摺動材を提供することにあり、かかる目的は、集束剤が
実質的に付着していない複数の単繊維からなる短繊維状
の炭素繊維束を解繊し、繊維が2次元ランダムに配向し
たシートを作製し、樹脂又はピッチを含浸後、積層して
成形、焼成後、ピッチ含浸及び最終熱処理温度以下での
焼成を繰り返す炭素繊維強化炭素複合材の製造方法にお
いて、該炭素繊維束が束として残存しており、かつ最終
熱処理温度2400℃以下、最終気孔率10vol%以
下である炭素繊維強化炭素複合材の製造方法、及びこの
方法で製造された炭素繊維強化炭素複合材とそれを用い
た摺動材、により容易に達成される。
Therefore, the inventors of the present invention have repeatedly conducted studies to solve the above-mentioned problems, and as a result, defibrate short fiber-like carbon fiber bundles to form a sheet in which fibers are two-dimensionally randomly oriented. When the degree of defibration of the carbon fiber bundle is changed in producing the, the coefficient of friction changes, and in the case of low defibration, the coefficient of friction of the C / C composite increases, and in the case of high defibration, it decreases to the contrary. I found that. Next, when the sizing agent is attached to the carbon fibers when the resin or pitch is impregnated, the adhesion with the carbon fibers is reduced. Therefore, by using short fibrous carbon fibers to which substantially no sizing agent is attached, and by performing a specific heat treatment, a carbon fiber reinforced carbon composite material having a high friction coefficient and low wear, and a stable torque curve The inventors have found that the sliding material used can be obtained and have reached the present invention. That is, an object of the present invention is to provide a C / C composite material having a high friction coefficient, low wear, and a stable torque curve, and a sliding material using the same, and an object of the present invention is to provide a sizing agent substantially. A short fibrous carbon fiber bundle composed of a plurality of single fibers that are not adhered is defibrated to prepare a sheet in which fibers are two-dimensionally randomly oriented, impregnated with a resin or pitch, laminated and molded, and fired, In a method for producing a carbon fiber-reinforced carbon composite material, which comprises repeating pitch impregnation and firing at a final heat treatment temperature or lower, the carbon fiber bundle remains as a bundle, and the final heat treatment temperature is 2400 ° C. or lower and the final porosity is 10 vol% or lower. It is easily achieved by a certain method for producing a carbon fiber-reinforced carbon composite material, and a carbon fiber-reinforced carbon composite material produced by this method and a sliding material using the same.

【0006】以下、本発明の詳細を説明する。本発明で
用いる炭素繊維としては、ピッチ系、PAN系、或いは
レーヨン系炭素繊維等の公知のものが使用できる。但
し、炭素繊維束に集束剤が付着していると、繊維へのマ
トリックス原料の含浸性が悪くなり、繊維とマトリック
スとの接着性を低下させる。従って本願発明に於いて
は、実質上集束剤が付着していない炭素繊維を使用す
る。集束剤が繊維とマトリックスの接着性に影響を及ぼ
す程度多量に付着している場合は、溶媒洗浄、熱分解処
理などの方法によって予め集束剤を除去しておく。炭素
繊維の形態としては通常2000〜8000本の単繊維
束からなるトウ、ストランド、ロービング、ヤーン等で
あり、これらをカッティグすることによって得られる短
繊維状のものを用いる。本発明においては、通常3〜1
00mm、好ましくは5〜50mm程度の短繊維束を使
用する。
The details of the present invention will be described below. Known carbon fibers such as pitch-based, PAN-based or rayon-based carbon fibers can be used as the carbon fibers used in the present invention. However, when the sizing agent adheres to the carbon fiber bundle, the impregnation of the matrix raw material into the fiber deteriorates, and the adhesiveness between the fiber and the matrix decreases. Therefore, in the present invention, the carbon fiber to which the sizing agent is not substantially attached is used. When the sizing agent is attached in such a large amount as to affect the adhesiveness between the fiber and the matrix, the sizing agent is removed in advance by a method such as solvent washing or thermal decomposition treatment. The form of the carbon fiber is usually a tow, a strand, a roving, a yarn or the like, which is composed of a single fiber bundle of 2000 to 8000, and a short fiber form obtained by cutting these is used. In the present invention, usually 3 to 1
A short fiber bundle of about 00 mm, preferably about 5 to 50 mm is used.

【0007】次にこれらの炭素繊維束を解繊し、2次元
ランダムのシートを作製する。その際、必要に応じてS
iC、Al2 3 、カーボンブラックなどの無機繊維、
無機物などを添加してもよい。炭素繊維束の解繊度合
は、炭素繊維束が束として一部残存する程度の低解繊と
する。具体的な解繊方法としては、例えば不織布の製造
で一般的な、ランダムウェバーを使用し、炭素繊維束を
針山のついた対向する複数のシリンダーを通過させて乾
式で解繊する方法がある。この場合にはシリンダーの回
転速度等を変えることにより、解繊度合を変化させるこ
とができる。また、パルプ等の叩解処理に用いるビータ
ーや、解繊処理に用いるパルパーなどを使用し、溶媒中
に分散させた炭素繊維束を湿式で解繊した後に、抄紙、
乾燥する方法もある。この場合には処理時間を変えるこ
とにより解繊度合を変化させることができる。
Next, these carbon fiber bundles are defibrated to produce a two-dimensional random sheet. At that time, if necessary, S
Inorganic fibers such as iC, Al 2 O 3 and carbon black,
You may add an inorganic substance. The defibration degree of the carbon fiber bundle is set to a low defibration level such that the carbon fiber bundle partially remains as a bundle. As a specific defibration method, for example, there is a method in which a random webber, which is common in the production of nonwoven fabrics, is used, and a carbon fiber bundle is passed through a plurality of opposed cylinders with needle ridges to defibrate it in a dry manner. In this case, the degree of defibration can be changed by changing the rotation speed of the cylinder. Further, a beater used for beating treatment of pulp or the like, a pulper used for defibration treatment, or the like is used to wet-defibrate the carbon fiber bundle dispersed in the solvent, and then papermaking,
There is also a method of drying. In this case, the degree of defibration can be changed by changing the processing time.

【0008】次に、該炭素繊維シートにおける炭素繊維
束の解繊度合を評価し、期待した通りの低解繊のシート
が作製されているか否かを判定する。この結果を直ちに
製造条件に反映させることで、解繊度合の精度をより高
めることができるので、解繊度合の評価方法は簡便で迅
速であること、さらにハンドリングが容易なように炭素
繊維シートに樹脂等を含浸させた所謂プリプレグの状態
で評価できることが望まれる。
Next, the degree of defibration of the carbon fiber bundle in the carbon fiber sheet is evaluated, and it is determined whether or not the expected low defibration sheet is produced. By immediately reflecting this result in the production conditions, the accuracy of the defibration degree can be further improved, so that the evaluation method of the defibration degree is simple and quick, and the carbon fiber sheet can be easily handled. It is desired to be able to evaluate in the state of a so-called prepreg impregnated with a resin or the like.

【0009】解繊度合の評価方法は、とくに限定しない
が、例えば、解繊度合が高くなると解繊した炭素繊維同
士がより絡み合い、シートの嵩高さが増加することに着
目して、一定面積、一定枚数、重量W(g)のシートを
積層し、これに一定の荷重をかけた場合のシート全体の
厚みt(mm)を測定し、式−1に定義する解繊度指数
(X)を求める方法がある。
The method for evaluating the degree of defibration is not particularly limited, but for example, when the degree of defibration increases, the disentangled carbon fibers are more entangled with each other, and the bulkiness of the sheet increases, so that a certain area, A certain number of sheets having a weight W (g) are laminated, and a thickness t (mm) of the entire sheet when a certain load is applied to the sheets is measured to obtain a defibration index (X) defined in Formula-1. There is a way.

【0010】[0010]

【数1】解繊度指数(X)=t/W ・・・ 式−1## EQU1 ## Disentanglement index (X) = t / W ... Equation-1

【0011】解繊度合が高くなるほどシート厚さtは大
きくなるため、解繊度指数(X)も大きくなる。この方
法の場合、シートに樹脂等を含浸した後でも評価を行う
ことができる。但し、炭素繊維や樹脂等の種類、また両
者の割合によって解繊度指数(X)の値は変化するた
め、常に同一の条件で評価する必要がある。解繊度合の
評価方法のもう一つの例としては、解繊度合が高くなる
と繊維間の隙間が減少することに着目し、一定重量、一
定面積のシートを使用して光透過率T(%)を測定し、
式−2に定義する解繊度指数(Y)を求める方法があ
る。
Since the sheet thickness t increases as the degree of defibration increases, the defibration index (X) also increases. In the case of this method, the evaluation can be performed even after the sheet is impregnated with a resin or the like. However, since the value of the defibration index (X) changes depending on the type of carbon fiber, resin, etc., and the ratio of both, it is necessary to always evaluate under the same conditions. As another example of the evaluation method of the degree of defibration, focusing on the fact that the gap between the fibers decreases as the degree of defibration increases, the light transmittance T (%) is measured using a sheet having a constant weight and a constant area. Is measured
There is a method of obtaining the defibration index (Y) defined in Expression-2.

【0012】[0012]

【数2】 解繊度指数(Y)=100−T ・・・ 式−2[Equation 2] Disentanglement index (Y) = 100-T ... Formula-2

【0013】解繊度合が高くなるほど透過率Tは小さく
なるため解繊度指数(Y)は大きくなる。この方法の場
合も、シートに樹脂等を含浸した後でも評価を行うこと
ができるが、シートの目付(単位面積当たりの重量)が
大きすぎる場合には、解繊度にかかわらず光が透過でき
なくなるため、評価できるシートの目付に制限がある。
As the degree of defibration increases, the transmittance T decreases, so that the defibration index (Y) increases. In this method as well, the evaluation can be performed even after the sheet is impregnated with resin, but if the sheet weight (weight per unit area) is too large, light cannot be transmitted regardless of the defibration degree. Therefore, there is a limit to the weight of the sheet that can be evaluated.

【0014】解繊したシートの目付としては、種々のも
のが取り得るが、取り扱い性、含浸性、均一性を考える
と10〜500g/m2 が最適である。この様にして得
られた低解繊のシートにフェノール樹脂、フラン樹脂、
或いは石油系、石炭系ピッチ等のマトリックスを含浸さ
せた後に乾燥する。その際、マトリックスはアルコー
ル、アセトン、アントラセン油等の溶媒に溶解して適切
な粘度に調整したものを使用する。
The basis weight of the defibrated sheet may be various, but 10-500 g / m 2 is optimal in view of handleability, impregnation property and uniformity. Phenol resin, furan resin,
Alternatively, it is impregnated with a matrix such as petroleum-based or coal-based pitch and then dried. At that time, the matrix is used by dissolving it in a solvent such as alcohol, acetone, or anthracene oil and adjusting the viscosity to an appropriate value.

【0015】次いで、この乾燥したシートが所望の低解
繊シートとなっていることを具体的に評価する方法とし
て、例えば、シートの目付を200g/m2 ,フェノー
ル樹脂含浸量が120g/m2 の含浸シートを95×9
5mmに切断したもの20枚を重ね、2.2kgの荷重
をかけた時のシートの厚さt(mm)をシート20枚の
重量W(g)で割り、式−1で定義した解繊度指数Xを
求めた場合、1以下であれば炭素繊維束が、束として残
存する本発明のC/C材であり、好ましくは、0.3〜
0.9、特に好ましくは0.5〜0.85程度の値とす
るのが良い。
Next, as a method for specifically evaluating that this dried sheet is a desired low-defibration sheet, for example, the basis weight of the sheet is 200 g / m 2 , and the amount of impregnated phenol resin is 120 g / m 2. 95 × 9 impregnation sheet
Twenty sheets cut into 5 mm were stacked, and the thickness t (mm) of the sheet when a load of 2.2 kg was applied was divided by the weight W (g) of the 20 sheets, and the defibration index defined by Equation-1 was obtained. When X is determined, if it is 1 or less, the carbon fiber bundle is the C / C material of the present invention that remains as a bundle, and preferably 0.3 to
The value is preferably 0.9, particularly preferably about 0.5 to 0.85.

【0016】この様にして得られたシートを積層して金
型へ充填し100〜500℃の温度で加圧成形してVf
(繊維含有量)=5〜65%、好ましくは10〜55%
程度の成形体を得る。その後N2 ガスなどの不活性ガス
雰囲気中で1〜200℃/hの昇温速度で800℃以上
2800℃以下、好ましくは緻密化を繰り返す際の最高
温度以上、2500℃以下の温度で焼成し、C/C複合
材を得る。
The sheets thus obtained are laminated, filled in a mold, and pressure-molded at a temperature of 100 to 500 ° C. to obtain Vf.
(Fiber content) = 5-65%, preferably 10-55%
Obtain a molded body of a certain degree. Thereafter, it is fired in an inert gas atmosphere such as N 2 gas at a temperature rising rate of 1 to 200 ° C./h at a temperature of 800 ° C. or more and 2800 ° C. or less, preferably a maximum temperature of densification or more and 2500 ° C. or less. , C / C composite material is obtained.

【0017】上記焼成したC/C複合材には多数の気孔
があり、このままでは特性的に実用に供することが出来
ない。そこでこの気孔を低減するためにピッチを含浸
し、焼成する緻密化処理を複数回繰り返す。好ましいピ
ッチとしては、軟化点70〜120℃更に好ましくは8
0〜90℃、トルエン不溶分10〜30%更に好ましく
は13〜20%、キノリン不溶分1%以下、固定炭素4
0%以上更に好ましくは50%以上のものである。ま
た、より一層緻密化効果を発揮するために、特開平1−
298013号公報に記載の方法で含浸炭化する緻密化
処理を実施することも出来る。耐摩耗性の向上及び熱容
量アップのため、最終気孔率が10%以下となるまで該
緻密化処理を繰り返す。気孔率の測定は常法により行
い、具体的には通常水銀ポロシメーターを使用する。
尚、該緻密化処理の最終最高焼成温度が2400℃を超
えると含浸されたマトリックスの結晶性の発達及びそれ
に伴う収縮などにより繊維とマトリックスとの接着性が
低下する。また、逆に温度が低い場合は耐酸化性が悪く
なる。従って、緻密化処理時の繰り返しの焼成温度は最
終熱処理温度以下とし、最終熱処理温度は2400℃以
下、好ましくは最終熱処理温度が1600〜2200℃
の範囲更に好ましくは1600〜2000℃の範囲とな
るようにする。緻密化工程を短縮するために数回100
0℃程度の処理温度で含浸−焼成を繰り返した後、最終
熱処理温度近傍且つ最終熱処理温度以下で熱処理を行
い、更に1000℃程度の処理温度で含浸−焼成を繰り
返す緻密化処理を行った後に、2400℃以下で最終熱
処理を実施することができる。
The above-mentioned fired C / C composite material has a large number of pores, and it cannot be practically used practically as it is. Therefore, the densification treatment of impregnating pitch and firing to reduce the pores is repeated a plurality of times. A preferable pitch is a softening point of 70 to 120 ° C., more preferably 8
0 to 90 ° C., toluene insoluble matter 10 to 30%, more preferably 13 to 20%, quinoline insoluble matter 1% or less, fixed carbon 4
It is 0% or more, more preferably 50% or more. In addition, in order to exert the effect of further densification, JP-A-1-
It is also possible to carry out a densification treatment for impregnating and carbonizing by the method described in Japanese Patent No. In order to improve wear resistance and heat capacity, the densification treatment is repeated until the final porosity becomes 10% or less. The porosity is measured by a conventional method, and specifically, a mercury porosimeter is usually used.
If the final maximum firing temperature of the densification treatment exceeds 2400 ° C., the crystallinity of the impregnated matrix develops and the shrinkage associated therewith reduces the adhesion between the fiber and the matrix. On the contrary, when the temperature is low, the oxidation resistance becomes poor. Therefore, the repeating firing temperature during the densification treatment is set to the final heat treatment temperature or lower, and the final heat treatment temperature is 2400 ° C. or lower, preferably the final heat treatment temperature is 1600 to 2200 ° C.
Is more preferably in the range of 1600 to 2000 ° C. 100 times to shorten the densification process
After repeating impregnation-firing at a treatment temperature of about 0 ° C., heat treatment is performed at a temperature near the final heat treatment temperature and below the final heat treatment temperature, and further, after performing a densification treatment that repeats impregnation-firing at a treatment temperature of about 1000 ° C., The final heat treatment can be performed at 2400 ° C or lower.

【0018】このようにして、高摩擦係数且つ低摩耗、
更にトルクカーブが安定したC/C複合材を製造でき
る。これを摺動材として用いれば、摩擦特性に優れたC
/C摺動材となる。
In this way, a high coefficient of friction and low wear,
Further, a C / C composite material having a stable torque curve can be manufactured. If this is used as a sliding material, C with excellent friction characteristics
/ C Sliding material.

【0019】[0019]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はその要旨を越えない限り、下記実施例に
よって限定されるものではない。 (実施例1)30mm長に切断したフィラメント数40
00の集束剤を使用していないピッチ系炭素繊維束をラ
ンダムウェバーにて解繊し、目付=200g/m2 の2
次元ランダムに配向したシートを作製した。更に該シー
トにエタノールで希釈したフェノール樹脂を含浸させた
後乾燥し120g/m2 のフェノール樹脂を含浸したシ
ートを作製した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist. (Example 1) 40 filaments cut into 30 mm length
Pitch-based carbon fiber bundle of No. 00, which does not use a sizing agent, is defibrated with a random webber, and the basis weight is 200 g / m 2 of 2.
A sheet was randomly oriented. Further, the sheet was impregnated with a phenol resin diluted with ethanol and then dried to prepare a sheet impregnated with 120 g / m 2 of the phenol resin.

【0020】この状態シートから95×95mmの大き
さのサンプル20枚を採取し、その重量W(g)を測定
した。次に、この20枚を端部を揃えて積層し2.2k
gの荷重をかけた状態でウェブ20枚の厚さt(mm)
を測定した。このW及びtから式−1で定義した解繊度
指数Xを計算し、目標通りに解繊度指数Xが0.80の
シートが得られていることを確認した。このシートは、
肉眼で見て、炭素繊維束が束として残存していることが
確認できた。
From this state sheet, 20 samples having a size of 95 × 95 mm were taken, and the weight W (g) thereof was measured. Next, these 20 sheets are stacked with their ends aligned to be 2.2k.
Thickness of 20 webs under load of g (mm)
Was measured. The defibration index X defined by the formula-1 was calculated from the W and t, and it was confirmed that a sheet having a defibration index X of 0.80 was obtained as intended. This sheet is
It was confirmed with the naked eye that the carbon fiber bundle remained as a bundle.

【0021】得られたシートを金型に積層充填し、25
0℃にて加圧成形し、Vf=約50%の成形体を得た。
この成形体を加熱炉で不活性雰囲気中2000℃まで焼
成した後、ピッチを含浸し、加熱炉で不活性雰囲気中1
000℃まで焼成した。さらに同様の含浸−焼成の操作
を繰り返した後、2000℃の処理を行って、更にピッ
チ含浸−焼成の操作を繰り返し、最後に2000℃の処
理を行って気孔率8%の本発明のC/C複合材を得た。
このC/C複合材を用いて、回転数5000rpm、面
圧12kg/cm2 の条件下で慣性摩擦試験を100回
繰り返し、摩擦特性を測定した。これらの結果を表−1
に示す。
The obtained sheet is stacked and filled in a mold, and 25
Pressure molding was performed at 0 ° C. to obtain a molded body having Vf = about 50%.
This molded product was fired in an inert atmosphere at 2000 ° C. in a heating furnace, impregnated with pitch, and then heated in an inert atmosphere in a heating furnace.
It was baked up to 000 ° C. Further, after repeating the same impregnation-firing operation, a treatment at 2000 ° C. was performed, and then a pitch impregnation-firing operation was repeated, and finally, a treatment at 2000 ° C. was performed to obtain C / C of the present invention having a porosity of 8%. A C composite material was obtained.
Using this C / C composite material, the inertial friction test was repeated 100 times under the conditions of a rotation speed of 5000 rpm and a surface pressure of 12 kg / cm 2 , and the friction characteristics were measured. These results are shown in Table-1.
Shown in.

【0022】(実施例2)実施例1と同等のシートを金
型に積層充填し、250℃にて加圧成形し、Vf=約5
0%の成形体を得た。この成形体を加熱炉で不活性雰囲
気中2400℃まで焼成した後、ピッチを含浸し、加熱
炉で不活性雰囲気中1000℃まで焼成した。さらに同
様の含浸−焼成の操作を繰り返した後、2000℃の処
理を行って、更にピッチ含浸−焼成の操作を繰り返し、
最後に2000℃の処理を行って気孔率8%の本発明の
C/C複合材を得た。このC/C複合材を用いて、回転
数5000rpm、面圧12kg/cm2 の条件下で慣
性摩擦試験を100回繰り返し、摩擦特性を測定した。
これらの結果を表−1に示す。
(Embodiment 2) Sheets equivalent to those in Embodiment 1 are stacked and filled in a mold and pressure-molded at 250 ° C., Vf = about 5
A 0% compact was obtained. This molded product was fired in an inert atmosphere to 2400 ° C., impregnated with pitch, and fired in an inert atmosphere to 1000 ° C. in a heating furnace. Furthermore, after repeating the same impregnation-firing operation, a treatment at 2000 ° C. is performed, and then the pitch impregnation-firing operation is repeated,
Finally, it was treated at 2000 ° C. to obtain a C / C composite material of the present invention having a porosity of 8%. Using this C / C composite material, the inertial friction test was repeated 100 times under the conditions of a rotation speed of 5000 rpm and a surface pressure of 12 kg / cm 2 , and the friction characteristics were measured.
The results are shown in Table-1.

【0023】(比較例1)実施例1と同等のシートを金
型に積層充填し、250℃にて加圧成形し、Vf=約5
0%の成形体を得た。この成形体を加熱炉で不活性雰囲
気中2000℃まで焼成した後、高周波加熱装置により
550℃に加熱し、ジクロロエチレン蒸気を、窒素ガス
をキャリア−ガスとして反応器内に導入して、熱分解炭
素により気孔を充填する緻密化処理を行った。次いで、
ピッチを含浸し、加熱炉で不活性雰囲気中1000℃ま
で焼成した。さらに同様の含浸−焼成の操作を繰り返し
た後、2000℃の処理を行って、更にピッチ含浸−焼
成の操作を繰り返し、最後に2000℃の処理を行って
気孔率9%のC/C複合材を得た。このC/C複合材を
用いて、回転数5000rpm、面圧12kg/cm2
の条件下で慣性摩擦試験を100回繰り返し、摩擦特性
を測定した。これらの結果を表−1に示す。
(Comparative Example 1) Sheets equivalent to those of Example 1 were stacked and filled in a mold and pressure-molded at 250 ° C., Vf = about 5
A 0% compact was obtained. After firing this formed body in an inert atmosphere to 2000 ° C. in a heating furnace, it is heated to 550 ° C. by a high-frequency heating device, and dichloroethylene vapor is introduced into the reactor by using nitrogen gas as a carrier gas to produce pyrolytic carbon. A densification treatment was performed to fill the pores. Then
It was impregnated with pitch and baked in an inert atmosphere to 1000 ° C. in a heating furnace. Further, after repeating the same impregnation-firing operation, a treatment at 2000 ° C. was performed, and then the pitch impregnation-firing operation was repeated, and finally, a treatment at 2000 ° C. was performed to obtain a C / C composite material having a porosity of 9%. Got Using this C / C composite material, the rotation speed is 5000 rpm and the surface pressure is 12 kg / cm 2.
The inertial friction test was repeated 100 times under the conditions of, and the friction characteristics were measured. The results are shown in Table-1.

【0024】(比較例2)30mm長に切断したフィラ
メント数4000の集束剤を使用していないピッチ系炭
素繊維束をランダムウェバーにて解繊し、目付=200
g/m2 の2次元ランダムに配向したシートを作製し
た。更に該シートにエタノールで希釈したフェノール樹
脂を含浸させた後乾燥し120g/m2 のフェノール樹
脂を含浸したシートを作製した。
(Comparative Example 2) A pitch-based carbon fiber bundle having a filament number of 4000 and cut into a length of 30 mm, which does not use a sizing agent, is disentangled with a random webber, and a basis weight = 200.
A two-dimensional randomly oriented sheet of g / m 2 was produced. Further, the sheet was impregnated with a phenol resin diluted with ethanol and then dried to prepare a sheet impregnated with 120 g / m 2 of the phenol resin.

【0025】この状態シートから95×95mmの大き
さのサンプル20枚を採取し、その重量W(g)を測定
した。次に、この20枚を端部を揃えて積層し2.2k
gの荷重をかけた状態でウェブ20枚の厚さt(mm)
を測定した。このW及びtから式−1で定義した解繊度
指数Xを計算し、解繊度指数Xが1.1のシートが得ら
れていることを確認した。このシートには、炭素繊維束
が束として残存しているものは見つけられなかった。
From this state sheet, 20 samples having a size of 95 × 95 mm were taken, and the weight W (g) thereof was measured. Next, these 20 sheets are stacked with their ends aligned to be 2.2k.
Thickness of 20 webs under load of g (mm)
Was measured. The defibration index X defined by the formula-1 was calculated from the W and t, and it was confirmed that a sheet having a defibration index X of 1.1 was obtained. No carbon fiber bundle remained as a bundle was found in this sheet.

【0026】得られたシートを実施例1と同様の方法で
成形−焼成−緻密化処理を行い気孔率8%のC/C複合
材を得た。このC/C複合材を用いて、回転数5000
rpm、面圧12kg/cm2 の条件下で慣性摩擦試験
を100回繰り返し、摩擦特性を測定した。これらの結
果を表−1に示す。
The obtained sheet was molded, fired and densified in the same manner as in Example 1 to obtain a C / C composite material having a porosity of 8%. With this C / C composite material, the rotation speed is 5000
The inertial friction test was repeated 100 times under the conditions of rpm and surface pressure of 12 kg / cm 2 to measure the friction characteristics. The results are shown in Table-1.

【0027】(比較例3)30mm長に切断したフィラ
メント数4000の1%ポリビニルアルコール集束剤が
付着したピッチ系炭素繊維束をランダムウェバーにて解
繊し、目付=200g/m2 の2次元ランダムに配向し
たシートを作製した。更に該シートにエタノールで希釈
したフェノール樹脂を含浸させた後乾燥し120g/m
2 のフェノール樹脂を含浸したシートを作製した。
(Comparative Example 3) A pitch-based carbon fiber bundle having 4000 filaments cut to a length of 30 mm and having a 1% polyvinyl alcohol sizing agent attached thereto was defibrated with a random webber to give a two-dimensional random weight of 200 g / m 2. A sheet oriented to was prepared. Further, the sheet was impregnated with a phenol resin diluted with ethanol and then dried to 120 g / m 2.
A sheet impregnated with the phenol resin of 2 was prepared.

【0028】この状態シートから95×95mmの大き
さのサンプル20枚を採取し、その重量W(g)を測定
した。次に、この20枚を端部を揃えて積層し2.2k
gの荷重をかけた状態でウェブ20枚の厚さt(mm)
を測定した。このW及びtから式−1で定義した解繊度
指数Xを計算し、解繊度指数Xが0.80のシートが得
られていることを確認した。
From this state sheet, 20 samples having a size of 95 × 95 mm were taken, and the weight W (g) thereof was measured. Next, these 20 sheets are stacked with their ends aligned to be 2.2k.
Thickness of 20 webs under load of g (mm)
Was measured. The defibration index X defined by the formula-1 was calculated from the W and t, and it was confirmed that a sheet having a defibration index X of 0.80 was obtained.

【0029】得られたシートを実施例1と同様の方法で
成形−焼成−緻密化処理を行い気孔率8%のC/C複合
材を得た。このC/C複合材を用いて、回転数5000
rpm、面圧12kg/cm2 の条件下で慣性摩擦試験
を100回繰り返し、摩擦特性を測定した。これらの結
果を表−1に示す。
The obtained sheet was molded, fired and densified in the same manner as in Example 1 to obtain a C / C composite material having a porosity of 8%. With this C / C composite material, the rotation speed is 5000
The inertial friction test was repeated 100 times under the conditions of rpm and surface pressure of 12 kg / cm 2 to measure the friction characteristics. The results are shown in Table-1.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【発明の効果】本発明により、高摩擦係数且つ低摩耗、
更にトルクカーブが安定したC/C複合材を容易に得る
ことができる。
According to the present invention, a high coefficient of friction and low wear,
Further, a C / C composite material having a stable torque curve can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】摺動材として好ましいトルク波形の説明図であ
る。
FIG. 1 is an explanatory view of a torque waveform preferable as a sliding material.

【図2】摺動材として好ましくないトルク波形の説明図
である。
FIG. 2 is an explanatory diagram of a torque waveform that is not preferable as a sliding material.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−114835(JP,A) 特開 平5−345671(JP,A) 特開 平5−345668(JP,A) 特開 平3−140211(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/83 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-6-114835 (JP, A) JP-A-5-345671 (JP, A) JP-A-5-345668 (JP, A) JP-A-3- 140211 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C04B 35/83

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 集束剤が実質的に付着していない複数の
単繊維からなる短繊維状の炭素繊維束を解繊し、繊維が
2次元ランダムに配向したシートを作製し、樹脂又はピ
ッチを含浸後、積層して成形、焼成後、ピッチ含浸及び
最終熱処理温度以下での焼成を繰り返す炭素繊維強化炭
素複合材の製造方法において、該炭素繊維束の少くとも
一部が、束として残存しており、最終熱処理温度が24
00℃以下であり、かつ得られる該複合材の最終気孔率
10vol%以下である炭素繊維強化炭素複合材の製造
方法。
1. A sheet of carbon fibers in the form of short fibers, which is composed of a plurality of single fibers to which a sizing agent is not substantially attached, is defibrated to prepare a sheet in which the fibers are two-dimensionally randomly oriented, and a resin or a pitch is formed. After impregnation, lamination and molding, firing, pitch impregnation, and a method for producing a carbon fiber-reinforced carbon composite material that repeats firing at a final heat treatment temperature or less, at least a part of the carbon fiber bundle remains as a bundle. And the final heat treatment temperature is 24
A method for producing a carbon fiber-reinforced carbon composite material, which has a temperature of 00 ° C. or less and a final porosity of the obtained composite material of 10 vol% or less.
【請求項2】 請求項1に記載の製造方法で製造された
炭素繊維強化炭素複合材。
2. A carbon fiber reinforced carbon composite material produced by the production method according to claim 1.
【請求項3】 請求項2に記載された炭素繊維強化炭素
複合材を用いた摺動材。
3. A sliding material using the carbon fiber reinforced carbon composite material according to claim 2.
JP17687293A 1993-07-16 1993-07-16 Method for producing carbon fiber reinforced carbon composite material, carbon fiber reinforced composite material, and sliding material using the same Expired - Lifetime JP3395261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17687293A JP3395261B2 (en) 1993-07-16 1993-07-16 Method for producing carbon fiber reinforced carbon composite material, carbon fiber reinforced composite material, and sliding material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17687293A JP3395261B2 (en) 1993-07-16 1993-07-16 Method for producing carbon fiber reinforced carbon composite material, carbon fiber reinforced composite material, and sliding material using the same

Publications (2)

Publication Number Publication Date
JPH0733542A JPH0733542A (en) 1995-02-03
JP3395261B2 true JP3395261B2 (en) 2003-04-07

Family

ID=16021268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17687293A Expired - Lifetime JP3395261B2 (en) 1993-07-16 1993-07-16 Method for producing carbon fiber reinforced carbon composite material, carbon fiber reinforced composite material, and sliding material using the same

Country Status (1)

Country Link
JP (1) JP3395261B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103693985A (en) * 2013-12-20 2014-04-02 辽宁工业大学 Preparation method of gradient carbon fiber/hydroxyapatite (HA) composite material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178890A (en) * 2010-03-01 2011-09-15 Teijin Ltd Carbon fiber composite material
CN104446588B (en) * 2014-12-15 2016-08-31 湖北三江航天红阳机电有限公司 A kind of prefabricated carbon fiber body liquid impregnation density method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103693985A (en) * 2013-12-20 2014-04-02 辽宁工业大学 Preparation method of gradient carbon fiber/hydroxyapatite (HA) composite material

Also Published As

Publication number Publication date
JPH0733542A (en) 1995-02-03

Similar Documents

Publication Publication Date Title
US5578255A (en) Method of making carbon fiber reinforced carbon composites
US5525558A (en) Process for producing carbon fiber reinforced carbon composite material, carbon fiber reinforced carbon composite material and sliding material
EP1908740B1 (en) CARBON-FIBER-REINFORCED SiC COMPOSITE MATERIAL AND SLIDE MEMBER
EP0439184B1 (en) Carbon fiber structure and process for producing the same
JP3395261B2 (en) Method for producing carbon fiber reinforced carbon composite material, carbon fiber reinforced composite material, and sliding material using the same
JP2021195269A (en) Carbon/carbon composite material using anisotropic nonwoven fabric
JP3218829B2 (en) Brake sliding part
JP3339075B2 (en) Carbon fiber reinforced carbon composite, method for producing the same, and sliding material using the same
JP3433473B2 (en) Carbon fiber reinforced carbon composite, method for producing the same and sliding material using the same
JP3383993B2 (en) Method for producing carbon fiber reinforced carbon composite material and sliding material using the same
JP2906484B2 (en) Carbon fiber reinforced carbon composite and method for producing the same
JP3383990B2 (en) Carbon fiber reinforced carbon composite and sliding material using the same
JP3383991B2 (en) Carbon fiber reinforced carbon composite and sliding material using it
JP3484711B2 (en) Method for producing carbon fiber reinforced carbon composite
JP3383989B2 (en) Method for producing carbon fiber reinforced carbon composite
JP3383992B2 (en) Carbon fiber reinforced carbon composite and sliding material using the same
JP4066896B2 (en) Carbon fiber reinforced carbon composite material and sliding material using the same
JP2594952B2 (en) Molded heat insulating material and its manufacturing method
JP3859748B2 (en) Aircraft brake materials
JP3625486B2 (en) Molded insulation
JP2969957B2 (en) Brake sliding part
JPH08120600A (en) Sheet and its production
JPH09278553A (en) Production of carbon composite material reinforced with carbon fiber
JP3560065B2 (en) Carbon fiber reinforced carbon composite and sliding material using the same
JPH0255393B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140207

Year of fee payment: 11

EXPY Cancellation because of completion of term