JP3381140B2 - Heater power control device in bonding equipment - Google Patents

Heater power control device in bonding equipment

Info

Publication number
JP3381140B2
JP3381140B2 JP36853097A JP36853097A JP3381140B2 JP 3381140 B2 JP3381140 B2 JP 3381140B2 JP 36853097 A JP36853097 A JP 36853097A JP 36853097 A JP36853097 A JP 36853097A JP 3381140 B2 JP3381140 B2 JP 3381140B2
Authority
JP
Japan
Prior art keywords
heater
power
value
temperature
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36853097A
Other languages
Japanese (ja)
Other versions
JPH11194840A (en
Inventor
康久 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibuya Corp
Original Assignee
Shibuya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibuya Corp filed Critical Shibuya Corp
Priority to JP36853097A priority Critical patent/JP3381140B2/en
Publication of JPH11194840A publication Critical patent/JPH11194840A/en
Application granted granted Critical
Publication of JP3381140B2 publication Critical patent/JP3381140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Control Of Resistance Heating (AREA)
  • Wire Bonding (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、ボンディング装置
におけるヒータ温度を制御するためのヒータ電力制御装
置に関するものであって、主として、フリップチップボ
ンディング装置やアウタリードボンディング装置のパル
スヒート用ヒータの温度コントロールを行うためのヒー
タ電力制御装置を主眼に開発されたものである。 【0002】 【従来の技術】電気ヒータにおける発熱量は次の式で表
される。 発熱量=k×電力×時間(kは定数)である。従って電
気ヒータを温度調節するためには電力の制御をすること
になる。そこで従来、高出力のヒータを高速応答可能に
制御するためには、交流電源の位相制御を用いて電力制
御を行っていた。 【0003】位相制御は、図3に示すように交流を半周
期ごとに一定時間ON(入)することにより電力制御を
行っているのである。この場合、実際の電力計算はAC
100vの場合、100v×100v/R(ヒータ抵抗
値)×制御比率となり、ヒータ抵抗値(R)が一定の場
合、制御比率=電力比率となるが、ヒータ抵抗値(R)
が変化すると制御比率通りの電力制御ができなくなるも
のであった。 【0004】すなわち、位相制御の場合、ヒータの抵抗
値が、ヒータ自体の温度変動による変化が小さいもので
あれば、指令値にほぼ比例した電力制御が可能である。
しかし、温度変動により抵抗値の変化するヒータに対し
ては、指令値通りの電力制御が行えない。結果的には、
ヒータの抵抗値が変化しても、同じ制御比率でON/O
FFを繰り返すため、ヒータの温度は変化(電力は変
動)してしまう。更に、抵抗値が極端に低くなった場合
にはヒータに過電流が流れヒータを破損するおそれがあ
る。また、電源電圧の変動やヒータの抵抗値の個体差よ
り制御性が変動するという問題点も存在した。 【0005】 【発明が解決しようとする課題】本発明は、ヒータの抵
抗値の温度による変化、電源電圧の変動及びヒータの抵
抗値の個体差等により影響を受けないヒータ電力制御装
置を提供することにより、正確で安定した温度制御を可
能にするボンディング装置におけるヒータ電力制御装置
を提供することを目的とする。 【0006】 【課題を解決するための手段】本発明は、上記課題を解
決するため次のような手段を採用したボンディング装置
のヒータ温度を制御するヒータ電力制御装置を提供す
る。第1に、ヒータへの供給電源を交流とし、該交流の
半周期ごとにヒータへの供給電源をON/OFFする供
給電源ON/OFF手段を設ける。第2に、検出手段と
して、ヒータに供給される電圧を検出する電圧検出手段
とヒータに供給される電流を検出する電流検出手段とヒ
ータ温度を検出する温度検出手段とを設ける。 【0007】第3に、制御データ算出手段として、電圧
検出手段から得られる値と電流検出手段から得られる値
を基にしてヒータに供給する電力値を演算する供給電力
演算手段と、半周期ごとの供給電力を積分する手段と、
温度検出手段から温度値を基に電力指令値を与える制御
電力指令手段を設ける。第4に、供給電力を積分する手
段から半周期ごとの電力積分値を求め、得られた電力積
分値が電力指令値と等しくなったときに供給電源ON/
OFF手段をOFFに制御する手段を設ける。 【0008】 【発明の実施の形態】以下、実施例とともに発明の実施
の形態につき説明する。図2は、ヒータの組み込まれた
ボンディングヘッドの概要を示す斜視図である。本発明
に用いられるボンディング装置は、ボンディング対象の
半導体チップ20等を加熱加圧して、回路基板21等に
接合するものである。 【0009】ボンディングヘッド22には、ヒータ部2
3と半導体チップ20を吸着保持するツールヘッド24
が設けられている。ヒータ部23にはヒータに電源を供
給する電源ケーブル25とヒータ部23の温度を検出す
る熱電対26が電気的に接続されている。 【0010】図1は、本発明の一態様であるボンディン
グ装置のヒータ3の温度を制御するための電力制御回路
図であり、以下、図1にしたがって説明する。図中1
は、入力端子10、11より入力した交流を脈流に変換
する全波整流器であり、全波整流器1はブリッジダイオ
ードが用いられる。 【0011】全波整流器1より変換された脈流はスイッ
チング素子2に入る。スイッチング素子2は、請求項1
にいうヒータ3への供給電源をON/OFFする供給電
源ON/OFF手段である。スイッチング素子2として
は、TrやFETが用いられる。スイッチング素子2の
ON/OFFは、セットリセットフリップフロップ8か
らのコントロール信号を受けて行う。 【0012】全波整流器1からの脈流は、位相パルス発
生器9により交流の半周期の開始点を検出される。該検
出により位相パルス発生器9と接続されたセットリセッ
トフリップフロップ8がセットされる。位相パルス発生
器9は、同時に積分回路6の積分値をクリアする。 【0013】セットリセットフリップフロップ8が、位
相パルス発生器9によりセットされると、その信号を受
け、スイッチング素子2がONとなる。スイッチング素
子2がONとなることにより電流はヒータ3へと流れ、
ヒータ3にて、電力を消費し、発熱する。 【0014】この消費電力と温度を検出するための検出
手段として、ヒータに供給される電圧を検出する電圧検
出手段とヒータに供給される電流を検出する電流検出手
段とヒータ温度を検出する温度検出手段とを備えてい
る。温度検出手段としては熱電対26が用いられる。
尚、図中5は、電流検出用抵抗である。 【0015】次に上記検出手段から検出されたデータか
ら制御基礎データを算出する。制御基礎データの算出手
段として、電圧検出手段から得られる値と電流検出手段
から得られる値を基にしてヒータに供給する電力値を演
算する供給電力演算手段と、供給電力を積分する手段
と、温度検出手段から温度値を基に電力指令値を与える
制御電力指令手段12とがある。 【0016】供給電力演算手段としてアナログ乗算機4
を用い、脈流の一周期(交流の半周期)の開始からヒー
タ3にかかっている電圧値と電流検出用抵抗5で検出さ
れた電流値を乗算し、電力値をリアルタイムに計算す
る。供給電力を積分する手段としては、積分回路6を用
いる。積分回路6では、交流の半周期内でヒータ3にか
かっていた電力の累積を行う。 【0017】制御電力指令手段12及び積分回路6は、
コンパレータ7と接続され、各々制御電力指令値、電力
積分値をコンパレータ7へ送る。電力積分値が電力指令
値と等しくなったときコンパレータ7は、セットリセッ
トフリップフロップ8をリセットする。 【0018】セットリセットフリップフロップ8がリセ
ットされると、セットリセットフリップフロップ8は、
スイッチング素子2をOFFとする信号を発する。すな
わち、請求項1に言う電力積分値が電力指令値と等しく
なったときに供給電源ON/OFF手段にOFFを制御
するコントロール信号を発する手段としてセットリセッ
トフリップフロップ8が用いられている。 【0019】スイッチング素子2がOFFとなれば、そ
れ以上の電力はヒータ3で消費されない。その後、セッ
トリセットフリップフロップ8では、次の交流の半周期
開始時にセットされ、スイッチング素子2をONとし、
以上の動作を繰り返すことになる。 【0020】スイッチング素子2は位相パルス発生器9
により検出された脈流の一周期の開始時にセットリセッ
トフリップフロップ8を通じてあらかじめONとされ、
積分回路6も位相パルス発生器により周期の開始時には
零にクリアされるのである。 【0021】したがって、例えばセラミックヒータの様
に、抵抗値が温度上昇に伴って徐々に減少して行くよう
な特性のヒータを使用した場合、図4のような電圧波形
および図5のような電力波形となる。ともに斜線の領域
がヒータへの電源の供給がONしている領域である。電
圧が一定であるという条件の下でヒータ3の抵抗値が減
少した場合、それに伴い電流の波高値が大きくなり、供
給電力の波高値も大きくなる。脈流の一周期当たりの供
給電力を一定とするためにON時間が逐次短くなって行
くのである。 【0022】 【発明の効果】第1に、本発明は従来の位相制御と異な
り、ヒータ温度を制御するのに、実際に消費した電力積
分値が電力指令値と等しくなったときに供給電源ON/
OFF手段をOFFに制御するものであるため、温度変
化に伴い抵抗値の変化するヒータに対しても安定した電
力制御が可能となり、その結果安定したヒータ温度制御
が可能となる。 【0023】第2に、本発明は、実際に消費した電力積
分値に従って制御されていくため、ヒータ定格が同じヒ
ータならば初期特性が異なるヒータであってもパラメー
タの変更なしに使える。 【0024】第3に、本願発明では、電圧検出手段によ
り検出された実際の電圧に基づいて消費電力を演算して
いるので、電源電圧に変動があっても、正確な電力コン
トロール、ひいてはヒータ温度コントロールが可能とな
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heater power control device for controlling a heater temperature in a bonding device, and mainly relates to a flip chip bonding device and an outer lead. The heater power controller for controlling the temperature of the pulse heater of the bonding apparatus has been developed. [0002] The amount of heat generated by an electric heater is expressed by the following equation. Heat value = k × power × time (k is a constant). Therefore, in order to adjust the temperature of the electric heater, electric power is controlled. Therefore, conventionally, in order to control a high-output heater so that a high-speed response is possible, power control is performed using phase control of an AC power supply. In the phase control, as shown in FIG. 3, power control is performed by turning on (turning on) an alternating current for a fixed time every half cycle. In this case, the actual power calculation is AC
In the case of 100 v, the ratio is 100 v × 100 v / R (heater resistance value) × control ratio. When the heater resistance value (R) is constant, the control ratio = power ratio, but the heater resistance value (R)
, The power control according to the control ratio cannot be performed. That is, in the case of the phase control, if the resistance value of the heater has a small change due to the temperature fluctuation of the heater itself, power control almost in proportion to the command value can be performed.
However, power control according to a command value cannot be performed for a heater whose resistance value changes due to temperature fluctuation. In terms of results,
ON / O at the same control ratio even if the resistance value of the heater changes
Since the FF is repeated, the temperature of the heater changes (power fluctuates). Further, when the resistance value becomes extremely low, an overcurrent may flow through the heater and damage the heater. There is also a problem that controllability fluctuates due to fluctuations in the power supply voltage and individual differences in the resistance value of the heater. SUMMARY OF THE INVENTION The present invention provides a heater power control apparatus which is not affected by changes in the resistance of a heater due to temperature, fluctuations in power supply voltage, individual differences in the resistance of a heater, and the like. Accordingly, it is an object of the present invention to provide a heater power control device in a bonding device that enables accurate and stable temperature control. SUMMARY OF THE INVENTION The present invention provides a heater power control device for controlling a heater temperature of a bonding apparatus employing the following means to solve the above problems. First , the power supply to the heater is AC, and the AC
A power supply ON / OFF means for turning ON / OFF the power supply to the heater every half cycle is provided. Second, as the detection means, there are provided voltage detection means for detecting a voltage supplied to the heater, current detection means for detecting a current supplied to the heater, and temperature detection means for detecting a heater temperature. Third, as control data calculation means, supply power calculation means for calculating a power value to be supplied to the heater based on a value obtained from the voltage detection means and a value obtained from the current detection means , Means for integrating the supply power of
Control power command means for providing a power command value based on the temperature value from the temperature detecting means is provided. Fourth, a power integrated value for each half cycle is obtained from the means for integrating the supplied power, and when the obtained power integrated value becomes equal to the power command value, the power supply ON / OFF is determined.
Means for controlling the OFF means to be OFF is provided. [0008] Embodiments of the present invention will be described below along with examples. FIG. 2 is a perspective view showing an outline of a bonding head in which a heater is incorporated. The bonding apparatus used in the present invention heats and pressurizes the semiconductor chip 20 and the like to be bonded and joins the semiconductor chip 20 and the like to the circuit board 21 and the like. The bonding head 22 includes a heater 2
3 and a tool head 24 for holding the semiconductor chip 20 by suction
Is provided. A power cable 25 for supplying power to the heater and a thermocouple 26 for detecting the temperature of the heater 23 are electrically connected to the heater 23. FIG. 1 is a power control circuit diagram for controlling the temperature of the heater 3 of the bonding apparatus according to one embodiment of the present invention, which will be described below with reference to FIG. 1 in the figure
Is a full-wave rectifier for converting the alternating current input from the input terminals 10 and 11 into a pulsating flow, and the full-wave rectifier 1 uses a bridge diode. The pulsating current converted by the full-wave rectifier 1 enters the switching element 2. The switching element 2 is a first embodiment.
Means for turning ON / OFF the power supply to the heater 3 referred to above. As the switching element 2, Tr or FET is used. ON / OFF of the switching element 2 is performed in response to a control signal from the set / reset flip-flop 8. The pulsating flow from the full-wave rectifier 1 is detected by a phase pulse generator 9 at the starting point of an AC half cycle. By this detection, the set / reset flip-flop 8 connected to the phase pulse generator 9 is set. The phase pulse generator 9 clears the integration value of the integration circuit 6 at the same time. When the set / reset flip-flop 8 is set by the phase pulse generator 9, the signal is received and the switching element 2 is turned on. When the switching element 2 is turned on, the current flows to the heater 3,
The heater 3 consumes electric power and generates heat. As detecting means for detecting the power consumption and the temperature, voltage detecting means for detecting a voltage supplied to the heater, current detecting means for detecting a current supplied to the heater, and a temperature detecting means for detecting a heater temperature Means. A thermocouple 26 is used as the temperature detecting means.
Incidentally, reference numeral 5 in the drawing denotes a current detecting resistor. Next, control basic data is calculated from the data detected by the detection means. As calculation means for control basic data, supply power calculation means for calculating a power value to be supplied to the heater based on a value obtained from the voltage detection means and a value obtained from the current detection means, and a means for integrating the supply power, There is control power commanding means 12 for giving a power command value from the temperature detecting means based on the temperature value. An analog multiplier 4 as a supply power calculating means
, The voltage value applied to the heater 3 from the start of one cycle of the pulsating flow (half cycle of AC) is multiplied by the current value detected by the current detection resistor 5 to calculate a power value in real time. As means for integrating the supplied power, an integrating circuit 6 is used. The integration circuit 6 accumulates the electric power applied to the heater 3 within the half cycle of the alternating current. The control power command means 12 and the integration circuit 6
It is connected to the comparator 7 and sends the control power command value and the power integrated value to the comparator 7 respectively. When the power integrated value becomes equal to the power command value, the comparator 7 resets the set / reset flip-flop 8. When the set / reset flip-flop 8 is reset, the set / reset flip-flop 8
A signal for turning off the switching element 2 is issued. That is, the set / reset flip-flop 8 is used as a means for issuing a control signal for controlling the power supply ON / OFF means to turn OFF when the power integrated value described in claim 1 becomes equal to the power command value. When the switching element 2 is turned off, no more power is consumed by the heater 3. After that, the set / reset flip-flop 8 is set at the start of the next half cycle of the alternating current, turning on the switching element 2,
The above operation is repeated. The switching element 2 includes a phase pulse generator 9
Is turned on in advance through the set / reset flip-flop 8 at the beginning of one cycle of the pulsating flow detected by
The integrating circuit 6 is also cleared to zero at the beginning of the cycle by the phase pulse generator. Therefore, when a heater such as a ceramic heater having a characteristic in which the resistance value gradually decreases as the temperature rises is used, a voltage waveform as shown in FIG. 4 and an electric power as shown in FIG. It becomes a waveform. Both shaded areas are areas where power supply to the heater is ON. When the resistance value of the heater 3 decreases under the condition that the voltage is constant, the peak value of the current increases and the peak value of the supplied power increases accordingly. The ON time is gradually shortened in order to keep the supply power per cycle of the pulsation constant. First, the present invention differs from the conventional phase control in that the power supply is turned on when the integrated power actually consumed becomes equal to the power command value for controlling the heater temperature. /
Since the OFF means is controlled to be OFF, stable power control can be performed even for a heater whose resistance value changes with a temperature change, and as a result, stable heater temperature control can be performed. Second, since the present invention is controlled in accordance with the power consumption value actually consumed, even heaters having the same heater rating can be used without changing parameters even if the heaters have different initial characteristics. Third, in the present invention, the power consumption is calculated based on the actual voltage detected by the voltage detecting means, so that even if the power supply voltage fluctuates, accurate power control and, consequently, heater temperature Control becomes possible.

【図面の簡単な説明】 【図1】本発明の一態様による電力制御回路図 【図2】ヒータの組み込まれたボンディングヘッドの概
要を示す斜視図 【図3】従来の位相制御における電圧波形図 【図4】本発明で抵抗値が低くなっていく場合の電圧波
形図 【図5】同電力波形図 【符号の説明】 1..........全波整流器 2..........スイッチング素子 3..........ヒータ 4..........アナログ乗算機 5..........電流検出用抵抗 6..........積分回路 7..........コンパレータ 8..........セットリセットフリップフロッ
プ 9..........位相パルス発生器 10,11......入力端子 12.........制御電力指令手段 20.........半導体チップ 21.........回路基板 22.........ボンディングヘッド 23.........ヒータ部 24.........ツールヘッド 25.........電源ケーブル 26.........熱電対
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a power control circuit diagram according to one embodiment of the present invention. FIG. 2 is a perspective view showing an outline of a bonding head incorporating a heater. FIG. 3 is a voltage waveform diagram in a conventional phase control. FIG. 4 is a voltage waveform diagram when the resistance value is reduced in the present invention. FIG. 5 is a power waveform diagram. . . . . . . . . . 1. full-wave rectifier . . . . . . . . . Switching element3. . . . . . . . . . Heater4. . . . . . . . . . Analog multiplier 5. . . . . . . . . . 5. Current detection resistor . . . . . . . . . Integrator circuit 7. . . . . . . . . . Comparator 8. . . . . . . . . . 8. Set reset flip-flop . . . . . . . . . Phase pulse generator 10,11. . . . . . Input terminal 12. . . . . . . . . Control power command means 20. . . . . . . . . Semiconductor chip 21. . . . . . . . . Circuit board 22. . . . . . . . . Bonding head 23. . . . . . . . . Heater section 24. . . . . . . . . Tool head 25. . . . . . . . . Power cable 26. . . . . . . . . thermocouple

Claims (1)

(57)【特許請求の範囲】 【請求項1】ヒータへの供給電源を交流とし、該交流の
半周期ごとにON/OFFする供給電源ON/OFF手
段によりボンディング装置のヒータ温度を制御する装置
において、検出手段として、ヒータに供給される電圧を
検出する電圧検出手段と、ヒータに供給される電流を検
出する電流検出手段と、ヒータ温度を検出する温度検出
手段とを有し、制御データ算出手段として、電圧検出手
段から得られる値と電流検出手段から得られる値を基に
してヒータに供給する電力値を演算する供給電力演算手
段と、半周期ごとの供給電力を積分する手段と、温度検
出手段から温度値を基に電力指令値を与える制御電力指
令手段とを有し、供給電力を積分する手段から半周期毎
ごとの電力積分値を求め、得られた電力積分値が電力指
令値と等しくなったときに供給電源ON/OFF手段を
OFFに制御することを特徴とするボンディング装置
おけるヒータ電力制御装置。
(57) [Claims] [Claim 1] The power supply to the heater is AC, and the AC power is supplied to the heater.
In a device for controlling a heater temperature of a bonding apparatus by a power supply ON / OFF means which is turned on / off every half cycle, a voltage detection means for detecting a voltage supplied to the heater as a detection means, and a current supplied to the heater And a temperature detecting means for detecting a heater temperature. The control data calculating means supplies the heater to the heater based on a value obtained from the voltage detecting means and a value obtained from the current detecting means. Power supply calculating means for calculating a power value, means for integrating the supply power every half cycle, and control power command means for giving a power command value based on the temperature value from the temperature detecting means, and integrating the supply power. Every half cycle
A power integrated value for each bonding device , and when the obtained power integrated value becomes equal to the power command value, the power supply ON / OFF means is controlled to be turned off. Control device.
JP36853097A 1997-12-26 1997-12-26 Heater power control device in bonding equipment Expired - Fee Related JP3381140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36853097A JP3381140B2 (en) 1997-12-26 1997-12-26 Heater power control device in bonding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36853097A JP3381140B2 (en) 1997-12-26 1997-12-26 Heater power control device in bonding equipment

Publications (2)

Publication Number Publication Date
JPH11194840A JPH11194840A (en) 1999-07-21
JP3381140B2 true JP3381140B2 (en) 2003-02-24

Family

ID=18492071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36853097A Expired - Fee Related JP3381140B2 (en) 1997-12-26 1997-12-26 Heater power control device in bonding equipment

Country Status (1)

Country Link
JP (1) JP3381140B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182331A1 (en) * 2014-05-26 2015-12-03 オムロン株式会社 Control method, control device, program, and recording medium

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5041016B2 (en) * 2010-03-01 2012-10-03 東京エレクトロン株式会社 Heat treatment apparatus, heat treatment method and storage medium
JP5875279B2 (en) * 2011-08-04 2016-03-02 三菱重工業株式会社 HEATER CONTROL DEVICE AND METHOD, AND PROGRAM
JP6038591B2 (en) * 2012-10-17 2016-12-07 象印マホービン株式会社 Futon dryer
KR20200078116A (en) * 2018-12-21 2020-07-01 세메스 주식회사 Apparatus for treating substrate and method for treating apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182331A1 (en) * 2014-05-26 2015-12-03 オムロン株式会社 Control method, control device, program, and recording medium
JP2015225711A (en) * 2014-05-26 2015-12-14 オムロン株式会社 Control method, control device, program and recording medium
TWI634299B (en) * 2014-05-26 2018-09-01 歐姆龍股份有限公司 Control method, control apparatus, program product, and recording medium

Also Published As

Publication number Publication date
JPH11194840A (en) 1999-07-21

Similar Documents

Publication Publication Date Title
KR100629159B1 (en) One cycle control continuous conduction mode ??? boost converter integrated circuit with integrated power switch and boost converter
JP2019524047A (en) Power converter for thermal system
WO2007066432A1 (en) Fixing device driving apparatus and method of driving fixing device
EP1049239A1 (en) Power factor correction controller circuit
JP3381140B2 (en) Heater power control device in bonding equipment
JP2007511995A (en) Switch mode power supply
TW202121096A (en) Power converters, and methods and controllers for controlling the same
JP3691797B2 (en) Welding power source
JP3287062B2 (en) Power circuit
JP2003274641A (en) Power supply device
JPH0389425A (en) Relay control circuit
JPH0254574B2 (en)
JPH0622466A (en) Charger
KR200275678Y1 (en) Temperature reguiator for mattress and paper-covered floor operated at both 110V/220V
JPH0816852B2 (en) Power supply circuit
US20060237415A1 (en) Device for regulating the temperature of a heating wire with few emitted disturbances
JP2000324809A (en) Power factor correction controller circuit
JPH0738977Y2 (en) Phase control circuit
JPS5846401A (en) Temperature controller
JP2004104961A (en) Switching power supply
JPS6194079A (en) Control device for fixing temperature
JP3189459B2 (en) Phase control circuit of electric water heater
GB2303505A (en) Power saving in Hall effect sensor supply
JPH08289536A (en) Power supply apparatus
KR20080108381A (en) A power supply with a function of thermoregulation for heating equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131220

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees