JP3383400B2 - Method for producing bottomed ceramic tube and mold for production - Google Patents

Method for producing bottomed ceramic tube and mold for production

Info

Publication number
JP3383400B2
JP3383400B2 JP06131094A JP6131094A JP3383400B2 JP 3383400 B2 JP3383400 B2 JP 3383400B2 JP 06131094 A JP06131094 A JP 06131094A JP 6131094 A JP6131094 A JP 6131094A JP 3383400 B2 JP3383400 B2 JP 3383400B2
Authority
JP
Japan
Prior art keywords
bottomed
ceramic
molded body
tubular
pressing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06131094A
Other languages
Japanese (ja)
Other versions
JPH0788830A (en
Inventor
裕二 小川
辰巳 秋峯
充彦 越田
英博 鹿倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP06131094A priority Critical patent/JP3383400B2/en
Publication of JPH0788830A publication Critical patent/JPH0788830A/en
Application granted granted Critical
Publication of JP3383400B2 publication Critical patent/JP3383400B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、固体電解質燃料電池用
支持管等に用いられる、有底セラミックス管の製造方法
及び製造用金型に関するものである。 【0002】 【従来の技術】近年、燃料電池発電システムは、エネル
ギー問題、地球環境問題に大きな貢献をするものとし
て、世界的にその期待が高まっている。燃料電池発電シ
ステムは、燃料が有する化学エネルギーを直接電気エネ
ルギーに変換できるシステムであり、高いエネルギー変
換効率を有し、燃料の多様化が可能で、低公害で、しか
も発電効率が設備規模によって影響されず、極めて有望
な技術である。 【0003】特に、固体電解質型燃料電池は、リン酸型
燃料電池や溶融炭酸塩型燃料電池と異なり、液体、融体
を用いないため電池の構成がシンプルであり、高温の排
熱利用も含めるとエネルギー効率80〜90%が期待で
きるものである。 【0004】この固体電解質燃料電池に使用されるセル
の構造は、図7に示すように、多孔質ジルコニアセラミ
ックスなどからなる支持管1の外表面に陽極2と、例え
ば多孔質安定化ジルコニアからなる固体電解質3および
陰極4が順次積層された構造を成している。そして、上
記支持管1の内側には空気6を、電池の外側には燃料7
をそれぞれ供給し、これらが固体電解質3を介して反応
するときのエネルギーを直接電力の形で取り出すもので
ある。 【0005】また、図8に示すように、上記支持管1の
内側にはチューブ9を用いて空気6が供給されるが、こ
の空気6は循環中に1000℃程度に加熱された後、上
部へ排出され排熱利用される。そのため、支持管1の一
方端には循環性を考慮して曲面形状の有底部1aを備え
ている。さらに、燃料電池は基本単位の出力が10W程
度と低いため、商用電源を実現するために、基本単位の
電池をニッケルフェルト8を用いて大量に直列連結する
構造となっている。 【0006】そして、上記支持管1を成す有底セラミッ
クス管の製造方法は、セラミックス原料を管状に押出成
形し、得られた管状成形体の一方端に別途プレス成形し
た封止体を挿入して、必要に応じて両者間にセラミック
スペーストを介在させて一体焼成した後、研削すること
によって有底部1aを曲面状に加工していた。 【0007】 【発明が解決しようとする課題】ところが、上記支持管
1を成す有底セラミックス管は、管状体と封止体を別々
に成形して一体焼成し、有底部1aとしたものであるた
め、この有底部1aの接合強度が低いという問題点があ
った。 【0008】特に、燃料電池として用いる場合、図8に
示すように、支持管1の有底部1aには荷重が加わり、
しかも1000℃の高温下で作動するため、有底部1a
が破損してしまい、ひいては燃料電池の破壊に至るとい
う問題点があった。 【0009】 【課題を解決するための手段】上記に鑑みて本発明は、
管状セラミックス成形体を成形し、この管状セラミック
ス成形体の内部に、凸曲面状の曲面部の周囲に直径の1
〜10%の平坦部を備えた加圧面を有する下パンチを配
置し、下パンチと管状セラミックス成形体で形成される
空間にセラミックス原料を充填し、下パンチの加圧面に
対応した凹曲面状の曲面部の周囲に直径の1〜10%の
平坦部を備えた加圧面を有する上パンチによってプレス
成形して有底部を一体的に形成した後、有底部の周囲に
焼成収縮率が大きく、管状セラミックス成形体と同じ原
料からなるリング状の押圧部材を配置し、全体を焼成す
ることによって押圧部材が収縮して管状セラミックス成
形体と有底部とを密着させる工程により有底セラミック
ス管を製造するようにしたものである。 【0010】 【0011】 【0012】 【0013】 【作用】本発明によれば、管状セラミックス成形体の内
部でセラミックス原料をプレス成形して有底部を形成す
ることにより、該有底部と管状セラミックス成形体が強
固に密着し、焼成後の接合強度を高めることができる。 【0014】また、上記プレス成形時に、一方の加圧面
が凸曲面状で他方の加圧面がこれに対応した凹曲面状を
した上下パンチを用いることにより、加圧力を均一に
し、その後の製造工程中でのクラック発生を防止でき
る。 【0015】さらに、この上下パンチの加圧面の周囲に
平坦部を形成したことによって、周辺部でも強い力で加
圧することができ、また上下パンチ自体の破損を防止で
きる。 【0016】また、管状セラミックス成形体の有底部を
形成した部分の周囲に、押圧部材を備えたことにより、
焼成時に押圧部材の収縮力によって有底部の密着性を高
める方向に力が加わるため、接合強度をより高くするこ
とができる。 【0017】 【実施例】以下、本発明を実施例に基づき説明する。 【0018】15モル%のカルシアを含む安定化ジルコ
ニア原料粉末に、セラミゾール等の分散剤、グリセリン
等の可塑剤、PVA等の結合剤、および焼結体の開気孔
率が38%程度となるように繊維状のセルロース等を加
え、混合攪拌機を用いて混合した。得られた混合材を真
空混練機で減圧下で混練しながら、口金部より混練材を
押出成形し、円筒中空の管状セラミックス成形体を得
た。 【0019】次いで、図1に示すように、得られた管状
セラミックス成形体15を固定ガイド14および外部ガ
イド13中で垂直に支持する。このとき、管状セラミッ
クス成形体15の内部には、その内径と同じ径で凸曲面
状の加圧面をもった下パンチ12が備えられている。そ
して、該下パンチ12と管状セラミックス成形体15で
形成される空間に、別途バインダーを添加し造粒した同
じ組成のセラミックス原料16を充填し、油圧プレスに
よって、上パンチ11を下降させて、セラミックス原料
16をプレス成形する。 【0020】このとき、セラミックス原料16は所定形
状にプレス成形されるとともに、その周囲を取り囲む管
状セラミックス成形体15と強固に接合することにな
り、最終的に、図3に示すように管状セラミックス成形
体15に有底部17が強固に接合された成形体を得るこ
とができる。 【0021】また、プレス成形時の成形圧力は、100
〜200kg/cm2 として、有底部17の生密度が約
3.0g/cm3 と、筒状セラミックス成形体15と同
程度の生密度になるようにした。 【0022】さらに、得られた管状セラミックス成形体
15を充分に乾燥させた後、ムライト等の治具を使用し
て焼成炉中に立てて収納し、大気中1500〜1600
℃、2〜6時間の条件で焼成した。焼成後、有底部10
aの外形をダイヤモンド砥石を用いて曲面形状に加工し
て、本発明の有底セラミックス管10を得た。 【0023】 【0024】なお、図1に示す上下パンチは、図2に示
すように、管状セラミックス成形体15の内部でセラミ
ックス原料16をプレス成形する際に、下パンチ12の
加圧面12aを凸曲面状とし、上パンチ11の加圧面1
1aをこれに対応する凹曲面状としてプレス成形すれば
良い。こうすれば、セラミックス原料16における中央
部16aと周辺部16bとの加圧比がほぼ等しくなり、
成形圧力を均一にすることができる。その結果、この後
の製造工程や有底セラミックス管10としての使用時に
クラック等の発生を防止することができる。また、プレ
ス成形後の外周側(上パンチ11側)が凸曲面状に成形
されるため、この後の研磨工程を簡略化することもでき
る。 【0025】また、上記上パンチ11、下パンチ12の
加圧面11a、12aの周辺部には、それぞれ平坦部1
1b、12bを備えている。そのため、周辺部における
加圧力を強化するとともに、上パンチ11、下パンチ1
2自体の欠けや割れを防止することができる。なお、こ
の平坦部11b、12bの幅tは各パンチの直径に対し
て1%より小さいと上記効果が乏しく、一方10%を超
えると段形状が大きくなりすぎて所定の曲面形状を得に
くくなる。したがって、平坦部11b、12bの幅tは
各パンチの直径に対して1〜10%の範囲とすれば良
い。 【0026】このようにして成形した後、焼成し、外周
を研磨加工することによって、図3に示すような有底セ
ラミックス管10を得ることができるが、有底部10a
の内側には下パンチ12の平坦部12bに応じた幅の段
部10bを有している。 【0027】また、図4の例では下パンチ12の加圧面
12aを凸曲面状とし、上パンチ11の加圧面11aを
凹曲面状としたが、上下パンチの形状を逆にしてもよ
い。また、曲面部分の曲率半径等は最終製品の形状に応
じて自由に設定すれば良い。 【0028】 【0029】上記実施例と同様にして図3に示す成形体
を得た後、図4に示すように、管状セラミック成形体1
5の有底部17を形成した部分の周囲に押圧部材18を
取り付ける。この押圧部材18は、管状セラミックス成
形体15と同じ原料からなり、生密度を低くすることで
