JP3381566B2 - Light source unit - Google Patents

Light source unit

Info

Publication number
JP3381566B2
JP3381566B2 JP20843597A JP20843597A JP3381566B2 JP 3381566 B2 JP3381566 B2 JP 3381566B2 JP 20843597 A JP20843597 A JP 20843597A JP 20843597 A JP20843597 A JP 20843597A JP 3381566 B2 JP3381566 B2 JP 3381566B2
Authority
JP
Japan
Prior art keywords
reflecting mirror
cooling air
light source
source unit
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20843597A
Other languages
Japanese (ja)
Other versions
JPH1139934A (en
Inventor
賢二 今村
哲 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16556170&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3381566(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP20843597A priority Critical patent/JP3381566B2/en
Publication of JPH1139934A publication Critical patent/JPH1139934A/en
Application granted granted Critical
Publication of JP3381566B2 publication Critical patent/JP3381566B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、液晶プロジェクタ
ー等の投影機器などに使用される光源ユニットに関す
る。 【0002】 【従来の技術】液晶プロジェクターなどに使用される光
源ユニットには、光源として、メタルハライドランプや
超高圧水銀ランプといった放電ランプが使用される。こ
の放電ランプの光は凹面反射鏡により集光され、さらに
インテグレータレンズ等の各種光学レンズでスクリーン
での照度が均一になるように工夫され、液晶面に照射さ
れる。 【0003】例えば、光源ランプとして使用されるショ
ートアーク型のメタルハライドランプは、点灯時には、
発光管内の圧力が20〜150atm程度の動作圧のも
のがあるが、通常使用のランプ寿命の期間内において、
発光管が劣化して放電ランプが破裂する危険性が考えら
れる。 【0004】この破裂対策として、破片が飛散しないよ
うに凹面反射鏡の光照射側に前面ガラス等の透光性部材
を配して光源ユニットを密閉化したものとして特開平5
−251054号公報が知られている。図1はこのよう
な密閉型の光源ユニットの例である。 【0005】この例の場合、液晶プロジェクター内で
は、発光管の最高温度領域である発光管上部の温度が特
に高温になり易く、その発光管上部で石英ガラスの失透
現象が起こることがある。発光管を冷却することで発光
管の失透を防ぐものとして、特開平5−135746号
公報が知られている。これは、送風パイプや送風ノズル
を凹面反射鏡の頸部から凹面反射鏡の反射面側ヘ導入
し、発光管を冷やすというものではあるが、前面ガラス
等の透光性部材を配した光源ユニットにおける冷却方法
については示されていない。 【0006】また、前面ガラス等の透光性部材を配した
光源ユニットの場合には、凹面反射鏡の反射面側に位置
するランプ封止部は前面ガラス等の内側の囲まれた空間
内に配されて高温になり、ランプ封止部の金属箔部分の
温度が350℃を超えると金属箔部分で酸化が起こり、
金属箔が膨脹して封止部でクラック等が発生する恐れが
ある。 【0007】このように、前面ガラス等の透光性部材を
配した光源ユニットでは、囲まれた空間内の発光管の高
温部を効率よく冷却し、かつランプ封止部の箔酸化を防
止するということが要求されている。 【0008】 【発明が解決しようとする課題】そこで、本発明の目的
は、前面ガラス等の透光性部材を配した光源ユニットに
おいて、発光管上部の冷却と同時に凹面反射鏡の反射面
側に位置するランプ封止部の冷却をも行なう構造を有す
る光源ユニットを提供することにある。 【0009】 【課題を解決するための手段】上記目的を解決するため
に、凹面反射鏡の頸部に該凹面反射鏡と光軸を一致させ
て両端封止型の放電ランプが固定され、該凹面反射鏡の
前面開口部が透光性材料の前面板あるいはインテグレー
タレンズで覆われて、前記放電ランプが水平あるいは略
水平点灯されて、該放電ランプからの放射光が該凹面反
射鏡の前面開口から放射する光源ユニットにおいて、該
凹面反射鏡の頸部とランプ封止部の隙間を介して排風す
冷却風排風穴をスリーブに有し、該凹面反射鏡の前面
開口部の下側周縁部に冷却風送風穴を有し、該凹面反射
鏡の前面開口側に位置する該放電ランプの封止部端部の
方向に該送風穴の送風吹出し口が向いている光源ユニッ
トとする。 【0010】 【発明の実施の形態】以下に本発明の実施の形態につい
て図面を用いて説明する。図2は本発明の光源ユニット
の一実施例である。凹面反射鏡7の反射鏡頸部9に放電
ランプ1が挿入され、スリーブ13および接着剤漏れ止
めキャップ17等により該凹面反射鏡7と光軸を一致さ
せて接着剤8により固定される。反射鏡開口側に位置す
る外部リード棒6は反射鏡7に貫通穴を設けて反射鏡外
部に出すか、発光管部のそばを通し、反射鏡頸部から反
射鏡外部に出すかされる。 【0011】前面ガラス10は前面ガラス固定枠16に
例えば接着剤8により固定される。該凹面反射鏡7の前
面開口側の周縁部の下半分に配置する前記前面ガラス固
定枠には冷却風送風穴12が設けられる。また、反射鏡
の反射鏡頸部9に接合させるスリーブ13には冷却風排
風穴15が設けられる。本実施例では冷却風送風穴12
にパイプ36が連設されており、送風穴12の送風吹出
し口12Aは反射鏡開口側に位置するランプ封止部4の
端部に向いている。 【0012】通常、光源ユニット30の使用される液晶
プロジェクター等の投影装置(不図示)では投影装置の
吸気ファンから冷却風を取り入れ、排気ファンから冷却
風を排気することによって、液晶板等の光学系、電源
部、ランプ等を冷却する構成が取られている。そして、
本発明の光源ユニットは前記吸気ファンと前記排気ファ
ンの間の冷却風の流れの経路内に配置されることにより
冷却風が光源ユニット内を通過して該光源ユニットを冷
却するようにして使用される。 【0013】図2において光源ユニット30内におい
て、冷却風は冷却風送風穴12から、反射鏡開口側に位
置するランプ封止部4の端部に向かって矢印の方向に流
れ込み、該ランプ封止部の端部を冷却して、反射鏡7の
表面に当たり該表面に沿っておりて発光管上部を冷却し
て、反射鏡頸部9のスリーブ13にある冷却風排風穴1
5からユニット外部へ排気される。 【0014】なお、冷却風排風穴を構成するための反射
鏡頸部9のスリーブ13や接着剤漏れ止めキャップ17
については一例であり、スリーブ13と接着剤漏れ止め
キャップ17を一体化した部材を使用してもよい。 【0015】150Wから350W程度の消費電力の放
電ランプでは、一般的には凹面反射鏡7に硼珪酸ガラス
が使われる。この硼珪酸ガラスの熱膨張率は32〜38
×10-7/℃付近のものが使われている。このガラスは
最高使用温度460〜490℃、通常使用温度230
℃、耐熱衝撃は肉厚3.3mmのガラスでは温度差16
0℃迄耐える。250Wの放電ランプでも、焦点距離が
小さく、小型の反射鏡を用いた場合や、350W、40
0W程度の高消費電力の放電ランプでは、さらに耐熱性
の優れた低熱膨張率の結晶化ガラスが使われる。熱膨張
率は、4.1×10-7/℃と小さく、最高使用温度60
0℃、通常使用温度500℃、耐熱衝撃は肉厚3.3m
mのガラスでは温度差400℃迄耐える。 【0016】また、凹面反射鏡の反射面には、耐熱性4
50℃程度のSiO2とTiO2の多層膜蒸着などが施さ
れることもある。前面ガラス10は硼珪酸ガラスが一般
的に使用される。取り付け方については発光管が破裂す
る場合を想定して、発光管破裂時の瞬時的な力で、外れ
ないように止め具を用いるとか、反射鏡7と前面ガラス
固定枠16で接合構造にし、光源ユニット30を収納す
るユニット枠(図3の記号19)内面で同ユニット枠1
9に前面ガラス固定枠16を突き当てる構造とすること
で、外れないようにするとか、耐熱性の接着剤で固定す
るなど各種方法が考えられる。なお、前面ガラス10に
代えて、インテグレータレンズを配置することも可能で
ある。 【0017】図3は本発明の他の実施例の断面図を示
す。光源ユニット30はユニット枠19に反射鏡保持台
18を介して保持されている。該反射鏡保持台18内部
には光源ユニット30の内部を冷却する冷却風を送風す
るための冷却風送風穴が造り込まれている。 【0018】図3のA−A’面の矢視図を図4に示す。
12は該反射鏡保持台18内部に造り込まれている冷却
風送風穴を示している。冷却風送風穴の吹出し口12A
は凹面反射鏡の前面開口側に位置する該放電ランプの封
止部端部の方向に向いている。 【0019】冷却風は該冷却風送風穴12から、反射鏡
開口側に位置するランプの封止部端部に向いて流れ込
み、該封止部端部を冷却して、反射鏡7の表面に沿って
下りおりて発光管上部を冷却し、また、反射鏡頸部9
ランプ封止部との隙間を介して排風するようにスリーブ
13に作られた冷却風排風穴15からユニット外部へ排
気される。 【0020】この例においては冷却風排風については、
ランプ破裂が仮に起こった場合の破裂音の消音の工夫と
して、スリーブ13をベース取付け部となる筒部の周囲
に隙間を形成するように前記筒部の外径より大きい内径
を有する筒部を設け、複数個の穴が互い違いに開けられ
た仕切壁により、隙間が多段構造になる構造にすること
で、長い通風経路を構成して、凹面反射鏡内からの排風
がスリーブ内の前記通風経路を巡り冷却風排風穴15か
らユニット外部へ排気されるようになっている。また、
冷却風送風穴12も同様に消音の工夫として反射鏡保持
台18の内部で長い経路を有するようにしている。 【0021】なお、冷却風排風穴15は反射鏡頸部9
スリーブ13に設けると同時に凹面反射鏡の前面反射鏡
の前面開口部の下側周縁部にも設けてもよい。 【0022】次に、本発明の光源ユニットにおいて、冷
却風の送風条件を変えて光源ユニット内の放電ランプの
発光管上部、発光管下部および封止部端部の温度を測定
した。実験条件は以下のとおりである。 【0023】 <冷却実験の実験条件> 使用ランプ:消費電力200Wの直流点灯形石英発光管のメタルハライド ランプ 発光管外径:14mm(内径10.4mm) 封入物:水銀、アルゴン、希土類ハロゲン化物 凹面反射鏡:硼珪酸ガラス製で内面の反射面は耐熱性450℃程度のSi O2とTiO2の多層膜蒸着によるコールドミラー 前面開口の直径:85mm 肉厚:4mm 冷却風量:0.006m3/min 【0024】ここでの冷却実験において、図2に示した
冷却風送風穴12にパイプ36が連設された光源ユニッ
トにおいては、図5に示すようにDCフラットファン3
2からの冷却風をエアータンク34に導入し、送風チュ
ーブ35とパイプ36を介して冷却風送風穴12から光
源ユニット30へ送風し、反射鏡頸部9の排風穴15か
ら排出した。このとき、冷却風送風側(A)の圧力と冷
却風排風側(B)の圧力差は2mmH2Oであった。そ
して、冷却風送風穴12は反射鏡下側に2個所設けて冷
却風を導入した場合と、冷却風送風穴を図2とは上下逆
に反射鏡上部に2個所設けて冷却風を導入した場合で放
電ランプの反射鏡開口側の封止部端部温度と発光管上部
温度と発光管下部温度がどのようになるか測定した。 【0025】温度測定は、φ0.2mmの線径のK熱電
対を使用した。発光管上部および下部の温度はいずれも
前記熱電対を発光管上部および下部に接触させた状態で
少量の無機接着剤で固定してランプを点灯させ、熱電対
の出力を温度換算した。ランプ封止部端部の温度測定で
は、封止管外部から切り込みをいれ、外部リード棒と金
属箔のスポット溶接部の中央部のところに前記熱電対を
挿入して熱電対が外部リード棒と接触するようにして少
量の無機接着剤で固定してランプを点灯させた。表1に
測定結果を示す。 【0026】 【表1】【0027】同様にして、冷却風送風穴12を図3およ
び図4に示すように反射鏡下側に2個所設けて、該冷却
風送風穴から冷却風を導入した場合と、冷却風送風穴を
図4とは上下逆に反射鏡上部に2個所設けて冷却風を導
入した場合で放電ランプの反射鏡開口側の封止部端部温
度と発光管上部温度と発光管下部温度がどのようになる
か測定した。その結果を表2に示す。なお、図3および
図4の例では、スリーブ13に冷却風排風穴15は冷却
風の経路を作る上で必要である。 【0028】 【表2】 【0029】表1、表2からわかるように、反射鏡下側
に冷却風送風穴を設けて、該冷却風送風穴から冷却風を
導入し反射鏡頸部の冷却風送風穴より排気した場合に
は、ランプ封止部端部温度を箔酸化の心配のない温度域
まで下げることができると同時に発光管上部の温度を失
透現象が起きない温度域までも下げることができた。し
かし、反射鏡上側に冷却風送風穴を設けた場合は発光管
下部は冷却されるが、ランプ封止部端部や発光管上部は
十分な冷却ができなかった。 【0030】 【発明の効果】以上、説明したように本発明の冷却風送
風穴、排風穴を有する光源ユニットとすることによっ
て、発光管上部の冷却と同時に凹面反射鏡の前面開口側
に位置するランプ封止部の冷却をも可能となった。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light source unit used for projection equipment such as a liquid crystal projector. 2. Description of the Related Art In a light source unit used for a liquid crystal projector or the like, a discharge lamp such as a metal halide lamp or an ultra-high pressure mercury lamp is used as a light source. The light of this discharge lamp is condensed by a concave reflecting mirror, and further devised so that the illuminance on the screen is made uniform by various optical lenses such as an integrator lens, and is applied to the liquid crystal surface. [0003] For example, a short arc type metal halide lamp used as a light source lamp,
Although there is an operating pressure in which the pressure in the arc tube is about 20 to 150 atm, during the lamp life period of normal use,
There is a risk that the arc tube deteriorates and the discharge lamp explodes. As a countermeasure against the rupture, a light transmitting unit such as a front glass is disposed on the light irradiation side of the concave reflecting mirror to prevent the fragments from scattering, and the light source unit is sealed.
Japanese Patent No. 2551054 is known. FIG. 1 shows an example of such a sealed light source unit. In this case, in the liquid crystal projector, the temperature of the upper part of the arc tube, which is the highest temperature region of the arc tube, tends to be particularly high, and the devitrification phenomenon of quartz glass may occur at the upper portion of the arc tube. Japanese Patent Application Laid-Open No. 5-135746 discloses a technique for preventing devitrification of an arc tube by cooling the arc tube. This is to introduce a blower pipe or blower nozzle from the neck of the concave reflector to the reflective surface side of the concave reflector to cool the arc tube, but a light source unit with a translucent member such as a front glass No description is given of the cooling method in the above. In the case of a light source unit provided with a light-transmitting member such as a front glass, the lamp sealing portion located on the reflection surface side of the concave reflecting mirror is located inside the enclosed space inside the front glass or the like. If the temperature of the metal foil portion of the lamp sealing portion exceeds 350 ° C., oxidation occurs in the metal foil portion,
There is a possibility that the metal foil expands and cracks or the like occur in the sealing portion. As described above, in the light source unit having the light-transmitting member such as the front glass, the high-temperature portion of the arc tube in the enclosed space is efficiently cooled, and the oxidation of the foil of the lamp sealing portion is prevented. It is required that. Accordingly, an object of the present invention is to provide a light source unit having a light-transmitting member such as a front glass, which cools the upper part of the arc tube and simultaneously sets the light on the reflecting surface side of the concave reflecting mirror. An object of the present invention is to provide a light source unit having a structure that also cools a located lamp sealing portion. In order to solve the above-mentioned object, a discharge lamp sealed at both ends is fixed to the neck of the concave reflecting mirror so that the optical axis of the concave reflecting mirror coincides with that of the concave reflecting mirror. The front opening of the concave reflector is covered with a front plate or an integrator lens made of a translucent material, and the discharge lamp is turned on horizontally or substantially horizontally, so that the radiated light from the discharge lamp passes through the front opening of the concave reflector. From the light source unit that emits light through the gap between the neck of the concave reflector and the lamp sealing part.
A cooling air exhaust hole in the sleeve, a cooling air blowing hole in a lower peripheral portion of a front opening of the concave reflecting mirror, and sealing of the discharge lamp positioned on the front opening side of the concave reflecting mirror. The light source unit has a blower outlet of the blower hole facing in the direction of the end. Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows an embodiment of the light source unit of the present invention. The discharge lamp 1 is inserted into the reflection mirror neck 9 of the concave reflection mirror 7, and the optical axis of the discharge lamp 1 is matched with the concave reflection mirror 7 by the sleeve 13 and the adhesive leakage preventing cap 17, and the discharge lamp 1 is fixed by the adhesive 8. The external lead rod 6 located on the side of the opening of the reflecting mirror is provided with a through hole in the reflecting mirror 7 and is output to the outside of the reflecting mirror, or is passed by the arc tube portion and is output to the outside of the reflecting mirror from the neck of the reflecting mirror. The front glass 10 is fixed to the front glass fixing frame 16 by, for example, an adhesive 8. A cooling air blow hole 12 is provided in the front glass fixing frame disposed in the lower half of the peripheral edge of the concave reflecting mirror 7 on the front opening side. Further, a cooling air exhaust hole 15 is provided in the sleeve 13 which is joined to the reflector neck 9 of the reflector. In this embodiment, the cooling air blowing holes 12 are provided.
A pipe 36 is provided in series, and the blowing outlet 12A of the blowing hole 12 faces the end of the lamp sealing portion 4 located on the side of the reflector opening. Normally, a projection device (not shown) such as a liquid crystal projector using the light source unit 30 takes in cooling air from an intake fan of the projection device and exhausts cooling air from an exhaust fan, thereby providing an optical device such as a liquid crystal plate. A configuration for cooling a system, a power supply unit, a lamp, and the like is adopted. And
The light source unit of the present invention is used in such a manner that the cooling air passes through the light source unit to cool the light source unit by being arranged in the flow path of the cooling air between the intake fan and the exhaust fan. You. In FIG. 2, in the light source unit 30, the cooling air flows from the cooling air blow hole 12 in the direction of the arrow toward the end of the lamp sealing part 4 located on the side of the reflector opening, and the lamp sealing is performed. The end of the portion is cooled to hit the surface of the reflecting mirror 7 and to cool the upper part of the arc tube along the surface, and the cooling air exhaust hole 1 in the sleeve 13 of the reflecting neck 9 is cooled.
5 is exhausted to the outside of the unit. In addition, the sleeve 13 of the reflector neck 9 for forming the cooling air exhaust hole and the adhesive leakage preventing cap 17 are provided.
For just an example, but it may also be using a member with an integrated adhesive leakage stop cap 17 and the sleeve 13. In a discharge lamp having a power consumption of about 150 W to 350 W, borosilicate glass is generally used for the concave reflecting mirror 7. The borosilicate glass has a coefficient of thermal expansion of 32 to 38.
Those having a density of around × 10 -7 / ° C are used. This glass has a maximum operating temperature of 460 to 490 ° C, and a normal operating temperature of 230.
° C, the thermal shock is a temperature difference of 16 mm for glass with a thickness of 3.3 mm.
Withstands up to 0 ° C. Even a 250 W discharge lamp has a small focal length and a small reflector, or a 350 W, 40 W discharge lamp.
In a discharge lamp having a high power consumption of about 0 W, crystallized glass having a further excellent heat resistance and a low coefficient of thermal expansion is used. The coefficient of thermal expansion is as low as 4.1 × 10 -7 / ° C, and the maximum operating temperature is 60.
0 ° C, normal operating temperature 500 ° C, thermal shock resistance is 3.3m
m glass can withstand a temperature difference of up to 400 ° C. The reflecting surface of the concave reflecting mirror has a heat resistance of 4.
A multilayer film deposition of SiO 2 and TiO 2 at about 50 ° C. may be performed. As the front glass 10, borosilicate glass is generally used. As for the method of attachment, assuming that the arc tube ruptures, a momentary force when the arc tube ruptures, a stopper is used so as not to come off, or a joining structure is formed by the reflecting mirror 7 and the front glass fixing frame 16, On the inner surface of the unit frame (symbol 19 in FIG. 3) for housing the light source unit 30,
Various methods are conceivable, such as a structure in which the front glass fixing frame 16 is abutted against 9 so that the front glass fixing frame 16 does not come off or is fixed with a heat-resistant adhesive. In addition, it is also possible to arrange an integrator lens instead of the front glass 10. FIG. 3 shows a sectional view of another embodiment of the present invention. The light source unit 30 is held on the unit frame 19 via the reflector holder 18. A cooling air blow hole for blowing cooling air for cooling the inside of the light source unit 30 is formed inside the reflector holding base 18. FIG. 4 is a view taken along the line AA 'in FIG.
Reference numeral 12 denotes a cooling air blow hole formed inside the reflector holding base 18. Cooling air blow hole outlet 12A
Is directed toward the end of the sealing portion of the discharge lamp located on the front opening side of the concave reflecting mirror. The cooling air flows from the cooling air blow hole 12 toward the end of the sealed portion of the lamp located on the opening side of the reflecting mirror, cools the end of the sealed portion, and flows on the surface of the reflecting mirror 7. Down along the upper part of the arc tube, and
Sleeve to exhaust air through the gap with the lamp seal
The cooling air is exhausted to the outside of the unit through the cooling air exhaust holes 15 formed in the cooling unit 13 . In this example, the cooling air exhaust air
As a device for silencing the bursting sound in the event of a lamp explosion, a cylindrical portion having an inner diameter larger than the outer diameter of the cylindrical portion is provided so that a sleeve 13 forms a gap around the cylindrical portion serving as the base mounting portion. By forming a structure in which the gap is formed in a multi-stage structure by a partition wall in which a plurality of holes are alternately formed, a long ventilation path is formed, and exhaust air from inside the concave reflecting mirror passes through the ventilation path in the sleeve. And the air is exhausted from the cooling air exhaust hole 15 to the outside of the unit. Also,
Similarly, the cooling air blow hole 12 has a long path inside the reflector holding base 18 as a means of silencing. The cooling air exhaust hole 15 is formed in the neck 9 of the reflecting mirror .
At the same time as being provided on the sleeve 13 , it may be provided on the lower peripheral edge of the front opening of the front reflector of the concave reflector. Next, in the light source unit of the present invention, the temperature of the upper portion of the discharge lamp, the lower portion of the discharge tube, and the end of the sealing portion of the discharge lamp in the light source unit were measured while changing the blowing condition of the cooling air. The experimental conditions are as follows. <Experimental Conditions of Cooling Experiment> Lamp used: Metal halide lamp of DC lighting type quartz arc tube with power consumption of 200 W Outer diameter of arc tube: 14 mm (10.4 mm inner diameter) Filler: Mercury, argon, rare earth halide Concave reflection mirror: borosilicate reflecting surface of the glass in the inner surface of the cold mirror front opening by multilayer deposition of Si O 2 and TiO 2 of about heat resistance 450 ° C. diameter: 85 mm wall thickness: 4 mm cooling air volume: 0.006 m 3 / min In the cooling experiment, in the light source unit in which the pipe 36 is connected to the cooling air blow hole 12 shown in FIG. 2, the DC flat fan 3 is used as shown in FIG.
The cooling air from 2 was introduced into the air tank 34, blown from the cooling air blow hole 12 to the light source unit 30 through the blow tube 35 and the pipe 36, and was discharged from the air discharge hole 15 of the reflector neck 9. At this time, the pressure difference between the cooling air blowing side (A) and the cooling air discharging side (B) was 2 mmH 2 O. Two cooling air blowing holes 12 are provided below the reflecting mirror to introduce cooling air, and two cooling air blowing holes are provided upside down in FIG. In each case, the temperature of the end portion of the sealing portion on the opening side of the reflector of the discharge lamp, the upper temperature of the arc tube, and the lower temperature of the arc tube were measured. For the temperature measurement, a K thermocouple having a wire diameter of φ0.2 mm was used. The temperature of the upper and lower portions of the arc tube was fixed with a small amount of an inorganic adhesive while the thermocouple was in contact with the upper and lower portions of the arc tube, and the lamp was turned on to convert the output of the thermocouple into temperature. In the temperature measurement of the end portion of the lamp sealing portion, a cut is made from the outside of the sealing tube, and the thermocouple is inserted at the center of the spot welding portion between the external lead rod and the metal foil, and the thermocouple is connected to the external lead rod. The lamp was turned on by fixing with a small amount of inorganic adhesive so as to make contact. Table 1 shows the measurement results. [Table 1] Similarly, two cooling air blowing holes 12 are provided below the reflecting mirror as shown in FIGS. 3 and 4, and cooling air is introduced from the cooling air blowing holes. In the case where cooling air is introduced by providing two locations in the upper part of the reflecting mirror upside down from FIG. Was measured. Table 2 shows the results. In the examples of FIGS. 3 and 4, the cooling air discharge holes 15 in the sleeve 13 are necessary for forming a cooling air path. [Table 2] As can be seen from Tables 1 and 2, a cooling air blow hole is provided below the reflector, cooling air is introduced from the cooling air blow hole, and the cooling air is exhausted from the cooling air blow hole in the neck of the reflector. In the method, the temperature of the end portion of the lamp sealing portion could be reduced to a temperature range where there is no fear of oxidation of the foil, and at the same time, the temperature of the upper portion of the arc tube could be lowered to a temperature range where devitrification does not occur. However, when a cooling air blow hole is provided on the upper side of the reflecting mirror, the lower part of the arc tube is cooled, but the end of the lamp sealing portion and the upper portion of the arc tube cannot be sufficiently cooled. As described above, the light source unit having the cooling air blow holes and the air discharge holes according to the present invention allows the light emitting unit to be positioned on the front opening side of the concave reflecting mirror simultaneously with the cooling of the upper part of the arc tube. It is also possible to cool the lamp sealing part.

【図面の簡単な説明】 【図1】 従来例の光源ユニットの断面図を示す。 【図2】 本発明の光源ユニットの一実施例の断面図を
示す。 【図3】 本発明の光源ユニットの他の実施例の断面図
を示す。 【図4】 図3のA−A’矢視図を示す。 【図5】 冷却実験の冷却風導入の構成図を示す。 【符号の説明】 1 放電ランプ 2 発光管 3 電極 4 ランプ封止部 5 金属箔 6 外部リード棒 7 凹面反射鏡 8 接着剤 9 反射鏡頸部 10 前面ガラス 11 低融点ガラス 12 冷却風送風穴 12A 送風吹出し口 13 スリーブ 14 ベース 15 冷却風排風穴 16 前面ガラス固定枠 17 接着剤漏れ止めキャップ 18 反射鏡保持台 19 ユニット枠 30 光源ユニット 31 給電線 32 DCフラットファン 33 ファン取付け台 34 エアータンク 35 送風チューブ 36 パイプ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a sectional view of a light source unit of a conventional example. FIG. 2 shows a sectional view of one embodiment of the light source unit of the present invention. FIG. 3 shows a sectional view of another embodiment of the light source unit of the present invention. FIG. 4 is a view as viewed in the direction of arrows AA ′ in FIG. 3; FIG. 5 shows a configuration diagram of introducing cooling air in a cooling experiment. [Description of Signs] 1 discharge lamp 2 arc tube 3 electrode 4 lamp sealing portion 5 metal foil 6 external lead rod 7 concave reflecting mirror 8 adhesive 9 reflecting mirror neck 10 front glass 11 low melting glass 12 cooling air blow hole 12A Ventilation outlet 13 Sleeve 14 Base 15 Cooling air exhaust hole 16 Front glass fixing frame 17 Adhesive leak-proof cap 18 Reflector holder 19 Unit frame 30 Light source unit 31 Power supply line 32 DC flat fan 33 Fan mounting base 34 Air tank 35 Ventilation Tube 36 pipe

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F21V 29/00 H01J 61/52 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) F21V 29/00 H01J 61/52

Claims (1)

(57)【特許請求の範囲】 【請求項1】 凹面反射鏡の頸部に該凹面反射鏡と光軸
を一致させて両端封止型の放電ランプが固定され、該凹
面反射鏡の前面開口部が透光性材料の前面板あるいはイ
ンテグレータレンズで覆われて、前記放電ランプが水平
あるいは略水平点灯されて、該放電ランプからの放射光
が該凹面反射鏡の前面開口から放射される光源ユニット
において、 該凹面反射鏡の頸部とランプ封止部との間を介して排風
する冷却風排風穴をスリーブに有し、該凹面反射鏡の前
面開口部の下側周縁部に冷却風送風穴を有し、該凹面反
射鏡の前面開口側に位置する該放電ランプの封止部端部
の方向に該送風穴の送風吹出し口が向いていることを特
徴とする光源ユニット。
(1) Claims 1. A discharge lamp sealed at both ends is fixed to the neck of a concave reflecting mirror so that its optical axis coincides with that of the concave reflecting mirror, and a front opening of the concave reflecting mirror is provided. A light source unit for emitting light from the discharge lamp from the front opening of the concave reflector when the discharge lamp is lit horizontally or substantially horizontally by covering the portion with a front plate or an integrator lens of a translucent material; The air is exhausted through a space between the neck of the concave reflecting mirror and the lamp sealing portion.
A cooling air vent hole in a sleeve, a cooling air blowing hole in a lower peripheral portion of a front opening of the concave reflecting mirror, and sealing of the discharge lamp located on a front opening side of the concave reflecting mirror. A light source unit characterized in that a blower outlet of the blower hole faces in a direction of a part end.
JP20843597A 1997-07-18 1997-07-18 Light source unit Expired - Lifetime JP3381566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20843597A JP3381566B2 (en) 1997-07-18 1997-07-18 Light source unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20843597A JP3381566B2 (en) 1997-07-18 1997-07-18 Light source unit

Publications (2)

Publication Number Publication Date
JPH1139934A JPH1139934A (en) 1999-02-12
JP3381566B2 true JP3381566B2 (en) 2003-03-04

Family

ID=16556170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20843597A Expired - Lifetime JP3381566B2 (en) 1997-07-18 1997-07-18 Light source unit

Country Status (1)

Country Link
JP (1) JP3381566B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200511A (en) * 1998-10-30 2000-07-18 Phoenix Denki Kk Discharge lamp
JP2001133885A (en) 1999-08-26 2001-05-18 Mitsubishi Electric Corp Projector
JP2001125195A (en) * 1999-10-27 2001-05-11 Hitachi Ltd Light source device and display device using the same
WO2001040861A1 (en) * 1999-12-02 2001-06-07 Matsushita Electric Industrial Co., Ltd. Discharge lamp and lamp device
US6759794B2 (en) * 2001-04-27 2004-07-06 General Electric Company Discharge lamp with vented reflector
DE10231258A1 (en) * 2002-07-11 2004-01-22 Philips Intellectual Property & Standards Gmbh Discharge lamp with cooling device
US7125149B2 (en) * 2004-03-15 2006-10-24 Osram Sylvania Inc. Reflector lamp with reduced seal temperature
US7380965B2 (en) 2004-09-17 2008-06-03 Canon Kabushiki Kaisha Light source apparatus, optical apparatus, and image projection apparatus
JP4659466B2 (en) 2005-01-25 2011-03-30 キヤノン株式会社 Projection display
JP4878295B2 (en) * 2007-01-26 2012-02-15 浜松ホトニクス株式会社 Light source device
JP5271855B2 (en) * 2009-09-24 2013-08-21 株式会社オーク製作所 Illumination device provided with windproof member
JP5603583B2 (en) * 2009-09-29 2014-10-08 オリンパス株式会社 Endoscope
JP2011181243A (en) * 2010-02-26 2011-09-15 Panasonic Electric Works Co Ltd Lighting apparatus
JP6283991B2 (en) * 2013-10-23 2018-02-28 株式会社リコー Light projection device
JP6183433B2 (en) * 2015-09-29 2017-08-23 セイコーエプソン株式会社 Light source device and projector

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136401U (en) * 1985-02-14 1986-08-25
JPS6372005A (en) * 1986-09-13 1988-04-01 東芝ライテック株式会社 Light irradiator
JPH07114993B2 (en) * 1987-09-14 1995-12-13 ウシオ電機株式会社 Light irradiation device
DE9206314U1 (en) * 1992-05-11 1992-07-02 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München Electric lamp

Also Published As

Publication number Publication date
JPH1139934A (en) 1999-02-12

Similar Documents

Publication Publication Date Title
JP3381566B2 (en) Light source unit
JP2000082322A (en) Light source unit
US6227686B1 (en) Light source apparatus
JP3606149B2 (en) Light source device
JP3353693B2 (en) Light source unit
KR20010113498A (en) Lamp unit and image projector
JP2002298639A (en) Light source device and projection display device
JP2009129590A (en) Light source device
JP4273912B2 (en) Light source device
JP3744223B2 (en) Light source device
JP2001076505A (en) Lighting system
JP3803736B2 (en) Projector light source
JP3498639B2 (en) Light source device and projector using the same
JP3931529B2 (en) Light source unit
JP3752847B2 (en) Light source unit
JP3565785B2 (en) Light source device and projector
JP5765622B2 (en) Light source device
JP2007305460A (en) Lamp device
JPS61294753A (en) Short-arc type discharge lamp device
JP2000057825A (en) Light source device
JP3573158B2 (en) Light source device and projector using the same
JP4698203B2 (en) Light source device and projection display device using the same
JPH11111046A (en) Optical device for short arc metal halide lamp, and liquid crystal projector device
JP2002260437A (en) Light source unit
JPH11249235A (en) Lighting system and projector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131220

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term