焼成収縮率を大きくしたものであって、リング状に成形
して接合してある。 【0030】そして、この状態で上記実施例と同様に全
体を焼成すると、上記押圧部材18が大きく収縮するた
めに、有底部17と管状セラミックス成形体15との接
合強度をより高いものとすることができる。なお、この
押圧部材18は、焼成後の外形研削加工時に取り除き、
最終的には図3に示すような曲面状の外形となる。 【0031】なお、以上の実施例では燃料電池用の支持
管を成す、ジルコニアセラミックス製の有底セラミック
ス管10について述べたが、本発明の製造方法はこの実
施例に限るものではない。例えば、材料としてはアルミ
ナ、ジルコニア、ムライト、コージライト等のセラミッ
クスを用いることができ、その用途としては各種フィル
タや熱電対用保護管等のさまざまな分野に用いることが
できる。 【0032】実験例1 ここで、図1〜3に示す本発明の製造方法により得られ
た有底セラミックス管10を、図7に示すように治具2
0上に載置し、ヒータ21で加熱しながら、ロードセル
22で荷重を加え、有底部10aの破壊時の負荷荷重を
測定した。 【0033】また、同時に比較例の有底セラミックス管
として、別途プレス成形した封止体を挿入し一体焼成し
て有底部を形成したもの(比較例1)、比較例1に対し
封止体を低粘性ペーストで接合して一体焼成したもの
(比較例2)、比較例1に対し封止体を高粘性ペースト
で接合して一体焼成したもの(比較例3)についても同
じ実験を行った。 【0034】結果は表1に示す通り、比較例1では10
00℃での耐荷重値は22.1kgと低く、またペース
トを用いた比較例2、3でも53〜54kgと、規格耐
荷重値55kgを満足していなかった。これに対し、本
発明実施例では耐荷重値60kgと規格許容範囲内のも
のを得ることができた。 【0035】 【表1】【0036】実験例2 次に、上記と同様にして、外径18mm、内径13mm
のセラミック管10を成形し、図2に示す上下パンチを
用いて有底部10aの成形を行った。 【0037】その際、用いた上パンチ11、下パンチ1
2の直径は12.85mm、平坦面11b、12bの幅
tは0.30mmであり、各パンチの直径に対する比率
は2.3%とした。成形圧力は35kg/cm2 でプレ
ス成形したところ、有底部の生密度は3.0g/cm3
であり、セラミック管10と同様とした。 【0038】十分な乾燥の後、焼結温度より低い温度で
予備焼成を行い、わずかに焼結させて高温強度を与えた
後、ムライト等の治具を使用して焼成炉中に立てて収納
し、大気中1550℃、6時間の保持で焼成した。 【0039】予備焼成後と本焼成後の2回の段階で、先
端の有底部をダイヤ砥石を用いて曲面加工した後、縦方
向に切断してクラックの有無を観察した。 【0040】その結果、いずれの段階でもクラックの発
生は全く認められず、クラックの発生を完全に防止で
き、図1に示す上下パンチはクラック防止に優れた効果
があることがわかる。 【0041】実験例3 次に、有底部17の焼成収縮率を10%とし、管状セラ
ミックス成形体15の焼成収縮率を10〜16%の範囲
で種々に変化させたものを用意し、それぞれ図2に示す
ように押圧部材を備えずに焼成した場合と、図4に示す
ように焼成収縮率13%の押圧部材18を備えて焼成し
た場合について、上記実験例と同様に有底部17の接合
強度を測定した。 【0042】結果は図8に示す通り、管状セラミックス
成形体15と有底部17との収縮率の差が3%より小さ
い場合には、押圧部材18を備えずに焼成すると接合強
度が低下してしまうことがわかった。これに対し、押圧
部材18を備えて焼成すれば、両者の収縮率の差に関係
なく、60kg以上の高い接合強度を保つことができ
た。したがって、押圧部材18を備えて焼成することに
より、有底部17の接合強度を向上できることがわか
る。 【0043】 【発明の効果】以上のように本発明によれば、管状セラ
ミックス成形体を成形し、この管状セラミックス成形体
の内部に、凸曲面状の曲面部の周囲に直径の1〜10%
の平坦部を備えた加圧面を有する下パンチを配置し、下
パンチと管状セラミックス成形体で形成される空間にセ
ラミックス原料を充填した後、下パンチの加圧面に対応
した凹曲面状の曲面部の周囲に直径の1〜10%の平坦
部を備えた加圧面を有する上パンチによってプレス成形
して有底部を一体的に形成した後、有底部の周囲に焼成
収縮率が大きく、管状セラミックス成形体と同じ原料か
らなるリング状の押圧部材を配置し、全体を焼成するこ
とによって押圧部材が収縮して管状セラミックス成形体
と有底部とを密着させる工程からなることによって、有
底部の接合強度が高いセラミックス管を容易に得ること
ができ、このセラミックス管は特に燃料電池用支持管と
して好適に使用することができる。 【0044】また本発明は、加圧面が凸曲面状で他方の
加圧面がこれに対応した凹曲面状をした上下パンチを用
いてプレス成形するようにしたことによって、成形圧力
を均一にし、その後の製造工程等におけるクラックの発
生を防止できる。 【0045】さらに、本発明は上記上下パンチとして、
加圧面が曲面部と周囲の平坦部からなるものを用いたこ
とにより、パンチ自体の破損等を防止し、周辺部の成形
圧力を高くできる。 【0046】また、上記筒状セラミック成形体の有底部
を形成した部分の周囲に押圧部材を備えて焼成すること
によって、さらに有底部の接合強度を高めることが可能
となる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a bottomed ceramic tube used for a support tube for a solid oxide fuel cell and a mold for producing the tube. 2. Description of the Related Art In recent years, fuel cell power generation systems are expected to contribute greatly to energy problems and global environmental problems, and their expectations are increasing worldwide. A fuel cell power generation system is a system that can directly convert the chemical energy of fuel into electric energy, has high energy conversion efficiency, can diversify fuels, has low pollution, and power generation efficiency is affected by the scale of equipment Not a very promising technology. In particular, a solid oxide fuel cell differs from a phosphoric acid fuel cell and a molten carbonate fuel cell in that it does not use a liquid or a molten material, so that the structure of the cell is simple and includes utilization of high-temperature exhaust heat. And an energy efficiency of 80 to 90% can be expected. As shown in FIG. 7, the structure of a cell used in this solid electrolyte fuel cell comprises an anode 2 on the outer surface of a support tube 1 made of porous zirconia ceramic or the like and, for example, porous stabilized zirconia. It has a structure in which the solid electrolyte 3 and the cathode 4 are sequentially laminated. Then, air 6 is provided inside the support tube 1 and fuel 7 is provided outside the battery.
Are supplied, and the energy when these react through the solid electrolyte 3 is directly taken out in the form of electric power. As shown in FIG. 8, air 6 is supplied to the inside of the support tube 1 using a tube 9. The air 6 is heated to about 1000 ° C. during circulation, and And the waste heat is used. Therefore, one end of the support tube 1 is provided with a curved bottomed portion 1a in consideration of circulation. Further, since the output of the basic unit of the fuel cell is as low as about 10 W, a large number of the basic unit cells are connected in series using nickel felt 8 in order to realize a commercial power supply. A method of manufacturing the bottomed ceramic tube forming the support tube 1 is to extrude a ceramic raw material into a tubular shape, and insert a separately press-molded sealing body into one end of the obtained tubular molded body. If necessary, a ceramic paste is interposed between the two to integrally fire, and then the bottomed portion 1a is processed into a curved surface by grinding. [0007] However, the bottomed ceramic tube constituting the support tube 1 is one in which a tubular body and a sealing body are separately molded and integrally fired to form a bottomed portion 1a. Therefore, there is a problem that the joining strength of the bottomed portion 1a is low. In particular, when used as a fuel cell, a load is applied to the bottomed portion 1a of the support tube 1 as shown in FIG.
Moreover, since it operates at a high temperature of 1000 ° C., the bottomed portion 1a
However, there is a problem that the fuel cell is damaged, and eventually the fuel cell is destroyed. [0009] In view of the above, the present invention provides
A tubular ceramic molded body is formed, and the inside of the tubular ceramic molded body has a diameter of 1 around a convex curved portion.
A lower punch having a pressing surface with a flat portion of 10% to 10% is arranged, a ceramic material is filled in a space formed by the lower punch and the tubular ceramic molded body, and a concave curved surface corresponding to the pressing surface of the lower punch is formed. After forming a bottomed portion integrally by press forming with an upper punch having a pressurized surface having a flat portion with a diameter of 1 to 10% around a curved portion, a firing shrinkage rate around the bottomed portion is large, and a tubular shape is formed. A ring-shaped pressing member made of the same raw material as the ceramic molded body is arranged, and the pressing member is contracted by baking the entire body to make the tubular ceramic molded body and the bottomed portion adhere to each other to produce a bottomed ceramic tube. It was made. According to the present invention, a ceramic material is press-molded inside a tubular ceramic molded body to form a bottomed portion, whereby the bottomed portion and the tubular ceramics molding are formed. The body firmly adheres, and the bonding strength after firing can be increased. In the above press forming, the pressing force is made uniform by using upper and lower punches, one of which has a convex curved surface and the other has a concave curved surface corresponding thereto. Cracks can be prevented from occurring inside. Further, since a flat portion is formed around the pressing surface of the upper and lower punches, it is possible to press the peripheral portion with a strong force and to prevent the upper and lower punches from being damaged. Further, by providing a pressing member around a portion where the bottomed portion of the tubular ceramic molded body is formed,
Since a force is applied in the direction of increasing the adhesiveness of the bottomed portion due to the contraction force of the pressing member at the time of firing, the joining strength can be further increased. Hereinafter, the present invention will be described with reference to examples. The stabilized zirconia raw material powder containing 15 mol% of calcia is added to a dispersant such as ceramisol, a plasticizer such as glycerin, a binder such as PVA, and a sintered body having an open porosity of about 38%. And fibrous cellulose were added thereto and mixed using a mixing stirrer. While kneading the obtained mixed material with a vacuum kneader under reduced pressure, the kneaded material was extruded from a die to obtain a cylindrical hollow tubular ceramic molded body. Next, as shown in FIG. 1, the obtained tubular ceramic molded body 15 is vertically supported in a fixed guide 14 and an external guide 13. At this time, a lower punch 12 having the same diameter as the inner diameter and having a convex curved pressing surface is provided inside the tubular ceramic molded body 15. Then, a space formed by the lower punch 12 and the tubular ceramic molded body 15 is filled with a ceramic material 16 of the same composition, which is separately added and granulated by adding a binder, and the upper punch 11 is lowered by a hydraulic press so that The raw material 16 is press-formed. At this time, the ceramic raw material 16 is press-formed into a predetermined shape, and is firmly joined to the tubular ceramic molded body 15 surrounding the periphery thereof. Finally, as shown in FIG. A molded body in which the bottomed portion 17 is firmly joined to the body 15 can be obtained. The molding pressure during press molding is 100
As ~200kg / cm 2, the raw density of the bottom portion 17 is approximately 3.0 g / cm 3, was set to the raw density of the same level as the cylindrical ceramic body 15. Further, after the obtained tubular ceramic molded body 15 is sufficiently dried, the tubular ceramic molded body 15 is set up in a firing furnace using a jig such as mullite, and stored in the atmosphere at 1500 to 1600 in the atmosphere.
It baked on conditions of 2 ° C and 2-6 hours. After firing, bottomed part 10
The outer shape of a was processed into a curved shape using a diamond grindstone to obtain a bottomed ceramic tube 10 of the present invention. The upper and lower punches shown in FIG. 1 project from the pressing surface 12a of the lower punch 12 when the ceramic raw material 16 is press-formed inside the tubular ceramic molded body 15, as shown in FIG. Pressing surface 1 of upper punch 11 to be curved
What is necessary is just to press-mold 1a as a concave curved surface shape corresponding to this. In this case, the pressing ratio between the central portion 16a and the peripheral portion 16b of the ceramic raw material 16 becomes substantially equal,
The molding pressure can be made uniform. As a result, it is possible to prevent the occurrence of cracks and the like in the subsequent manufacturing process and during use as the bottomed ceramic tube 10. Further, since the outer peripheral side (the upper punch 11 side) after the press forming is formed into a convex curved shape, the subsequent polishing step can be simplified. In addition, flat portions 1 are formed around the pressing surfaces 11a and 12a of the upper punch 11 and the lower punch 12, respectively.
1b and 12b. Therefore, the pressing force in the peripheral portion is strengthened, and the upper punch 11 and the lower punch 1
2 itself can be prevented from being chipped or cracked. When the width t of the flat portions 11b and 12b is smaller than 1% of the diameter of each punch, the above effect is poor. On the other hand, when the width t exceeds 10%, the step shape becomes too large and it becomes difficult to obtain a predetermined curved surface shape. . Therefore, the width t of the flat portions 11b and 12b may be in the range of 1 to 10% with respect to the diameter of each punch. After forming in this manner, firing and polishing the outer periphery, a bottomed ceramic tube 10 as shown in FIG. 3 can be obtained.
Has a step portion 10b having a width corresponding to the flat portion 12b of the lower punch 12. In the example of FIG. 4, the pressing surface 12a of the lower punch 12 has a convex curved surface and the pressing surface 11a of the upper punch 11 has a concave curved surface. However, the shapes of the upper and lower punches may be reversed. Further, the radius of curvature of the curved surface portion may be freely set according to the shape of the final product. After obtaining the compact shown in FIG. 3 in the same manner as in the above embodiment, as shown in FIG.
The pressing member 18 is attached around the portion where the bottomed portion 17 is formed. The pressing member 18 is made of the same raw material as that of the tubular ceramic molded body 15, has a low green density and a high firing shrinkage, and is formed into a ring shape and joined. When the whole is fired in this state in the same manner as in the above embodiment, the pressing member 18 is greatly shrunk, so that the bonding strength between the bottomed portion 17 and the tubular ceramic molded body 15 is further increased. Can be. In addition, this pressing member 18 is removed at the time of outer shape grinding after firing,
The final shape is a curved outer shape as shown in FIG. In the above embodiments, the bottomed ceramic tube 10 made of zirconia ceramics, which constitutes a support tube for a fuel cell, has been described. However, the manufacturing method of the present invention is not limited to this embodiment. For example, as a material, ceramics such as alumina, zirconia, mullite, and cordierite can be used, and as its application, it can be used in various fields such as various filters and thermocouple protection tubes. Experimental Example 1 Here, the bottomed ceramic tube 10 obtained by the manufacturing method of the present invention shown in FIGS.
0, and a load was applied by the load cell 22 while heating with the heater 21 to measure the applied load when the bottomed portion 10a was broken. At the same time, as a bottomed ceramic tube of a comparative example, a separately press-molded sealing body was inserted and integrally fired to form a bottomed part (Comparative Example 1). The same experiment was performed for the case where the sealing body was joined and fired integrally with a low-viscosity paste (Comparative Example 2) and the case where the sealing body was joined and joined with a high-viscosity paste for Comparative Example 1 (Comparative Example 3). As shown in Table 1, the results are 10 in Comparative Example 1.
The load-bearing value at 00 ° C. was as low as 22.1 kg, and Comparative Examples 2 and 3 using the paste were 53 to 54 kg, which did not satisfy the standard load-bearing value of 55 kg. On the other hand, in the example of the present invention, a load resistance value of 60 kg and within the standard allowable range could be obtained. [Table 1] Experimental Example 2 Next, an outer diameter of 18 mm and an inner diameter of 13 mm
Was formed, and the bottomed portion 10a was formed using the upper and lower punches shown in FIG. At this time, the upper punch 11 and the lower punch 1 used
2, the width t of the flat surfaces 11b and 12b was 0.30 mm, and the ratio of each punch to the diameter was 2.3%. Press molding was performed at a molding pressure of 35 kg / cm 2 , and the green density at the bottom was 3.0 g / cm 3.
And the same as the ceramic tube 10. After sufficient drying, pre-sintering is performed at a temperature lower than the sintering temperature to give a high-temperature strength by slightly sintering, and then stored in a firing furnace using a jig such as mullite. Then, firing was performed at 1550 ° C. for 6 hours in the atmosphere. At the two stages after pre-firing and after main firing, the bottomed portion at the tip was subjected to a curved surface processing using a diamond grindstone, and then cut vertically to observe the presence or absence of cracks. As a result, no generation of cracks was observed at any stage, and the generation of cracks could be completely prevented. It can be seen that the upper and lower punches shown in FIG. 1 have an excellent effect of preventing cracks. Experimental Example 3 Next, the firing shrinkage of the bottomed portion 17 was set to 10%, and the firing shrinkage of the tubular ceramic molded body 15 was variously changed in the range of 10 to 16%. In the case of baking without a pressing member as shown in FIG. 2 and the case of baking with a pressing member 18 having a baking shrinkage of 13% as shown in FIG. The strength was measured. As shown in FIG. 8, when the difference in the shrinkage ratio between the tubular ceramic molded body 15 and the bottomed portion 17 is smaller than 3%, when the sintering is performed without the pressing member 18, the bonding strength is reduced. I found out. On the other hand, if the baking was performed with the pressing member 18, a high bonding strength of 60 kg or more could be maintained regardless of the difference in shrinkage between the two. Therefore, it can be understood that the bonding strength of the bottomed portion 17 can be improved by baking with the pressing member 18. As described above, according to the present invention, a tubular ceramic molded body is formed, and the inside of the tubular ceramic molded body is surrounded by a convex curved surface portion with a diameter of 1 to 10%.
After placing a lower punch having a pressing surface with a flat portion and filling a ceramic material in a space formed by the lower punch and the tubular ceramic molded body, a concave curved surface portion corresponding to the pressing surface of the lower punch is provided. After press forming with an upper punch having a pressurized surface having a flat portion with a diameter of 1 to 10% around the bottom, the bottomed portion is integrally formed, and then the firing shrinkage rate around the bottomed portion is large, and the tubular ceramics molding is performed. A ring-shaped pressing member made of the same raw material as that of the body is arranged, and the pressing member is contracted by firing the whole, and a step of bringing the tubular ceramic molded body and the bottomed portion into close contact with each other, so that the bonding strength of the bottomed portion is reduced. A high ceramic tube can be easily obtained, and this ceramic tube can be suitably used particularly as a support tube for a fuel cell. Further, the present invention is characterized in that the molding pressure is made uniform by using the upper and lower punches having a pressing surface having a convex curved surface shape and the other pressing surface having a concave curved surface shape corresponding thereto. Cracks can be prevented in the manufacturing process and the like. Further, according to the present invention, as the above-mentioned upper and lower punches,
By using a pressing surface composed of a curved surface portion and a peripheral flat portion, breakage of the punch itself can be prevented, and the molding pressure in the peripheral portion can be increased. Further, by sintering the cylindrical ceramic molded body with a pressing member provided around the portion where the bottomed portion is formed, it is possible to further increase the bonding strength of the bottomed portion.

【図面の簡単な説明】 【図1】本発明の有底セラミックス管の製造方法を説明
するための概略断面図である。 【図2】本発明の有底セラミックス管の製造方法を説明
するための断面図である。 【図3】本発明の製造方法で得られる有底セラミックス
管を示す断面図である。 【図4】本発明の有底セラミックス管の製造方法の実施
例を説明するための断面図である。 【図5】一般的な燃料電池に使用されるセルの構造を示
す図である。 【図6】一般的な燃料電池の構造を示す図である。 【図7】有底セラミックス管の有底部の接合強度を測定
する方法を示す図である。 【図8】有底セラミックス管の有底部の接合強度を示す
グラフである。 【符号の説明】 10:有底セラミックス管 11:上パンチ 12:下パンチ 13:外部ガイド 14:固定ガイド 15:管状セラミックス成形体 16:セラミックス原料 17:有底部 18:押圧部材
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view for explaining a method of manufacturing a bottomed ceramic tube of the present invention. FIG. 2 is a cross-sectional view illustrating a method for manufacturing a bottomed ceramic tube according to the present invention. FIG. 3 is a sectional view showing a bottomed ceramic tube obtained by the production method of the present invention. FIG. 4 is a cross-sectional view for explaining an embodiment of the method for manufacturing a bottomed ceramic tube of the present invention. FIG. 5 is a view showing a structure of a cell used in a general fuel cell. FIG. 6 is a diagram showing a structure of a general fuel cell. FIG. 7 is a diagram showing a method for measuring the joining strength of a bottomed portion of a bottomed ceramic tube. FIG. 8 is a graph showing the bonding strength of the bottomed portion of the bottomed ceramic tube. [Description of References] 10: bottomed ceramic tube 11: upper punch 12: lower punch 13: external guide 14: fixed guide 15: tubular ceramic molded body 16: ceramic raw material 17: bottomed portion 18: pressing member

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−167479(JP,A) 特開 昭49−120850(JP,A) 特開 平1−138179(JP,A) 特開 昭55−7544(JP,A) 特開 昭57−67083(JP,A) 実開 平1−166506(JP,U) (58)調査した分野(Int.Cl.7,DB名) B28B 3/02 B28B 11/00 - 11/22 C04B 37/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-58-167479 (JP, A) JP-A-49-120850 (JP, A) JP-A-1-138179 (JP, A) JP-A 55-167 7544 (JP, A) JP-A-57-67083 (JP, A) JP-A-1-166506 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) B28B 3/02 B28B 11 / 00-11/22 C04B 37/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】管状セラミックス成形体を成形し、この管
状セラミックス成形体の内部に、凸曲面状の曲面部の周
囲に直径の1〜10%の平坦部を備えた加圧面を有する
下パンチを配置し、下パンチと管状セラミックス成形体
で形成される空間にセラミックス原料を充填し、下パン
チの加圧面に対応した凹曲面状の曲面部の周囲に直径の
1〜10%の平坦部を備えた加圧面を有する上パンチに
よってプレス成形して有底部を一体的に形成した後、有
底部の周囲に焼成収縮率が大きく、管状セラミックス成
形体と同じ原料からなるリング状の押圧部材を配置し、
全体を焼成することによって押圧部材が収縮して管状セ
ラミックス成形体と有底部とを密着させる工程からなる
有底セラミックス管の製造方法。
(57) [Claims 1] A tubular ceramic molded body is formed,
Around the convex curved surface inside the ceramic body
Has a pressurized surface with a flat portion with a diameter of 1 to 10% in the surrounding
Placing the lower punch, the lower punch and the tubular ceramic molded body
Fill the space formed by the ceramic material with the lower pan
Around the concave curved surface corresponding to the pressing surface of the
For upper punch with pressurized surface with 1-10% flat part
Therefore, after forming the bottomed part integrally by press molding,
A large firing shrinkage around the bottom,
Arrange a ring-shaped pressing member made of the same raw material as the shape,
By firing the whole, the pressing member shrinks and the tubular
It consists of the step of bringing the Lamix molded body and the bottomed part into close contact
Manufacturing method of bottomed ceramic tube.
JP06131094A 1993-07-30 1994-03-30 Method for producing bottomed ceramic tube and mold for production Expired - Fee Related JP3383400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06131094A JP3383400B2 (en) 1993-07-30 1994-03-30 Method for producing bottomed ceramic tube and mold for production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-190471 1993-07-30
JP19047193 1993-07-30
JP06131094A JP3383400B2 (en) 1993-07-30 1994-03-30 Method for producing bottomed ceramic tube and mold for production

Publications (2)

Publication Number Publication Date
JPH0788830A JPH0788830A (en) 1995-04-04
JP3383400B2 true JP3383400B2 (en) 2003-03-04

Family

ID=26402349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06131094A Expired - Fee Related JP3383400B2 (en) 1993-07-30 1994-03-30 Method for producing bottomed ceramic tube and mold for production

Country Status (1)

Country Link
JP (1) JP3383400B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379485B1 (en) * 1998-04-09 2002-04-30 Siemens Westinghouse Power Corporation Method of making closed end ceramic fuel cell tubes
CN103085155B (en) * 2011-10-31 2015-03-25 中国科学院上海硅酸盐研究所 Special-shaped thin-wall ceramic pipe grouting molding machine
CN109808042B (en) * 2019-01-30 2020-10-16 吉林大学 Solid oxide fuel cell electrolyte preparation mould control device

Also Published As

Publication number Publication date
JPH0788830A (en) 1995-04-04

Similar Documents

Publication Publication Date Title
US6379485B1 (en) Method of making closed end ceramic fuel cell tubes
JP3090726B2 (en) Self-supporting air electrode tube of solid oxide electrolyte electrochemical cell and method of manufacturing the same
US5162167A (en) Apparatus and method of fabricating a monolithic solid oxide fuel cell
CN101443947B (en) SOFC stack having a high temperature bonded ceramic interconnect and method for making same
KR100344936B1 (en) Tubular Solid Oxide Fuel Cell supported by Fuel Electrode and Method for the same
JP2002175814A (en) Manufacturing method of fuel electrode for solid electrolyte type fuel cell, the solid electrolyte type fuel cell and its manufacturing method
KR20010040721A (en) Method of making straight fuel cell tubes
JP3383400B2 (en) Method for producing bottomed ceramic tube and mold for production
EP1029594B1 (en) Honeycomb structural body
CN113745618B (en) SOFC (solid oxide Fuel cell) and preparation method thereof
JP3455054B2 (en) Manufacturing method of cylindrical solid oxide fuel cell
JPH0741369A (en) Burning method for ceramic pipe
JP3116455B2 (en) Solid oxide fuel cell
JPH0740322A (en) Extrusion molding equipment
CN114933487B (en) Solid oxide fuel cell/electrolytic cell with one end sealed and ceramic flat tube supported and preparation method of cell stack
JP3346663B2 (en) Fuel cell
JP3238086B2 (en) Solid oxide fuel cell
JPH11283640A (en) Cylindrical solid-electrolyte fuel cell
JP2678775B2 (en) Method for manufacturing high-density silicon nitride sintered body
JP3285856B2 (en) Solid oxide fuel cell
JP3342611B2 (en) Manufacturing method of cylindrical fuel cell
JP2003036863A (en) Cell for solid electrolyte type fuel cell and fuel cell
JPS62273809A (en) Manufacture of thin green ceramic pipe
JP2004142979A (en) Method for manufacturing porous honeycomb structure and honeycomb formed body
JPS61288381A (en) Manufacture of fuel cell composing element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees