WO2015182331A1 - Control method, control device, program, and recording medium - Google Patents
Control method, control device, program, and recording medium Download PDFInfo
- Publication number
- WO2015182331A1 WO2015182331A1 PCT/JP2015/063033 JP2015063033W WO2015182331A1 WO 2015182331 A1 WO2015182331 A1 WO 2015182331A1 JP 2015063033 W JP2015063033 W JP 2015063033W WO 2015182331 A1 WO2015182331 A1 WO 2015182331A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heater
- time
- temperature
- power consumption
- power
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K3/00—Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
- B23K3/04—Heating appliances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D19/00—Arrangements of controlling devices
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
Definitions
- the present invention relates to a control method, a control device, a program, and a recording medium for controlling temperature rise of a heating device provided with a heater.
- the basic charge for power is contracted with the power supplier based on the maximum allowable amount of power used in the facility. is doing. This maximum allowable amount is generally called demand contract power.
- the basic power charge based on demand contract power is applied as long as the power consumption in the facility does not exceed the contract value. However, if the power consumption exceeds the demand contract power for only about 30 minutes, the basic charge for the following month will be greatly increased. Therefore, conventionally, many various techniques for monitoring power consumption and suppressing power demand so that the power consumption does not exceed demand contract power have been proposed.
- FIG. 6 is a diagram showing a waveform of the power consumption amount of the heater at the time of starting the temperature in the heating apparatus that receives temperature adjustment according to the related art.
- the continuous supply of power to the heater waveform 103 causes the integrated value of power consumed in the heater (waveform 104) to rise sharply.
- the power supplied to the heater is appropriately turned on or off (waveform 105), whereby the heater The increase in the integrated value of the power consumption becomes moderate.
- the heating device in the facility is started by turning on the heaters all at once prior to the start of production. If a plurality of heating furnaces are started up at the same time, the accumulated power consumption obtained by integrating the power consumption of individual heaters rapidly increases, which may cause a problem that the power consumption of the entire facility exceeds the demand contract power. In view of this, various techniques have been proposed in order to solve such a problem, and suppress a rapid increase in power consumption when each heating furnace is started up.
- Patent Document 1 discloses a heater start-up method for a reflow apparatus characterized in that the start-up time of each heater is shifted when starting up a reflow apparatus in which a plurality of heaters are arranged in a furnace. .
- Patent Document 2 discloses a method of starting a heating furnace by forming a group in which the heaters of each heating zone are combined and setting a priority for each group.
- Patent Document 3 the relationship between the output of the heating unit in the furnace and the temperature rise in the furnace is preliminarily determined based on the output-temperature characteristic information obtained for each zone, temperature measurement information, and temperature setting information.
- An electric furnace that controls the power to be supplied for each zone is disclosed.
- the conventional techniques described above have the following problems.
- these technologies are applied to a heating device in which the heating furnace is composed of a plurality of heating zones and a heater is prepared for each heating zone. Can not.
- a change in the heating state in the heating device for example, a change in the temperature rise time of each heating zone caused by the residual heat of each heating zone, the surrounding environment, etc., or a change in the heating capacity of the heater, etc.
- a control system with a complicated configuration is required.
- the present invention has been made to solve the above-described problems.
- the object is to provide a control method, a control device, a program, and a control method for suppressing a rapid increase in power consumption at the time of temperature rise of a heating device including a single heater without requiring a system having a complicated configuration. It is to provide a recording medium.
- a control method for controlling a temperature rise in a heating device including a heater, A determination step of determining whether an integrated value of the power consumption amount of the heater measured from a start time at a predetermined time to any time at the predetermined time has reached a predetermined threshold; In the determination step, when it is determined that the integrated value has reached the predetermined threshold value, a reduction step of reducing the power supplied to the heater from any one of the time points to the end time point in the predetermined time It is characterized by including.
- control method of the present invention it is possible to suppress an abrupt increase in power consumption when the temperature of a heating apparatus including a single heater is raised without requiring a system having a complicated configuration.
- FIG. 1 It is a block diagram which shows the principal part structure of the control system which concerns on 1st Embodiment of this invention, and each apparatus with which it is provided. It is a flowchart which shows the flow of the temperature rise control process in the control system which concerns on 1st Embodiment of this invention.
- A is a figure which shows typically the waveform of the electric energy consumption of a heater at the time of temperature rise in the solder tank which does not receive control by the electric power control apparatus which concerns on 1st Embodiment of this invention
- (b) These are figures which show typically the waveform of the electric energy consumption of a heater at the time of temperature rise in the solder tank which receives control by the electric power control apparatus which concerns on 1st Embodiment of this invention.
- (A) is a figure which shows the waveform of the electric power consumption of a heater at the time of temperature rise in the small solder tank which does not receive control by the electric power control apparatus which concerns on 1st Embodiment of this invention
- (b) is this It is a figure which shows the waveform of the electric energy consumption of a heater at the time of temperature rise in the solder tank which receives control by the control system which concerns on 2nd Embodiment of invention.
- (A) is a figure which shows the waveform of the electric power consumption of a heater at the time of temperature rise in the small solder tank which does not receive control by the electric power control apparatus which concerns on 1st Embodiment of this invention
- (b) is this It is a figure which shows the waveform of the electric energy consumption of a heater at the time of temperature rise in the small solder tank which receives control by the control system which concerns on 2nd Embodiment of invention. It is a figure which shows the waveform of the electric energy consumption of a heater at the time of temperature starting in the heating apparatus which receives the temperature adjustment which concerns on a prior art.
- Embodiment 1 A first embodiment according to the present invention will be described below with reference to FIGS.
- FIG. 1 is a block diagram showing a main configuration of a control system 50 according to the present embodiment and each device provided therein. As shown in this figure, the control system 50 includes a heating device 1, a power control device 3, and a temperature adjustment device 2.
- the heating device 1 is realized as various heating devices such as a solder bath used when electronic components are mounted on a printed circuit board. As shown in FIG. 1, the heating device 1 includes a heating furnace 11 and a heater 12. The heater 12 receives heat to generate heat and heats the heating furnace 11. The heating furnace 11 solders the electronic component to the printed circuit board by heating the printed circuit board disposed therein.
- the temperature adjusting device 2 controls the temperature of the heating device 1 when the temperature of the heating device 1 is raised.
- the temperature adjustment device 2 includes a temperature sensor 21 and a heater control unit 22.
- the temperature sensor 21 measures the temperature in the heating furnace 11.
- the heater control unit 22 controls the power supply to the heater 12 based on the temperature measurement result by the temperature sensor 21, thereby controlling the temperature in the heating furnace 11 as a result.
- the power control device 3 controls the amount of power consumed by the heater 12 when the temperature of the heating device 1 is raised.
- the power control device 3 includes a wattmeter 31, a timer 32, and a heater control unit 33 (determination unit, reduction unit).
- the wattmeter 31 measures the power consumption of the heater 12.
- the timer 32 measures the elapsed time.
- the heater control unit 33 controls power supply to the heater 12 based on the integrated value of the power consumption amount of the heater 12 within a predetermined time.
- the control system 50 performs the temperature adjustment based on the temperature measured from the heating furnace 11 and the power consumption control based on the integrated value of the power consumption measured from the heater 12 on the same heating apparatus 1.
- the power control device 3 controls the power consumption of the heater 12 until the temperature in the heating furnace 11 reaches a predetermined heating temperature after the temperature raising of the heating device 1 is started. After the temperature in the heating furnace 11 reaches a predetermined heating temperature, the temperature control of the heating furnace 11 by the temperature control device 2 is performed.
- FIG. 2 is a flowchart showing the flow of temperature rise control processing in the control system according to the first embodiment of the present invention.
- the contents of the control by the control system 50 when the temperature of the heating device 1 is raised will be described below in more detail with reference to FIG.
- the condition values used for the control process in the control system 50 are set in the temperature control device 2 and the power control device 3 (S1).
- a threshold for the power consumption amount of the heater 12 and a predetermined time are set in the power control device 3.
- the heating temperature of the heating furnace 11 is set in the temperature adjusting device 2.
- the threshold for the power consumption is an integrated value of the power consumption allowed for the heater 12 within a predetermined time.
- the predetermined time is a unit time for controlling the power supply to the heater 12. In the present embodiment, the threshold for the power consumption is 4 kWh, and the time is 20 minutes.
- the heating temperature is a temperature suitable for heating the printed circuit board disposed inside the heating furnace 11.
- the heating device 1 turns on the heater 12 (S2). Thereby, power supply to the heater 12 is started, and the heater 12 heats the heating furnace 11 by generating heat according to the amount of supplied power. As a result, the temperature in the heating furnace 11 rises.
- the timer 32 starts measuring the elapsed time after the heater 12 is turned on (S3).
- the wattmeter 31 starts measuring the power consumption of the heater 12 (S4). The wattmeter 31 constantly measures the power consumption of the heater 12 and records the measurement result (instantaneous value of power consumption) at each time in a memory (not shown) in the power control device 3 as needed.
- the temperature sensor 21 measures the temperature in the heating furnace 11 (S5), and notifies the heater control unit 22 of the measurement result.
- the heater control unit 22 determines whether or not the measured temperature of the heating furnace 11 has exceeded the set heating temperature (S6).
- S6 is YES, temperature control of the heater control unit 22 by the temperature adjustment device 2 is started. Specifically, it is as follows.
- the heater control unit 22 controls the heater 12 so as to stop the power supply to the heater 12. As a result, the heater 12 is turned off (S7). After the heater 12 is turned off, the temperature sensor 21 measures the temperature in the heating furnace 11 (S8), and notifies the heater control unit 22 of the measurement result. The heater control unit 22 determines whether or not the measured temperature of the heating furnace 11 exceeds the set heating temperature (S9). When S9 is YES, the flow shown in FIG. 2 returns to S8, and the temperature sensor 21 measures the temperature of the heating furnace 11 again. Thus, the temperature control apparatus 2 waits until the temperature of the heating furnace 11 falls below the heating temperature.
- the temperature adjustment process (S2, S5, S6 ⁇ ) of the heating furnace 11 by the temperature adjustment apparatus 2 is performed. S9) is repeated. Thereby, the temperature in the heating furnace 11 is stably maintained near the heating temperature.
- the temperature control device 2 notifies the power control device 3 that the measured temperature of the heating furnace 11 does not exceed the heating temperature.
- the timer 32 notifies the heater control unit 33 of the start time and the current time of the elapsed time currently being measured.
- the heater control unit 33 acquires a measurement result (instantaneous value) of the power consumption of the heater 12 at each time from the notified start time to the current time from a memory (not shown).
- the heater control unit 33 calculates an integrated value of the power consumption amount of the heater 12 within the elapsed time by adding all the acquired measurement results (S10).
- the heater controller 33 determines whether or not the calculated integrated value of power consumption has reached a predetermined threshold (S11).
- S11 is NO
- the flow shown in FIG. 2 returns to S5. That is, the power control device 3 notifies the temperature adjustment device 2 that the integrated value of the power consumption amount of the heater 12 has not reached the threshold value.
- the temperature sensor 21 measures the temperature in the heating furnace 11 (S5).
- the heater control unit 33 turns off the heater 12 so as to stop the power supply to the heater 12. Control. As a result, the heater 12 is turned off (S12).
- the timer 32 determines whether or not the elapsed time during measurement exceeds a predetermined time (S13).
- S13 is NO
- the power control device 3 repeats the determination of S13. That is, the power control device 3 stands by until the elapsed time exceeds the time.
- the timer 32 When S13 is YES, that is, when the elapsed time since the heater 12 is turned on exceeds a predetermined time, the timer 32 resets the elapsed time during measurement (S14). In addition, the heater control unit 33 controls the heater 12 so that the power supply to the heater 12 is resumed. As a result, the heater 12 is turned on, and the flow of FIG. 9 returns to S2. Immediately after this, the timer 32 starts measuring the elapsed time again (S3).
- the control processing (S2, S3, S10 to S14) of the power consumption of the heater 12 by the power control device 3 is repeatedly performed. Thereby, the integrated value of the power consumption amount of the heater 12 within a predetermined time is limited to a predetermined threshold value.
- FIG. 3 is a figure which shows typically the waveform of the electric power consumption of the heater 12 at the time of temperature starting in the heating apparatus 1 which does not receive control by the electric power control apparatus 3 which concerns on this embodiment.
- FIG. 3B is a diagram schematically illustrating a waveform of the power consumption amount of the heater 12 when the temperature is raised in the heating apparatus 1 that is controlled by the power control apparatus 3 according to the present embodiment.
- the vertical axis represents the integrated value (kWh) of the power consumption of the heater 12, while the horizontal axis represents the elapsed time from the start of the temperature rise of the heating device 1. (Minutes).
- the threshold value of the integrated value of the power consumption of the heater 12 is 4 kWh
- the predetermined time that is a reference unit for performing power control is 20 minutes.
- the power supply to the heater 12 is started 5 minutes after the start of temperature rise.
- the heater 12 starts to consume power.
- the waveform 41 shows the passage of time of the power consumption (instantaneous value) supplied to the heater 12. Until the temperature of the heating furnace 11 reaches a predetermined heating temperature, the same amount of electric power is continuously supplied to the heater 12. Therefore, the power consumption amount of the heater 12 at each time after the power starts to be supplied to the heater 12 maintains a constant value.
- a waveform 42 shows the elapsed time of the integrated value of the power consumption of the heater 12 after the supply of power to the heater 12 is started.
- the integrated value is displayed in (a) of FIG. 3 in such a manner that it is reset to zero every time (every 20 minutes).
- the integrated value of the power consumption of the heater 12 reaches 4 kWh 15 minutes after the start of power supply to the heater 12 (20 minutes after the start of temperature rise).
- the heating device 1 is not controlled by the power control device 3, so that the heater 12 is not turned off thereafter.
- the integrated value of the power consumption greatly exceeds 4 kWh in this 5 minutes.
- the integrated value of the power consumption is reset to zero.
- the time elapsed of the power consumption (instantaneous value) supplied to the heater 12 is set as a waveform 43, and the power consumption of the heater 12 after the start of power supply to the heater 12 is also shown.
- the elapsed time of the integrated value is shown as a waveform 44, respectively.
- the heating device 1 is controlled by the power control device 3, so that the heater 12 is turned off thereafter.
- the power consumption of the heater 12 becomes zero for 5 minutes between 20 minutes and 25 minutes after the start of temperature rise, and thus the integrated value of the power consumption is maintained at 4 kWh in these 5 minutes. . After the end of time (25 minutes after the start of temperature rise), the integrated value of power consumption is reset to zero.
- the integrated value of the power consumption amount of the heater 12 greatly exceeds the threshold value of 4 kWh in the last 5 minutes within a predetermined time (20 minutes). Continue to rise.
- the integrated value of the power consumption of the heater 12 does not exceed the threshold value of 4 kWh at any time point within a predetermined time. Therefore, the heating device 1 can suppress a sudden increase in the integrated value of the power consumption amount of the heater 12 when the temperature is raised by being controlled by the power control device 3.
- control system 50 executes a combination of the normal temperature adjustment processing by the temperature adjustment device 2 and the power consumption control processing of the heater 12 by the power control device 3 when the temperature of the heating device 1 is raised. To do. By this device, the control system 50 can enjoy the following advantages.
- a sudden increase in power consumption can be suppressed by forcibly reducing the power consumption of the heater 12 when the temperature of the heating device 1 is raised.
- the temperature adjustment processing of the heating device 1 by the temperature adjustment device 2 is performed independently of the power consumption amount control processing of the heater 12 by the power control device 3. Therefore, conditions related to the temperature adjustment process such as the set value of the heating temperature in the heating device 1, the heat capacity of the heating furnace 11, and the performance of the heater 12 do not affect the power consumption control process. Thereby, the following advantage can be enjoyed.
- the heating characteristics of the heating device 1 such as the heat capacity of the heating device 1 and the performance of the heater 12 need not be measured in advance.
- a control system with a complicated configuration is not required to cope with heating conditions that change with time in the heating apparatus 1 such as deterioration of the capability of the heater 12.
- the configuration of the power control device 3 can be simplified, including the wattmeter 31, the timer 32, and the heater control unit 33. Thereby, the power control device 3 can control the power consumption amount of the heater 12 at the time of temperature rise in the heating device 1 including the single heater 12.
- the control system 50 according to the present embodiment can be configured simply by adding the power control device 3 to the existing control system.
- FIG. 4 is a figure which shows the waveform of the electric energy consumption of the heater 12 at the time of temperature rise in the solder tank which does not receive control by the electric power control apparatus 3 which concerns on this embodiment.
- FIG. 4B is a diagram illustrating a waveform of the power consumption amount of the heater 12 when the temperature is raised in the solder bath that is controlled by the power control device 3 according to the present embodiment.
- the vertical axis represents the integrated value (kWh) of the power consumption of the heater 12
- the horizontal axis represents the elapsed time from the start of the solder bath temperature rise (kWh). Minutes).
- the threshold value of the integrated value of power consumption is 4 kWh
- the reference time for performing power control is 20 minutes.
- the heater 12 is continuously supplied with the same power until the temperature of the heater 12 reaches the heating temperature (waveform 51). Therefore, the power consumption amount of the heater 12 at each time maintains a constant value.
- the integrated value after the integrated value of the power consumption of the heater 12 reaches the threshold (4 kWh) at any point in time for 20 minutes. Continues to rise above 4 kWh (waveform 52).
- the integrated value is displayed in FIG. 4A in such a manner that the integrated value is reset to zero every 20 minutes.
- the measured temperature of the heating furnace 11 reaches the heating temperature. After this, the heater 12 is turned off for a while. Then, the temperature control of the heater control unit 22 by the temperature control device 2 is started, and the heater 12 is repeatedly turned on and off based on the measured temperature of the heater control unit 22 (waveform 53).
- the integrated value of the power consumption amount of the heater 12 reaches the threshold value (4 kWh) at any point in time for 20 minutes. After reaching, the amount of power supplied to the heater 12 is reduced to zero (waveform 54). As a result, the integrated value of the power consumption of the heater 12 is maintained at 4 kWh for the remaining time until the 20 minutes are completed (waveform 55).
- the elapsed time of the power consumption (instantaneous value) supplied to the heater 12 is set as a waveform 54, and the integrated value of the power consumption of the heater 12 after the start of power supply to the heater 12 is started.
- the integrated value of the power consumption amount of the heater 12 reaches the threshold value (4 kWh) at any point in time for 20 minutes. The integrated value of power consumption does not exceed 4 kWh.
- the heating device 1 is controlled by the power control device 3, the measured temperature of the heating furnace 11 reaches the heating temperature about 110 minutes after the start of temperature rise. After this, the heater 12 is turned off for a while, and then the temperature control of the heater control unit 22 by the temperature adjusting device 2 is started, and the heater 12 is repeatedly turned on and off based on the measured temperature of the heater control unit 22 (waveform) 56).
- the waveform 56 is essentially the same as the waveform 53 obtained only by normal temperature adjustment.
- the power control of the heater 12 by the power control device 3 causes a sudden increase in the integrated value of the power consumption of the heater 12 when the temperature of the heating device 1 is raised. Was shown to prevent.
- the threshold value of the integrated value of power consumption is not limited to 4 kWh, and can be any value. The smaller this value is, the more the increase in the integrated value of power consumption can be suppressed.
- the predetermined time which is a unit time for power control, is not limited to 20 minutes, but may be any length of time. The longer this time is, the more the increase in the integrated value of power consumption can be suppressed.
- the predetermined time is set as a reference time for a power supply contract with a power supplier set for a facility such as a factory where the heating device 1 is installed, the facility where the heating device 1 is installed. This can contribute to preventing the overall power from exceeding the demand contract power.
- the heater control unit 33 is required to always make the power supply to the heater 12 zero from the time when the integrated value of the power consumption amount of the heater 12 reaches the threshold value for a predetermined time to the end time of the predetermined time. No, the power supply to the heater 12 may be reduced to a value greater than zero.
- reduction means that the amount of power supplied to the heater is made smaller than the amount of power supplied before the integrated value reaches the threshold value.
- it is preferable to reduce the power supply to the heater 12 to zero because a rapid increase in the integrated value can be suppressed to the maximum.
- This small solder bath is an apparatus that has been extended for about 110 minutes until the temperature in the heating furnace 11 is stabilized as a result of changes in temperature adjustment conditions due to changes in the characteristics of the heater 12.
- FIG. 5 is a figure which shows the waveform of the electric power consumption of a heater at the time of temperature rise in the small solder tank which does not receive control by the electric power control apparatus 3 which concerns on 2nd Embodiment of this invention.
- FIG. 5B is a diagram illustrating a waveform of the power consumption amount of the heater 12 at the time of temperature rise in the small solder bath that is controlled by the power control device 3 according to the second embodiment of the present invention.
- the vertical axis represents the integrated value (kWh) of the power consumption of the heater 12, while the horizontal axis represents the elapsed time since the temperature rise of the heating device 1 was started. (Minutes).
- the integrated value of the power consumption of the heater 12 increases rapidly and linearly (waveform) 61).
- the temperature in the heating furnace 11 reaches a predetermined heating temperature. Since power supply to the heater 12 is temporarily stopped at this time, the integrated value of the power consumption of the heater 12 does not increase any more.
- the temperature control of the heater 12 by the temperature control device 2 starts (waveform 62). This temperature control continues until the temperature in the heating furnace 11 is stabilized. The temperature control continues until about 110 minutes after the start of the temperature rise. As described above, this is because the characteristics of the heater 12 have changed.
- the electric power consumption of the heater 12 is controlled by the electric power control device 3 every 7 minutes after the electric power consumption in the heater 12 is started.
- the power control device 3 stops power supply to the heater 12 at the time point 6 minutes after the integrated value of the power consumption amount of the heater 12 reaches 0.2 kWh in the first 7 minutes. Thereby, the integrated value of the power consumption of the heater 12 is maintained at about 0.2 kWh (waveform 63). This stoppage lasts until one minute after the first seven minutes are over.
- the power control device 3 resumes the power supply to the heater 12 again. Thereby, the integrated value of the power consumption of the heater 12 rises again.
- the threshold value in the power control device 3 is set to 0.4 kWh. That is, the threshold increases by 0.2 kWh as time elapses.
- the integrated value of the power consumption of the heater 12 reaches 0.4 kWh.
- the power control device 3 stops the power supply of the heater 12. Thereafter, the power control device 3 repeats the same control. As a result, the electric power supplied to the heater 12 is repeatedly stopped for the last approximately one minute each time (7 minutes) elapses. About 40 minutes after the start of temperature rise, the temperature in the heating furnace 11 reaches a predetermined heating temperature. Since power supply to the heater 12 is temporarily stopped at this time, the integrated value of the power consumption of the heater 12 does not increase any more. Approximately 75 minutes after the start of temperature rise, temperature control of the heater 12 by the temperature control device 2 starts (waveform 64). This temperature control continues until the temperature in the heating furnace 11 is stabilized. The temperature control continues until about 80 minutes after the start of temperature rise.
- the time until the measured temperature of the heating furnace 11 reaches the predetermined heating temperature is longer than when the control by the power control device 3 is not performed.
- the time until the measured temperature of the heating furnace 11 is stabilized is shorter than when the control by the power control device 3 is not performed. This is because the control by the power control device 3 is not affected by the change in characteristics of the heater 12, so that the heating furnace 11 is overheated by the heater 12 after the temperature in the heating furnace 11 reaches a predetermined heating temperature. This is because the temperature rise can be kept low.
- the temperature adjustment device 2 has changed due to a change in the heating environment of the heating device 1 such as a characteristic change or failure of the heater 12 or a heat capacity change of the heating furnace 11. Even when an abnormality occurs when the temperature is raised so that appropriate temperature adjustment of the heating furnace 11 cannot be performed, the influence can be suppressed small.
- the control block (particularly) of the power control device 3 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or realized by software using a CPU (Central Processing Unit). May be.
- the power control device 3 includes a CPU that executes instructions of a program that is software that realizes each function, and a ROM (Read Only Memory) in which the program and various data are recorded so as to be readable by a computer (or CPU).
- a storage device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like are provided.
- the objective of this invention is achieved when a computer (or CPU) reads the said program from the said recording medium and runs it.
- a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
- the program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program.
- the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
- a control method for controlling a temperature rise in a heating device including a heater, A determination step of determining whether an integrated value of the power consumption amount of the heater measured from a start time at a predetermined time to any time at the predetermined time has reached a predetermined threshold; In the determination step, when it is determined that the integrated value has reached the predetermined threshold value, a reduction step of reducing the power supplied to the heater from any one of the time points to the end time point in the predetermined time It is characterized by including.
- the control method according to the present invention ends the predetermined time after the integrated value of the power consumption amount of the heater reaches the predetermined threshold at any time point within the predetermined time. Until the time, the power supplied to the heater is reduced. Thereby, it is possible to suppress a rapid increase in the integrated value of the power consumption of the heater when the temperature of the heating device is raised.
- control method according to the present invention controls the heater based on the integrated value of the power consumption amount of the heater, the heating device does not need to include a plurality of heaters. Thereby, the control method according to the present invention can be applied to a heating device provided with a single heater.
- control method according to the present invention it is not necessary to measure the heating characteristics of the heater in advance. Therefore, a system having a complicated configuration for executing this control method is not required.
- the electric power supplied to the heater is set to zero during any period from the time point to the end time point.
- the time is preferably a reference time for a power supply contract with a power supplier, which is set for a facility where the heating device is installed.
- a control device for controlling temperature rise in a heating device provided with a heater, A determination unit that determines whether or not an integrated value of the power consumption measured from a start time at a predetermined time to any time at the predetermined time has reached a predetermined threshold; When the determination unit determines that the integrated value has reached the predetermined threshold value, a reduction unit that reduces the power supplied to the heater from any one of the time points to the end point in the predetermined time It is characterized by having.
- the control device may be realized by a computer, and in this case, a control program for the control device for realizing the control device by a computer by causing the computer to operate as each unit included in the control device,
- a computer-readable recording medium on which it is recorded also falls within the scope of the present invention.
- the present invention can be widely used as a control method for controlling the power consumption of the heater when the temperature of the heating device is raised.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Resistance Heating (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
A heater control unit (33) reduces power to be supplied to a heater (12) after an integration value of power consumption quantities of the heater (12) exceeds a predetermined threshold value, said power consumption quantities having been measured from a start time point of a predetermined period of time to any time point in the predetermined period of time. Consequently, a rapid increase of a power consumption quantity at the time of increasing the temperature of the heating device that is provided with the single heater is suppressed without requiring a system having a complicated configuration.
Description
本発明は、ヒータを備えた加熱装置の温度立ち上げを制御する制御方法、制御装置、プログラム、および記録媒体に関する。
The present invention relates to a control method, a control device, a program, and a recording medium for controlling temperature rise of a heating device provided with a heater.
大量の電力を必要とする各種の施設(たとえば、高圧電力を使用する工場、またはオフィスビル)では、電力の基本料金を、施設において使用される電力の最大許容量に基づき、電力供給者と契約している。この最大許容量は、一般にデマンド契約電力と呼ばれる。デマンド契約電力に基づく電力基本料金は、施設における消費電力が契約値を超えない限り適用される。しかし、消費電力がデマンド契約電力をわずか30分程度でも超過すると、翌月以降の基本料金が大幅に増額される。そこで従来、消費電力がデマンド契約電力を超過しないように、消費電力を監視したり電力需要量を抑制したりするための各種の技術が多数提案されている。
For various facilities that require large amounts of power (for example, factories or office buildings that use high-voltage power), the basic charge for power is contracted with the power supplier based on the maximum allowable amount of power used in the facility. is doing. This maximum allowable amount is generally called demand contract power. The basic power charge based on demand contract power is applied as long as the power consumption in the facility does not exceed the contract value. However, if the power consumption exceeds the demand contract power for only about 30 minutes, the basic charge for the following month will be greatly increased. Therefore, conventionally, many various techniques for monitoring power consumption and suppressing power demand so that the power consumption does not exceed demand contract power have been proposed.
他方、電子部品をプリント回路基板に実装する際には、はんだ槽等の加熱装置が用いられる。このような加熱装置における温度立ち上げは、加熱炉が設定温度に達するまでヒータに電力を供給し続けることによって行われる。その一例を図6に示す。図6は、従来技術に係る温度調整を受ける加熱装置における温度立ち上げ時の、ヒータの消費電力量の波形を示す図である。この図に示す例では、温度立ち上げ期間101において、ヒータに対する電力の供給(波形103)が連続的に続くことによって、ヒータにおいて消費される電力の積算値(波形104)が急激に上昇する。ヒータの温度が設定値に到達した後の温度調節期間102において、温度センサによって測定されたヒータの温度に基づき、ヒータに供給する電力を適宜オンまたはオフする制御(波形105)行うことによって、ヒータの消費電力量の積算値の上昇が穏やかになる。
On the other hand, when mounting electronic components on a printed circuit board, a heating device such as a solder bath is used. The temperature rise in such a heating apparatus is performed by continuously supplying power to the heater until the heating furnace reaches a set temperature. An example is shown in FIG. FIG. 6 is a diagram showing a waveform of the power consumption amount of the heater at the time of starting the temperature in the heating apparatus that receives temperature adjustment according to the related art. In the example shown in this figure, during the temperature rising period 101, the continuous supply of power to the heater (waveform 103) causes the integrated value of power consumed in the heater (waveform 104) to rise sharply. In the temperature adjustment period 102 after the heater temperature reaches the set value, based on the heater temperature measured by the temperature sensor, the power supplied to the heater is appropriately turned on or off (waveform 105), whereby the heater The increase in the integrated value of the power consumption becomes moderate.
通常、施設内の加熱装置は、生産開始に先立ち、ヒータを一斉にオンすることによって立ち上げられる。複数台の加熱炉を同時に立ち上げると、個々のヒータの消費電力を積算した積算消費電力が急激に上昇するので、施設全体の消費電力がデマンド契約電力を超えてしまう問題を生じかねない。そこで従来、このような問題を解消するための、各加熱炉の立ち上げ時における消費電力の急激な上昇を抑制する各種の技術が提案されている。
Usually, the heating device in the facility is started by turning on the heaters all at once prior to the start of production. If a plurality of heating furnaces are started up at the same time, the accumulated power consumption obtained by integrating the power consumption of individual heaters rapidly increases, which may cause a problem that the power consumption of the entire facility exceeds the demand contract power. In view of this, various techniques have been proposed in order to solve such a problem, and suppress a rapid increase in power consumption when each heating furnace is started up.
特許文献1には、炉体内に複数のヒータが配設されたリフロー装置を立ち上げるにあたり、前記各ヒータの立ち上げ時間をずらすことを特徴とするリフロー装置のヒータ立ち上げ方法が開示されている。
Patent Document 1 discloses a heater start-up method for a reflow apparatus characterized in that the start-up time of each heater is shifted when starting up a reflow apparatus in which a plurality of heaters are arranged in a furnace. .
特許文献2には、各加熱ゾーンのヒータを組み合わせたグループを形成し、該クループごとに優先度を設定して加熱炉を立ち上げる方法が開示されている。
Patent Document 2 discloses a method of starting a heating furnace by forming a group in which the heaters of each heating zone are combined and setting a priority for each group.
特許文献3には、炉体内の加熱ユニットの出力と炉内温度上昇との関係を予めゾーンごとに求めた出力対温度特性情報と、温度測定情報と、温度設定情報とに基づき、加熱ユニットに供給する電力をゾーンごとに制御する電気炉が開示されている。
In Patent Document 3, the relationship between the output of the heating unit in the furnace and the temperature rise in the furnace is preliminarily determined based on the output-temperature characteristic information obtained for each zone, temperature measurement information, and temperature setting information. An electric furnace that controls the power to be supplied for each zone is disclosed.
しかし前述した従来の技術には次のような問題がある。まず、これらの技術は、加熱炉が複数の加熱ゾーンによって構成され、かつそれぞれに対してヒータが用意されている加熱装置を対象にしているため、加熱ゾーンが一つのみの加熱装置には適用できない。また、各加熱ゾーンの加熱特性および各ヒータの特性を、事前に実験等によって予め明らかにする必要がある。さらには、加熱装置における加熱状態の変化、たとえば、各加熱ゾーンの余熱、周囲環境等が原因となる各加熱ゾーンの温度上昇時間の変化、またはヒータの加熱能力の変化などに対応するために、複雑な構成の制御システムが必要となる。
However, the conventional techniques described above have the following problems. First, these technologies are applied to a heating device in which the heating furnace is composed of a plurality of heating zones and a heater is prepared for each heating zone. Can not. In addition, it is necessary to clarify the heating characteristics of each heating zone and the characteristics of each heater in advance by experiments or the like. Furthermore, in order to respond to a change in the heating state in the heating device, for example, a change in the temperature rise time of each heating zone caused by the residual heat of each heating zone, the surrounding environment, etc., or a change in the heating capacity of the heater, etc. A control system with a complicated configuration is required.
本発明は前記の課題を解決するためになされたものである。そしてその目的は、単一のヒータを備えた加熱装置の温度立ち上げ時における消費電力量の急激な上昇を、複雑な構成のシステムを必要とせずに抑制する制御方法、制御装置、プログラム、および記録媒体を提供することにある。
The present invention has been made to solve the above-described problems. The object is to provide a control method, a control device, a program, and a control method for suppressing a rapid increase in power consumption at the time of temperature rise of a heating device including a single heater without requiring a system having a complicated configuration. It is to provide a recording medium.
本発明に係る制御方法は、前記の課題を解決するために、
ヒータを備えた加熱装置における温度立ち上げを制御する制御方法であって、
所定の時間における開始時点から当該所定の時間におけるいずれかの時点までに測定された前記ヒータの消費電力量の積算値が、所定の閾値に達したか否かを判定する判定工程と、
前記判定工程において前記積算値が前記所定の閾値に達したと判定された場合、前記いずれかの時点から前記所定の時間における終了時点までの間、前記ヒータに供給される電力を低減する低減工程とを含んでいることを特徴としている。 In order to solve the above problems, a control method according to the present invention provides:
A control method for controlling a temperature rise in a heating device including a heater,
A determination step of determining whether an integrated value of the power consumption amount of the heater measured from a start time at a predetermined time to any time at the predetermined time has reached a predetermined threshold;
In the determination step, when it is determined that the integrated value has reached the predetermined threshold value, a reduction step of reducing the power supplied to the heater from any one of the time points to the end time point in the predetermined time It is characterized by including.
ヒータを備えた加熱装置における温度立ち上げを制御する制御方法であって、
所定の時間における開始時点から当該所定の時間におけるいずれかの時点までに測定された前記ヒータの消費電力量の積算値が、所定の閾値に達したか否かを判定する判定工程と、
前記判定工程において前記積算値が前記所定の閾値に達したと判定された場合、前記いずれかの時点から前記所定の時間における終了時点までの間、前記ヒータに供給される電力を低減する低減工程とを含んでいることを特徴としている。 In order to solve the above problems, a control method according to the present invention provides:
A control method for controlling a temperature rise in a heating device including a heater,
A determination step of determining whether an integrated value of the power consumption amount of the heater measured from a start time at a predetermined time to any time at the predetermined time has reached a predetermined threshold;
In the determination step, when it is determined that the integrated value has reached the predetermined threshold value, a reduction step of reducing the power supplied to the heater from any one of the time points to the end time point in the predetermined time It is characterized by including.
本発明に係る制御方法によれば、単一のヒータを備えた加熱装置の温度立ち上げ時における消費電力量の急激な上昇を、複雑な構成のシステムを必要とせずに抑制することができる。
According to the control method of the present invention, it is possible to suppress an abrupt increase in power consumption when the temperature of a heating apparatus including a single heater is raised without requiring a system having a complicated configuration.
〔実施形態1〕
本発明に係る第1実施形態について、図1~図3に基づき以下に説明する。 Embodiment 1
A first embodiment according to the present invention will be described below with reference to FIGS.
本発明に係る第1実施形態について、図1~図3に基づき以下に説明する。 Embodiment 1
A first embodiment according to the present invention will be described below with reference to FIGS.
(制御システム50の構成)
図1は、本実施形態に係る制御システム50およびそれに備えられる各装置の要部構成を示すブロック図である。この図に示すように、制御システム50は、加熱装置1、電力制御装置3、および温度調節装置2を備えている。 (Configuration of control system 50)
FIG. 1 is a block diagram showing a main configuration of acontrol system 50 according to the present embodiment and each device provided therein. As shown in this figure, the control system 50 includes a heating device 1, a power control device 3, and a temperature adjustment device 2.
図1は、本実施形態に係る制御システム50およびそれに備えられる各装置の要部構成を示すブロック図である。この図に示すように、制御システム50は、加熱装置1、電力制御装置3、および温度調節装置2を備えている。 (Configuration of control system 50)
FIG. 1 is a block diagram showing a main configuration of a
加熱装置1は、プリント回路基板に電子部品を実装する際に用いられるはんだ槽などの各種の加熱装置として実現される。図1に示すように、加熱装置1は、加熱炉11およびヒータ12を備えている。ヒータ12は電力の供給を受けて発熱し、加熱炉11を熱する。加熱炉11は、その内部に配置されたプリント回路基板を熱することによって、電子部品をプリント回路基板にはんだ付けする。
The heating device 1 is realized as various heating devices such as a solder bath used when electronic components are mounted on a printed circuit board. As shown in FIG. 1, the heating device 1 includes a heating furnace 11 and a heater 12. The heater 12 receives heat to generate heat and heats the heating furnace 11. The heating furnace 11 solders the electronic component to the printed circuit board by heating the printed circuit board disposed therein.
温度調節装置2は、加熱装置1の温度立ち上げ時において、加熱装置1の温度を制御する。図1に示すように、温度調節装置2は、温度センサ21およびヒータ制御部22を備えている。温度センサ21は、加熱炉11内の温度を測定する。ヒータ制御部22は、温度センサ21による温度測定結果に基づき、ヒータ12への電力供給を制御することによって、結果的に、加熱炉11内の温度を制御する。
The temperature adjusting device 2 controls the temperature of the heating device 1 when the temperature of the heating device 1 is raised. As shown in FIG. 1, the temperature adjustment device 2 includes a temperature sensor 21 and a heater control unit 22. The temperature sensor 21 measures the temperature in the heating furnace 11. The heater control unit 22 controls the power supply to the heater 12 based on the temperature measurement result by the temperature sensor 21, thereby controlling the temperature in the heating furnace 11 as a result.
電力制御装置3は、加熱装置1の温度立ち上げ時において、ヒータ12によって消費される電力量を制御する。図1に示すように、電力制御装置3は、電力計31、タイマー32、およびヒータ制御部33(判定部、低減部)を備えている。電力計31は、ヒータ12の消費電力量を測定する。タイマー32は、経過時間を測定する。ヒータ制御部33は、所定の時間内におけるヒータ12の消費電力量の積算値に基づき、ヒータ12への電力提供を制御する。
The power control device 3 controls the amount of power consumed by the heater 12 when the temperature of the heating device 1 is raised. As shown in FIG. 1, the power control device 3 includes a wattmeter 31, a timer 32, and a heater control unit 33 (determination unit, reduction unit). The wattmeter 31 measures the power consumption of the heater 12. The timer 32 measures the elapsed time. The heater control unit 33 controls power supply to the heater 12 based on the integrated value of the power consumption amount of the heater 12 within a predetermined time.
制御システム50は、加熱炉11から測定した温度に基づく温度調整と、ヒータ12から測定した消費電力量の積算値に基づく消費電力量制御とを、同じ加熱装置1に対して行う。加熱装置1の温度立ち上げを開始してから、加熱炉11内の温度が所定の加熱温度に到達するまでは、電力制御装置3によるヒータ12の消費電力量の制御が行われる。加熱炉11内の温度が所定の加熱温度に到達した後は、温度調節装置2による加熱炉11の温度制御が行われる。
The control system 50 performs the temperature adjustment based on the temperature measured from the heating furnace 11 and the power consumption control based on the integrated value of the power consumption measured from the heater 12 on the same heating apparatus 1. The power control device 3 controls the power consumption of the heater 12 until the temperature in the heating furnace 11 reaches a predetermined heating temperature after the temperature raising of the heating device 1 is started. After the temperature in the heating furnace 11 reaches a predetermined heating temperature, the temperature control of the heating furnace 11 by the temperature control device 2 is performed.
(制御処理の流れ)
図2は、本発明の第1実施形態に係る制御システムにおける温度立ち上げ制御処理の流れを示すフローチャートである。加熱装置1の温度立ち上げ時の制御システム50による制御の内容について、より詳細に図2を参照して以下に説明する。図2に示すように、制御システム50において制御処理に用いられる条件値が温度調節装置2および電力制御装置3に設定される(S1)。具体的には、電力制御装置3に、ヒータ12の消費電力量に対する閾値、および、所定の時間が設定される。一方、温度調節装置2には加熱炉11の加熱温度が設定される。消費電力量に対する閾値は、所定の時間内においてヒータ12に許容される消費電力量の積算値のことである。また、所定の時間は、ヒータ12への電力供給を制御する単位時間のことである。本実施形態では、消費電力量に対する閾値は4kWhであり、時間は20分である。なお、加熱温度は、加熱炉11がその内部に配置されたプリント回路基板を熱するに適した温度のことである。 (Control processing flow)
FIG. 2 is a flowchart showing the flow of temperature rise control processing in the control system according to the first embodiment of the present invention. The contents of the control by thecontrol system 50 when the temperature of the heating device 1 is raised will be described below in more detail with reference to FIG. As shown in FIG. 2, the condition values used for the control process in the control system 50 are set in the temperature control device 2 and the power control device 3 (S1). Specifically, a threshold for the power consumption amount of the heater 12 and a predetermined time are set in the power control device 3. On the other hand, the heating temperature of the heating furnace 11 is set in the temperature adjusting device 2. The threshold for the power consumption is an integrated value of the power consumption allowed for the heater 12 within a predetermined time. The predetermined time is a unit time for controlling the power supply to the heater 12. In the present embodiment, the threshold for the power consumption is 4 kWh, and the time is 20 minutes. The heating temperature is a temperature suitable for heating the printed circuit board disposed inside the heating furnace 11.
図2は、本発明の第1実施形態に係る制御システムにおける温度立ち上げ制御処理の流れを示すフローチャートである。加熱装置1の温度立ち上げ時の制御システム50による制御の内容について、より詳細に図2を参照して以下に説明する。図2に示すように、制御システム50において制御処理に用いられる条件値が温度調節装置2および電力制御装置3に設定される(S1)。具体的には、電力制御装置3に、ヒータ12の消費電力量に対する閾値、および、所定の時間が設定される。一方、温度調節装置2には加熱炉11の加熱温度が設定される。消費電力量に対する閾値は、所定の時間内においてヒータ12に許容される消費電力量の積算値のことである。また、所定の時間は、ヒータ12への電力供給を制御する単位時間のことである。本実施形態では、消費電力量に対する閾値は4kWhであり、時間は20分である。なお、加熱温度は、加熱炉11がその内部に配置されたプリント回路基板を熱するに適した温度のことである。 (Control processing flow)
FIG. 2 is a flowchart showing the flow of temperature rise control processing in the control system according to the first embodiment of the present invention. The contents of the control by the
これらの条件値の設定後、加熱装置1は、ヒータ12をオンする(S2)。これによりヒータ12への電力供給が開始され、ヒータ12は、供給された電力量に応じた熱を発することによって加熱炉11を加熱する。その結果、加熱炉11内の温度が上昇してゆく。ヒータ12をオンした直後に、タイマー32が、ヒータ12をオンした後における経過時間の測定を開始する(S3)。また、電力計31が、ヒータ12の消費電力量の測定を開始する(S4)。電力計31は、ヒータ12の消費電力量を常時測定し、各時間における測定結果(消費電力量の瞬時値)を電力制御装置3内の図示しないメモリに随時記録する。
After setting these condition values, the heating device 1 turns on the heater 12 (S2). Thereby, power supply to the heater 12 is started, and the heater 12 heats the heating furnace 11 by generating heat according to the amount of supplied power. As a result, the temperature in the heating furnace 11 rises. Immediately after the heater 12 is turned on, the timer 32 starts measuring the elapsed time after the heater 12 is turned on (S3). Moreover, the wattmeter 31 starts measuring the power consumption of the heater 12 (S4). The wattmeter 31 constantly measures the power consumption of the heater 12 and records the measurement result (instantaneous value of power consumption) at each time in a memory (not shown) in the power control device 3 as needed.
次に温度センサ21が、加熱炉11内の温度を測定し(S5)、測定結果をヒータ制御部22に通知する。ヒータ制御部22は、加熱炉11の測定温度が、設定された加熱温度を超えたか否かを判定する(S6)。S6がYESの場合、温度調節装置2によるヒータ制御部22の温度制御が開始される。具体的には次の通りである。
Next, the temperature sensor 21 measures the temperature in the heating furnace 11 (S5), and notifies the heater control unit 22 of the measurement result. The heater control unit 22 determines whether or not the measured temperature of the heating furnace 11 has exceeded the set heating temperature (S6). When S6 is YES, temperature control of the heater control unit 22 by the temperature adjustment device 2 is started. Specifically, it is as follows.
まずヒータ制御部22が、ヒータ12への電力供給を停止するようにヒータ12を制御する。その結果、ヒータ12がオフされる(S7)。ヒータ12がオフされた後、温度センサ21は加熱炉11内の温度を測定し(S8)、測定結果をヒータ制御部22に通知する。ヒータ制御部22は、加熱炉11の測定温度が、設定された加熱温度を超えたか否かを判定する(S9)。S9がYESの場合、図2に示すフローはS8に戻り、温度センサ21が、再び加熱炉11の温度を測定する。このように温度調節装置2は、加熱炉11の温度が加熱温度を下回るまで待機する。S9がNOの場合、すなわち加熱炉11の測定温度が加熱温度を下回った場合、ヒータ制御部22は、ヒータ12への電力供給を再開するようにヒータ12を制御する。その結果、ヒータ12がオンされ、図9のフローはS2に戻る。
First, the heater control unit 22 controls the heater 12 so as to stop the power supply to the heater 12. As a result, the heater 12 is turned off (S7). After the heater 12 is turned off, the temperature sensor 21 measures the temperature in the heating furnace 11 (S8), and notifies the heater control unit 22 of the measurement result. The heater control unit 22 determines whether or not the measured temperature of the heating furnace 11 exceeds the set heating temperature (S9). When S9 is YES, the flow shown in FIG. 2 returns to S8, and the temperature sensor 21 measures the temperature of the heating furnace 11 again. Thus, the temperature control apparatus 2 waits until the temperature of the heating furnace 11 falls below the heating temperature. When S9 is NO, that is, when the measured temperature of the heating furnace 11 is lower than the heating temperature, the heater control unit 22 controls the heater 12 so that the power supply to the heater 12 is resumed. As a result, the heater 12 is turned on, and the flow of FIG. 9 returns to S2.
以上のように、制御システム50では、加熱装置1の温度立ち上げ時に加熱炉11内の温度が加熱温度に到達すると、温度調節装置2による加熱炉11の温度調整処理(S2、S5、S6~S9)が繰り返し行われる。これにより、加熱炉11内の温度が安定して加熱温度付近に維持される。
As described above, in the control system 50, when the temperature in the heating furnace 11 reaches the heating temperature when the temperature of the heating apparatus 1 is raised, the temperature adjustment process (S2, S5, S6˜) of the heating furnace 11 by the temperature adjustment apparatus 2 is performed. S9) is repeated. Thereby, the temperature in the heating furnace 11 is stably maintained near the heating temperature.
一方、S6がNOの場合、すなわち、加熱炉11の測定温度が加熱温度を超えていない場合、電力制御装置3によるヒータ12の消費電力量制御処理が開始される。具体的には次の通りである。
On the other hand, when S6 is NO, that is, when the measured temperature of the heating furnace 11 does not exceed the heating temperature, the power consumption control processing of the heater 12 by the power control device 3 is started. Specifically, it is as follows.
まず温度調節装置2が、加熱炉11の測定温度が加熱温度を超えていないことを、電力制御装置3に通知する。電力制御装置3がこの通知を受けると、タイマー32が、現在測定中の経過時間の開始時刻および現在時刻をヒータ制御部33に通知する。ヒータ制御部33は、通知された開始時刻から現在時刻までの間の各時刻おけるヒータ12の消費電力量の測定結果(瞬時値)を、図示しないメモリから取得する。ヒータ制御部33は、取得した全ての測定結果を加算することによって、経過時間内のヒータ12の消費電力量の積算値を算出する(S10)。
First, the temperature control device 2 notifies the power control device 3 that the measured temperature of the heating furnace 11 does not exceed the heating temperature. When the power control device 3 receives this notification, the timer 32 notifies the heater control unit 33 of the start time and the current time of the elapsed time currently being measured. The heater control unit 33 acquires a measurement result (instantaneous value) of the power consumption of the heater 12 at each time from the notified start time to the current time from a memory (not shown). The heater control unit 33 calculates an integrated value of the power consumption amount of the heater 12 within the elapsed time by adding all the acquired measurement results (S10).
ヒータ制御部33は、算出した消費電力量の積算値が、所定の閾値に達したか否かを判定する(S11)。S11がNOの場合、図2に示すフローはS5に戻る。すなわち、電力制御装置3は、ヒータ12の消費電力量の積算値が閾値に達していないことを温度調節装置2に通知する。これを受けて、温度センサ21は、加熱炉11内の温度を測定する(S5)。このように、経過時間内のヒータ12の消費電力量の積算値が閾値に達するまでは、ヒータ12はオンされ続け、これによりヒータ12の消費電力量の積算値は上昇し続ける。
The heater controller 33 determines whether or not the calculated integrated value of power consumption has reached a predetermined threshold (S11). When S11 is NO, the flow shown in FIG. 2 returns to S5. That is, the power control device 3 notifies the temperature adjustment device 2 that the integrated value of the power consumption amount of the heater 12 has not reached the threshold value. In response to this, the temperature sensor 21 measures the temperature in the heating furnace 11 (S5). Thus, until the integrated value of the power consumption of the heater 12 within the elapsed time reaches the threshold value, the heater 12 is kept on, whereby the integrated value of the power consumption of the heater 12 continues to increase.
一方、S11がYESの場合、すなわち、ヒータ12の消費電力量の積算値が閾値に達したと判定された場合、ヒータ制御部33が、ヒータ12への電力供給を停止するようにヒータ12を制御する。その結果、ヒータ12がオフされる(S12)。
On the other hand, when S11 is YES, that is, when it is determined that the integrated value of the power consumption of the heater 12 has reached the threshold value, the heater control unit 33 turns off the heater 12 so as to stop the power supply to the heater 12. Control. As a result, the heater 12 is turned off (S12).
次に、タイマー32が、測定中の経過時間が、所定の時間を超えたか否かを判定する(S13)。S13がNOである場合、電力制御装置3はS13の判定を繰り返す。すなわち電力制御装置3は、経過時間が時間を超えるまで待機する。
Next, the timer 32 determines whether or not the elapsed time during measurement exceeds a predetermined time (S13). When S13 is NO, the power control device 3 repeats the determination of S13. That is, the power control device 3 stands by until the elapsed time exceeds the time.
S13がYESである場合、すなわち、ヒータ12がオンしてからの経過時間が、所定の時間を超えた場合、タイマー32は、測定中の経過時間をリセットする(S14)。また、ヒータ制御部33が、ヒータ12への電力供給を再開するようにヒータ12を制御する。その結果、ヒータ12がオンされ、図9のフローはS2に戻る。この直後、タイマー32が再び経過時間の測定を開始する(S3)。
When S13 is YES, that is, when the elapsed time since the heater 12 is turned on exceeds a predetermined time, the timer 32 resets the elapsed time during measurement (S14). In addition, the heater control unit 33 controls the heater 12 so that the power supply to the heater 12 is resumed. As a result, the heater 12 is turned on, and the flow of FIG. 9 returns to S2. Immediately after this, the timer 32 starts measuring the elapsed time again (S3).
以上のように、加熱炉11の測定温度が加熱温度を超えるまでの間、電力制御装置3によるヒータ12の消費電力量の制御処理(S2、S3、S10~S14)が繰り返し行われる。これにより、所定の時間内におけるヒータ12の消費電力量の積算値が、所定の閾値までに制限される。
As described above, until the measured temperature of the heating furnace 11 exceeds the heating temperature, the control processing (S2, S3, S10 to S14) of the power consumption of the heater 12 by the power control device 3 is repeatedly performed. Thereby, the integrated value of the power consumption amount of the heater 12 within a predetermined time is limited to a predetermined threshold value.
(比較結果)
図3の(a)は、本実施形態に係る電力制御装置3による制御を受けない加熱装置1における温度立ち上げ時の、ヒータ12の消費電力量の波形を模式的に示す図である。図3の(b)は、本実施形態に係る電力制御装置3による制御を受ける加熱装置1における温度立ち上げ時の、ヒータの12の消費電力量の波形を模式的に示す図である。図3の(a)および(b)において、縦軸はヒータ12の消費電力量の積算値(kWh)を表し、一方、横軸は加熱装置1の温度立ち上げを開始してからの経過時間(分)を表す。 (Comparison result)
(A) of FIG. 3 is a figure which shows typically the waveform of the electric power consumption of theheater 12 at the time of temperature starting in the heating apparatus 1 which does not receive control by the electric power control apparatus 3 which concerns on this embodiment. FIG. 3B is a diagram schematically illustrating a waveform of the power consumption amount of the heater 12 when the temperature is raised in the heating apparatus 1 that is controlled by the power control apparatus 3 according to the present embodiment. 3 (a) and (b), the vertical axis represents the integrated value (kWh) of the power consumption of the heater 12, while the horizontal axis represents the elapsed time from the start of the temperature rise of the heating device 1. (Minutes).
図3の(a)は、本実施形態に係る電力制御装置3による制御を受けない加熱装置1における温度立ち上げ時の、ヒータ12の消費電力量の波形を模式的に示す図である。図3の(b)は、本実施形態に係る電力制御装置3による制御を受ける加熱装置1における温度立ち上げ時の、ヒータの12の消費電力量の波形を模式的に示す図である。図3の(a)および(b)において、縦軸はヒータ12の消費電力量の積算値(kWh)を表し、一方、横軸は加熱装置1の温度立ち上げを開始してからの経過時間(分)を表す。 (Comparison result)
(A) of FIG. 3 is a figure which shows typically the waveform of the electric power consumption of the
図3の(b)では、ヒータ12の消費電力量の積算値の閾値は4kWhであり、かつ、電力制御を行う基準単位である所定の時間は20分である。
3B, the threshold value of the integrated value of the power consumption of the heater 12 is 4 kWh, and the predetermined time that is a reference unit for performing power control is 20 minutes.
加熱装置1の温度立ち上げを開始してからヒータ12への電力供給が開始されるまでには、5分のタイムラグがあるとする。これにより、図3の(a)に示すように、電力制御装置3による制御を受けない加熱装置1では、温度立ち上げを開始してから5分後にヒータ12への電力供給が開始され、これによりヒータ12が電力を消費し始める。図3の(a)において、ヒータ12に供給される消費電力量(瞬時値)の時間経過を波形41として示す。加熱炉11の温度が所定の加熱温度に到達するまで、ヒータ12には同じ大きさの電力が供給され続ける。そのため、ヒータ12に電力が供給され始めた以降の各時刻におけるヒータ12の消費電力量は、一定値を維持する。
Suppose there is a time lag of 5 minutes from the start of the temperature rise of the heating device 1 to the start of power supply to the heater 12. As a result, as shown in FIG. 3 (a), in the heating device 1 that is not controlled by the power control device 3, the power supply to the heater 12 is started 5 minutes after the start of temperature rise. Thus, the heater 12 starts to consume power. In FIG. 3A, the waveform 41 shows the passage of time of the power consumption (instantaneous value) supplied to the heater 12. Until the temperature of the heating furnace 11 reaches a predetermined heating temperature, the same amount of electric power is continuously supplied to the heater 12. Therefore, the power consumption amount of the heater 12 at each time after the power starts to be supplied to the heater 12 maintains a constant value.
図3の(a)において、ヒータ12への電力供給が開始されて以降のヒータ12の消費電力量の積算値の時間経過を、波形42として示す。図3の(b)との比較のため、当該積算値は時間(20分ごと)にゼロにリセットされる形で図3の(a)に表示されている。波形42に示すように、ヒータ12への電力供給が始まってから15分後(温度立ち上げ開始20分後)に、ヒータ12の消費電力量の積算値は4kWhに到達する。図3の(a)の例では加熱装置1は電力制御装置3による制御を受けないので、これ以降もヒータ12はオフされない。これにより、これにより、温度立ち上げを始めてから20分後~25分後の間の5分間、ヒータ12の電力消費は抑制されないので、消費電力量の積算値はこの5分間において4kWhを大きく超えて上昇し続ける。時間の終了後(温度立ち上げを開始してから25分後)に、消費電力量の積算値はリセットされてゼロになる。
3 (a), a waveform 42 shows the elapsed time of the integrated value of the power consumption of the heater 12 after the supply of power to the heater 12 is started. For comparison with (b) of FIG. 3, the integrated value is displayed in (a) of FIG. 3 in such a manner that it is reset to zero every time (every 20 minutes). As shown in the waveform 42, the integrated value of the power consumption of the heater 12 reaches 4 kWh 15 minutes after the start of power supply to the heater 12 (20 minutes after the start of temperature rise). In the example of FIG. 3A, the heating device 1 is not controlled by the power control device 3, so that the heater 12 is not turned off thereafter. Thereby, since the power consumption of the heater 12 is not suppressed for 5 minutes between the start of the temperature rise and the start of the 25th minute, the integrated value of the power consumption greatly exceeds 4 kWh in this 5 minutes. Continue to rise. After the end of the time (25 minutes after starting the temperature rise), the integrated value of the power consumption is reset to zero.
図3の(b)において、ヒータ12に供給される消費電力量(瞬時値)の時間経過を波形43として、また、ヒータ12への電力供給が開始されて以降のヒータ12の消費電力量の積算値の時間経過を波形44としてそれぞれ示す。波形44に示すように、ヒータ12への電力供給が始まってから15分後に、所定の時間の開始時点から当該15分後までの間のヒータ12の消費電力量の積算値は4kWhに到達する。図3の(b)の例では加熱装置1は電力制御装置3による制御を受けるので、これ以降はヒータ12がオフされる。これにより、温度立ち上げを始めてから20分後~25分後の間の5分間、ヒータ12の電力消費がゼロになるので、消費電力量の積算値はこの5分間において4kWhのまま維持される。時間の終了後(温度立ち上げの開始25分後)に、消費電力量の積算値はリセットされてゼロになる。
In FIG. 3B, the time elapsed of the power consumption (instantaneous value) supplied to the heater 12 is set as a waveform 43, and the power consumption of the heater 12 after the start of power supply to the heater 12 is also shown. The elapsed time of the integrated value is shown as a waveform 44, respectively. As shown in the waveform 44, 15 minutes after the start of power supply to the heater 12, the integrated value of the power consumption amount of the heater 12 from the start of the predetermined time to 15 minutes later reaches 4 kWh. . In the example of FIG. 3B, the heating device 1 is controlled by the power control device 3, so that the heater 12 is turned off thereafter. As a result, the power consumption of the heater 12 becomes zero for 5 minutes between 20 minutes and 25 minutes after the start of temperature rise, and thus the integrated value of the power consumption is maintained at 4 kWh in these 5 minutes. . After the end of time (25 minutes after the start of temperature rise), the integrated value of power consumption is reset to zero.
以上のように、電力制御装置3による制御を受ける加熱装置1では、所定の時間(20分)内の最後の5分間において、ヒータ12の消費電力量の積算値は閾値の4kWhを大きく超えて上昇し続ける。一方、電力制御装置3による制御を受ける加熱装置1では、所定の時間内のいずれの時点でもヒータ12の消費電力量の積算値が閾値の4kWhを超えることはない。したがって加熱装置1は、電力制御装置3による制御を受けることによって、温度立ち上げ時におけるヒータ12の消費電力量の積算値の急激な上昇を抑えることができる。
As described above, in the heating device 1 that is controlled by the power control device 3, the integrated value of the power consumption amount of the heater 12 greatly exceeds the threshold value of 4 kWh in the last 5 minutes within a predetermined time (20 minutes). Continue to rise. On the other hand, in the heating device 1 that is controlled by the power control device 3, the integrated value of the power consumption of the heater 12 does not exceed the threshold value of 4 kWh at any time point within a predetermined time. Therefore, the heating device 1 can suppress a sudden increase in the integrated value of the power consumption amount of the heater 12 when the temperature is raised by being controlled by the power control device 3.
(本実施形態の利点)
以上のように、制御システム50は、加熱装置1の温度立ち上げ時に、温度調節装置2による通常の温度調節処理と、電力制御装置3によるヒータ12の消費電力量制御処理とを、組み合わせて実行する。この工夫によって、制御システム50は次の利点を享受することができる。 (Advantages of this embodiment)
As described above, thecontrol system 50 executes a combination of the normal temperature adjustment processing by the temperature adjustment device 2 and the power consumption control processing of the heater 12 by the power control device 3 when the temperature of the heating device 1 is raised. To do. By this device, the control system 50 can enjoy the following advantages.
以上のように、制御システム50は、加熱装置1の温度立ち上げ時に、温度調節装置2による通常の温度調節処理と、電力制御装置3によるヒータ12の消費電力量制御処理とを、組み合わせて実行する。この工夫によって、制御システム50は次の利点を享受することができる。 (Advantages of this embodiment)
As described above, the
(1)加熱装置1の温度立ち上げ時にヒータ12の消費電力量を強制的に低減することによって、急激な消費電力の上昇を抑えることができる。
(1) A sudden increase in power consumption can be suppressed by forcibly reducing the power consumption of the heater 12 when the temperature of the heating device 1 is raised.
また、温度調節装置2による加熱装置1の温度調整処理は、電力制御装置3によるヒータ12の消費電力量制御処理とは独立に行われる。したがって、加熱装置1における加熱温度の設定値、加熱炉11の熱容量、およびヒータ12の性能などの、温度調整処理に関する条件は、消費電力量制御処理には影響しない。これにより、次の利点を享受することができる。
Further, the temperature adjustment processing of the heating device 1 by the temperature adjustment device 2 is performed independently of the power consumption amount control processing of the heater 12 by the power control device 3. Therefore, conditions related to the temperature adjustment process such as the set value of the heating temperature in the heating device 1, the heat capacity of the heating furnace 11, and the performance of the heater 12 do not affect the power consumption control process. Thereby, the following advantage can be enjoyed.
(2)加熱装置1の熱容量およびヒータ12の性能などの、加熱装置1の加熱特性を事前に測定しておく必要がない。
(2) The heating characteristics of the heating device 1 such as the heat capacity of the heating device 1 and the performance of the heater 12 need not be measured in advance.
(3)ヒータ12の能力の劣化などの、加熱装置1において経時的に変化する加熱条件に対応するための、複雑な構成の制御システムを必要としない。
(3) A control system with a complicated configuration is not required to cope with heating conditions that change with time in the heating apparatus 1 such as deterioration of the capability of the heater 12.
(4)電力制御装置3の構成を、電力計31、タイマー32、およびヒータ制御部33を備えた簡単なものにすることができる。これにより電力制御装置3は、単一のヒータ12を備えた加熱装置1における温度立ち上げ時のヒータ12の消費電力量を制御することができる。
(4) The configuration of the power control device 3 can be simplified, including the wattmeter 31, the timer 32, and the heater control unit 33. Thereby, the power control device 3 can control the power consumption amount of the heater 12 at the time of temperature rise in the heating device 1 including the single heater 12.
(5)電力制御装置3を既存の制御システムに加えるだけで、本実施形態に係る制御システム50を構成することができる。
(5) The control system 50 according to the present embodiment can be configured simply by adding the power control device 3 to the existing control system.
(実験結果)
以下に、加熱装置1として、プリント回路基板に電子部品を実装するはんだ槽を用いた実験結果について説明する。 (Experimental result)
Below, the experimental result using the solder tank which mounts an electronic component in a printed circuit board as the heating apparatus 1 is demonstrated.
以下に、加熱装置1として、プリント回路基板に電子部品を実装するはんだ槽を用いた実験結果について説明する。 (Experimental result)
Below, the experimental result using the solder tank which mounts an electronic component in a printed circuit board as the heating apparatus 1 is demonstrated.
図4の(a)は、本実施形態に係る電力制御装置3による制御を受けないはんだ槽における温度立ち上げ時の、ヒータ12の消費電力量の波形を示す図である。図4の(b)は、本実施形態に係る電力制御装置3による制御を受けるはんだ槽における温度立ち上げ時の、ヒータの12の消費電力量の波形を示す図である。図4の(a)および(b)において、縦軸はヒータ12の消費電力量の積算値(kWh)を表し、一方、横軸ははんだ槽の温度立ち上げを開始してからの経過時間(分)を表す。この実験では、消費電力量の積算値の閾値は4kWhであり、かつ、電力制御を行う基準の時間を20分である。
(A) of FIG. 4 is a figure which shows the waveform of the electric energy consumption of the heater 12 at the time of temperature rise in the solder tank which does not receive control by the electric power control apparatus 3 which concerns on this embodiment. FIG. 4B is a diagram illustrating a waveform of the power consumption amount of the heater 12 when the temperature is raised in the solder bath that is controlled by the power control device 3 according to the present embodiment. 4 (a) and 4 (b), the vertical axis represents the integrated value (kWh) of the power consumption of the heater 12, while the horizontal axis represents the elapsed time from the start of the solder bath temperature rise (kWh). Minutes). In this experiment, the threshold value of the integrated value of power consumption is 4 kWh, and the reference time for performing power control is 20 minutes.
図4の(a)に示すように、ヒータ12の温度が加熱温度に到達するまで、ヒータ12が連続的に同じ大きさの電力が供給され続ける(波形51)。そのため、各時刻におけるヒータ12の消費電力量は一定値を維持する。この図の例では、加熱装置1は電力制御装置3による制御を受けないので、20分間のいずれかの時点においてヒータ12の消費電力量の積算値が閾値(4kWh)に到達した後、積算値は4kWhを超えて上昇し続ける(波形52)。なお、図4の(b)との比較のため、積算値は20分ごとにゼロにリセットされる形で図4の(a)に表示されている。
As shown in FIG. 4A, the heater 12 is continuously supplied with the same power until the temperature of the heater 12 reaches the heating temperature (waveform 51). Therefore, the power consumption amount of the heater 12 at each time maintains a constant value. In the example of this figure, since the heating device 1 is not controlled by the power control device 3, the integrated value after the integrated value of the power consumption of the heater 12 reaches the threshold (4 kWh) at any point in time for 20 minutes. Continues to rise above 4 kWh (waveform 52). For comparison with FIG. 4B, the integrated value is displayed in FIG. 4A in such a manner that the integrated value is reset to zero every 20 minutes.
加熱装置1の温度立ち上げを始めてから約110分後に、加熱炉11の測定温度が加熱温度に到達する。この後しばらくヒータ12はオフされる。それから温度調節装置2によるヒータ制御部22の温度制御が開始され、ヒータ制御部22の測定温度に基づきヒータ12がオンされたりオフされたりすることを繰り返す(波形53)。
Approximately 110 minutes after starting the temperature rise of the heating device 1, the measured temperature of the heating furnace 11 reaches the heating temperature. After this, the heater 12 is turned off for a while. Then, the temperature control of the heater control unit 22 by the temperature control device 2 is started, and the heater 12 is repeatedly turned on and off based on the measured temperature of the heater control unit 22 (waveform 53).
一方、図4の(b)に示すように、加熱装置1が電力制御装置3による制御を受ける場合、20分間のいずれかの時点においてヒータ12の消費電力量の積算値が閾値(4kWh)に到達した後、ヒータ12に供給される電力量はゼロに低減される(波形54)。この結果、ヒータ12の消費電力量の積算値は、当該20分間が終了するまでの残りの時間、4kWhのまま維持される(波形55)。
On the other hand, as shown in FIG. 4B, when the heating device 1 is controlled by the power control device 3, the integrated value of the power consumption amount of the heater 12 reaches the threshold value (4 kWh) at any point in time for 20 minutes. After reaching, the amount of power supplied to the heater 12 is reduced to zero (waveform 54). As a result, the integrated value of the power consumption of the heater 12 is maintained at 4 kWh for the remaining time until the 20 minutes are completed (waveform 55).
図4の(b)において、ヒータ12に供給される消費電力量(瞬時値)の時間経過を波形54として、ヒータ12への電力供給が開始されて以降のヒータ12の消費電力量の積算値の時間経過を波形55として、それぞれ示す。図4の(b)の例では、加熱装置1は電力制御装置3による制御を受けるので、20分間のいずれかの時点においてヒータ12の消費電力量の積算値が閾値(4kWh)に到達した後、消費電力量の積算値は4kWhを超えることがない。
4B, the elapsed time of the power consumption (instantaneous value) supplied to the heater 12 is set as a waveform 54, and the integrated value of the power consumption of the heater 12 after the start of power supply to the heater 12 is started. Are respectively shown as a waveform 55. In the example of FIG. 4B, since the heating device 1 is controlled by the power control device 3, the integrated value of the power consumption amount of the heater 12 reaches the threshold value (4 kWh) at any point in time for 20 minutes. The integrated value of power consumption does not exceed 4 kWh.
加熱装置1が電力制御装置3による制御を受ける場合でも、温度立ち上げを始めてから約110分後に、加熱炉11の測定温度が加熱温度に到達する。この後しばらくヒータ12はオフされ、それから温度調節装置2によるヒータ制御部22の温度制御が開始され、ヒータ制御部22の測定温度に基づきヒータ12がオンされたりオフされたりすることを繰り返す(波形56)。波形56は、通常の温度調整のみによる波形53と本質的に変わりない。
Even when the heating device 1 is controlled by the power control device 3, the measured temperature of the heating furnace 11 reaches the heating temperature about 110 minutes after the start of temperature rise. After this, the heater 12 is turned off for a while, and then the temperature control of the heater control unit 22 by the temperature adjusting device 2 is started, and the heater 12 is repeatedly turned on and off based on the measured temperature of the heater control unit 22 (waveform) 56). The waveform 56 is essentially the same as the waveform 53 obtained only by normal temperature adjustment.
以上のように、実際の実験結果によれば、電力制御装置3によるヒータ12の電力制御を行うことによって、加熱装置1の温度立ち上げ時におけるヒータ12の消費電力量の積算値の急激な上昇を防ぐことが示された。
As described above, according to the actual experimental results, the power control of the heater 12 by the power control device 3 causes a sudden increase in the integrated value of the power consumption of the heater 12 when the temperature of the heating device 1 is raised. Was shown to prevent.
なお、消費電力量の積算値の閾値は、4kWhに限らず、任意の値にすることができる。この値を小さくすればするほど、消費電力量の積算値の上昇をより抑制することができる。
Note that the threshold value of the integrated value of power consumption is not limited to 4 kWh, and can be any value. The smaller this value is, the more the increase in the integrated value of power consumption can be suppressed.
電力制御の単位時間である所定の時間は、20分に限らず、任意の長さの時間にすることができる。この時間を長くすればするほど、消費電力量の積算値の上昇をより抑制することができる。特に、所定の時間を、加熱装置1が設置される工場などの施設に対して設定される、電力供給者との間の電力供給契約の基準時間にすれば、加熱装置1が設置される施設全体の電力がデマンド契約電力を超えることの防止に寄与することができる。
The predetermined time, which is a unit time for power control, is not limited to 20 minutes, but may be any length of time. The longer this time is, the more the increase in the integrated value of power consumption can be suppressed. In particular, if the predetermined time is set as a reference time for a power supply contract with a power supplier set for a facility such as a factory where the heating device 1 is installed, the facility where the heating device 1 is installed. This can contribute to preventing the overall power from exceeding the demand contract power.
ヒータ制御部33は、所定の時間においてヒータ12の消費電力量の積算値が閾値に到達した時点から、当該所定の時間における終了時点までの間、ヒータ12への電力供給を必ずしもゼロにする必要はなく、ヒータ12への電力供給をゼロよりも大きい値に低減してもよい。ここでいう低減とは、ヒータに供給される電力量を、積算値が閾値に到達する前に供給されていた電力量よりも小さくすることを意味する。なお、ヒータ12への電力供給をゼロにすれば、積算値の急激な上昇を最大限に抑制することができるので好ましい。
The heater control unit 33 is required to always make the power supply to the heater 12 zero from the time when the integrated value of the power consumption amount of the heater 12 reaches the threshold value for a predetermined time to the end time of the predetermined time. No, the power supply to the heater 12 may be reduced to a value greater than zero. Here, reduction means that the amount of power supplied to the heater is made smaller than the amount of power supplied before the integrated value reaches the threshold value. In addition, it is preferable to reduce the power supply to the heater 12 to zero because a rapid increase in the integrated value can be suppressed to the maximum.
〔実施形態2〕
本発明に係る第2実施形態について、図5に基づき以下に説明する。なお、前述した第1実施形態と共通する各部材には同じ符号を付し、詳細な説明を省略する。 [Embodiment 2]
A second embodiment according to the present invention will be described below with reference to FIG. In addition, the same code | symbol is attached | subjected to each member which is common in 1st Embodiment mentioned above, and detailed description is abbreviate | omitted.
本発明に係る第2実施形態について、図5に基づき以下に説明する。なお、前述した第1実施形態と共通する各部材には同じ符号を付し、詳細な説明を省略する。 [Embodiment 2]
A second embodiment according to the present invention will be described below with reference to FIG. In addition, the same code | symbol is attached | subjected to each member which is common in 1st Embodiment mentioned above, and detailed description is abbreviate | omitted.
本実施形態では、加熱装置1として小型はんだ槽を用いた実験結果を説明する。この小型はんだ槽は、ヒータ12の特性変化によって、温度調整の条件が変化した結果、加熱炉11内の温度が安定するまでに約110分程度に延びてしまった装置である。
In this embodiment, an experimental result using a small solder bath as the heating device 1 will be described. This small solder bath is an apparatus that has been extended for about 110 minutes until the temperature in the heating furnace 11 is stabilized as a result of changes in temperature adjustment conditions due to changes in the characteristics of the heater 12.
図5の(a)は、本発明の第2実施形態に係る電力制御装置3による制御を受けない小型はんだ槽における温度立ち上げ時の、ヒータの消費電力量の波形を示す図である。図5の(b)は、本発明の第2実施形態に係る電力制御装置3による制御を受ける小型はんだ槽における温度立ち上げ時の、ヒータ12の消費電力量の波形を示す図である。図5の(a)および(b)において、縦軸はヒータ12の消費電力量の積算値(kWh)を表し、一方、横軸は加熱装置1の温度立ち上げを開始してからの経過時間(分)を表す。
(A) of FIG. 5 is a figure which shows the waveform of the electric power consumption of a heater at the time of temperature rise in the small solder tank which does not receive control by the electric power control apparatus 3 which concerns on 2nd Embodiment of this invention. FIG. 5B is a diagram illustrating a waveform of the power consumption amount of the heater 12 at the time of temperature rise in the small solder bath that is controlled by the power control device 3 according to the second embodiment of the present invention. In (a) and (b) of FIG. 5, the vertical axis represents the integrated value (kWh) of the power consumption of the heater 12, while the horizontal axis represents the elapsed time since the temperature rise of the heating device 1 was started. (Minutes).
図5の(a)および(b)では、時間経過ごとにヒータ12の消費電力量の積算値をリセットせずに、ヒータ12における電力消費が開始された時点からの継続した消費電力量の積算値の波形を示す。また、図5の(b)において、消費電力量の積算値の閾値は0.2kWhであり、また消費電力量制御のための所定の時間は7分間である。
In (a) and (b) of FIG. 5, the integration of the continuous power consumption from the time when the power consumption in the heater 12 is started without resetting the integrated value of the power consumption of the heater 12 every time has elapsed. The waveform of the value is shown. In FIG. 5B, the threshold value of the integrated value of power consumption is 0.2 kWh, and the predetermined time for controlling the power consumption is 7 minutes.
図5の(a)に示すように、温度立ち上げ時に電力制御装置3による制御を受けない小型はんだ槽では、ヒータ12の消費電力量の積算値は急激かつ直線的に上昇してゆく(波形61)。温度立ち上げ開始から約35分後には加熱炉11内の温度が所定の加熱温度に到達する。この時点でヒータ12への電力供給はいったん停止するので、ヒータ12の消費電力量の積算値はこれ以上上昇しない。温度立ち上げを開始してから約50分後に、温度調節装置2によるヒータ12の温度制御が始まる(波形62)。加熱炉11内の温度が安定するまで、この温度制御は続く。温度制御は、温度立ち上げを開始してから約110分後まで続く。前述したように、これはヒータ12の特性が変化したことが原因である。
As shown in FIG. 5A, in a small solder bath that is not controlled by the power control device 3 when the temperature is raised, the integrated value of the power consumption of the heater 12 increases rapidly and linearly (waveform) 61). About 35 minutes after the start of temperature rise, the temperature in the heating furnace 11 reaches a predetermined heating temperature. Since power supply to the heater 12 is temporarily stopped at this time, the integrated value of the power consumption of the heater 12 does not increase any more. Approximately 50 minutes after the start of temperature rise, the temperature control of the heater 12 by the temperature control device 2 starts (waveform 62). This temperature control continues until the temperature in the heating furnace 11 is stabilized. The temperature control continues until about 110 minutes after the start of the temperature rise. As described above, this is because the characteristics of the heater 12 have changed.
図5の(b)に示すように、ヒータ12における電力消費が開始されてから、7分間ごとに、電力制御装置3によるヒータ12の消費電力量の制御が行われる。電力制御装置3は、最初の7分間において、ヒータ12の消費電力量の積算値が0.2kWhに到達する6分後の時点において、ヒータ12への電力供給を停止する。これにより、ヒータ12の消費電力量の積算値は約0.2kWhを維持する(波形63)。この停止措置は、最初の7分間が終了する1分後まで続く。電力制御装置3は、最初の7分間が終了すると、再び、ヒータ12への電力供給を再開する。これにより、ヒータ12の消費電力量の積算値は再び上昇する。次の7分間における制御では、電力制御装置3における閾値は0.4kWhに設定される。すなわち時間が経過するごとに閾値は0.2kWhずつ増えてゆく。
As shown in FIG. 5 (b), the electric power consumption of the heater 12 is controlled by the electric power control device 3 every 7 minutes after the electric power consumption in the heater 12 is started. The power control device 3 stops power supply to the heater 12 at the time point 6 minutes after the integrated value of the power consumption amount of the heater 12 reaches 0.2 kWh in the first 7 minutes. Thereby, the integrated value of the power consumption of the heater 12 is maintained at about 0.2 kWh (waveform 63). This stoppage lasts until one minute after the first seven minutes are over. When the first seven minutes are completed, the power control device 3 resumes the power supply to the heater 12 again. Thereby, the integrated value of the power consumption of the heater 12 rises again. In the control for the next 7 minutes, the threshold value in the power control device 3 is set to 0.4 kWh. That is, the threshold increases by 0.2 kWh as time elapses.
次の7分間のうち6分間が経過した時点で、ヒータ12の消費電力量の積算値は0.4kWhに到達する。この時点で電力制御装置3はヒータ12の電力供給を停止する。これ以降も電力制御装置3は同様の制御を繰り返す。これにより、ヒータ12に供給される電力は、時間(7分間)が経過するたびに、そのうちの最後の約1分間、繰り返し停止される。温度立ち上げ開始から約40分後には加熱炉11内の温度が所定の加熱温度に到達する。この時点でヒータ12への電力供給はいったん停止するので、ヒータ12の消費電力量の積算値はこれ以上上昇しない。温度立ち上げを開始してから約75分後に、温度調節装置2によるヒータ12の温度制御が始まる(波形64)。加熱炉11内の温度が安定するまで、この温度制御は続く。温度制御は、温度立ち上げを開始してから約80分後まで続く。
When 6 minutes of the next 7 minutes have elapsed, the integrated value of the power consumption of the heater 12 reaches 0.4 kWh. At this time, the power control device 3 stops the power supply of the heater 12. Thereafter, the power control device 3 repeats the same control. As a result, the electric power supplied to the heater 12 is repeatedly stopped for the last approximately one minute each time (7 minutes) elapses. About 40 minutes after the start of temperature rise, the temperature in the heating furnace 11 reaches a predetermined heating temperature. Since power supply to the heater 12 is temporarily stopped at this time, the integrated value of the power consumption of the heater 12 does not increase any more. Approximately 75 minutes after the start of temperature rise, temperature control of the heater 12 by the temperature control device 2 starts (waveform 64). This temperature control continues until the temperature in the heating furnace 11 is stabilized. The temperature control continues until about 80 minutes after the start of temperature rise.
以上のように、電力制御装置3による制御を受ける小型はんだ槽では、ヒータ12の消費電力量の積算値の急激な上昇が抑えられる。その結果、加熱炉11の測定温度が所定の加熱温度に到達するまでの時間は、電力制御装置3による制御を受けない場合に比べて長くなる。一方、加熱炉11の測定温度が安定するまでの時間は、電力制御装置3による制御を受けない場合に比べて短くなる。これは、電力制御装置3による制御には、ヒータ12の特性変化の影響がないので、加熱炉11内の温度が所定の加熱温度に到達した後における、ヒータ12の過加熱による加熱炉11の温度上昇が低く抑えられるからである。
As described above, in the small solder tank that is controlled by the power control device 3, a rapid increase in the integrated value of the power consumption of the heater 12 can be suppressed. As a result, the time until the measured temperature of the heating furnace 11 reaches the predetermined heating temperature is longer than when the control by the power control device 3 is not performed. On the other hand, the time until the measured temperature of the heating furnace 11 is stabilized is shorter than when the control by the power control device 3 is not performed. This is because the control by the power control device 3 is not affected by the change in characteristics of the heater 12, so that the heating furnace 11 is overheated by the heater 12 after the temperature in the heating furnace 11 reaches a predetermined heating temperature. This is because the temperature rise can be kept low.
以上のように、本実施形態に係る制御システム50によれば、ヒータ12の特性変化または故障あるいは加熱炉11の熱容量変化などの加熱装置1の加熱環境の変動が起こったために、温度調節装置2による適切な加熱炉11の温度調整ができなくなるような温度立ち上げ時の異常発生時においても、その影響を小さく抑えることができる。
As described above, according to the control system 50 according to the present embodiment, the temperature adjustment device 2 has changed due to a change in the heating environment of the heating device 1 such as a characteristic change or failure of the heater 12 or a heat capacity change of the heating furnace 11. Even when an abnormality occurs when the temperature is raised so that appropriate temperature adjustment of the heating furnace 11 cannot be performed, the influence can be suppressed small.
〔ソフトウェアによる実現例〕
電力制御装置3の制御ブロック(特に)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。 [Example of software implementation]
The control block (particularly) of the power control device 3 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or realized by software using a CPU (Central Processing Unit). May be.
電力制御装置3の制御ブロック(特に)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。 [Example of software implementation]
The control block (particularly) of the power control device 3 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or realized by software using a CPU (Central Processing Unit). May be.
後者の場合、電力制御装置3は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、前記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、前記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が前記プログラムを前記記録媒体から読み取って実行することによって、本発明の目的が達成される。
In the latter case, the power control device 3 includes a CPU that executes instructions of a program that is software that realizes each function, and a ROM (Read Only Memory) in which the program and various data are recorded so as to be readable by a computer (or CPU). Alternatively, a storage device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like are provided. And the objective of this invention is achieved when a computer (or CPU) reads the said program from the said recording medium and runs it.
前記記録媒体としては、「一時的でない有形の媒体」、たとえば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、前記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して前記コンピュータに供給されてもよい。なお、本発明は、前記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
As the recording medium, a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. The program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program. The present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
〔まとめ〕
本発明に係る制御方法は、前記の課題を解決するために、
ヒータを備えた加熱装置における温度立ち上げを制御する制御方法であって、
所定の時間における開始時点から当該所定の時間におけるいずれかの時点までに測定された前記ヒータの消費電力量の積算値が、所定の閾値に達したか否かを判定する判定工程と、
前記判定工程において前記積算値が前記所定の閾値に達したと判定された場合、前記いずれかの時点から前記所定の時間における終了時点までの間、前記ヒータに供給される電力を低減する低減工程とを含んでいることを特徴としている。 [Summary]
In order to solve the above problems, a control method according to the present invention provides:
A control method for controlling a temperature rise in a heating device including a heater,
A determination step of determining whether an integrated value of the power consumption amount of the heater measured from a start time at a predetermined time to any time at the predetermined time has reached a predetermined threshold;
In the determination step, when it is determined that the integrated value has reached the predetermined threshold value, a reduction step of reducing the power supplied to the heater from any one of the time points to the end time point in the predetermined time It is characterized by including.
本発明に係る制御方法は、前記の課題を解決するために、
ヒータを備えた加熱装置における温度立ち上げを制御する制御方法であって、
所定の時間における開始時点から当該所定の時間におけるいずれかの時点までに測定された前記ヒータの消費電力量の積算値が、所定の閾値に達したか否かを判定する判定工程と、
前記判定工程において前記積算値が前記所定の閾値に達したと判定された場合、前記いずれかの時点から前記所定の時間における終了時点までの間、前記ヒータに供給される電力を低減する低減工程とを含んでいることを特徴としている。 [Summary]
In order to solve the above problems, a control method according to the present invention provides:
A control method for controlling a temperature rise in a heating device including a heater,
A determination step of determining whether an integrated value of the power consumption amount of the heater measured from a start time at a predetermined time to any time at the predetermined time has reached a predetermined threshold;
In the determination step, when it is determined that the integrated value has reached the predetermined threshold value, a reduction step of reducing the power supplied to the heater from any one of the time points to the end time point in the predetermined time It is characterized by including.
前記の構成によれば、本発明に係る制御方法は、所定の時間内のいずれかの時点において、ヒータの消費電力量の積算値が所定の閾値に到達した後から、当該所定の時間の終了時点までの間、ヒータに供給される電力を低減する。これにより、加熱装置の温度立ち上げ時におけるヒータの消費電力量の積算値の急激な上昇を抑制することができる。
According to the above configuration, the control method according to the present invention ends the predetermined time after the integrated value of the power consumption amount of the heater reaches the predetermined threshold at any time point within the predetermined time. Until the time, the power supplied to the heater is reduced. Thereby, it is possible to suppress a rapid increase in the integrated value of the power consumption of the heater when the temperature of the heating device is raised.
また、本発明に係る制御方法は、ヒータの消費電力量の積算値に基づき当該ヒータを制御するので、加熱装置が複数のヒータを備えている必要はない。これにより、単一のヒータを備えた加熱装置に対して本発明に係る制御方法を適用することができる。
Further, since the control method according to the present invention controls the heater based on the integrated value of the power consumption amount of the heater, the heating device does not need to include a plurality of heaters. Thereby, the control method according to the present invention can be applied to a heating device provided with a single heater.
また、本発明に係る制御方法では、ヒータの加熱特性などを事前に測定しておく必要がない。そのため、この制御方法を実行するための複雑な構成のシステムを必要としない。
In the control method according to the present invention, it is not necessary to measure the heating characteristics of the heater in advance. Therefore, a system having a complicated configuration for executing this control method is not required.
以上のように、本発明に係る制御方法によれば、単一のヒータを備えた加熱装置の温度立ち上げ時における消費電力量の急激な上昇を、複雑な構成のシステムを必要とせずに抑制することができる効果を奏する。
As described above, according to the control method of the present invention, a rapid increase in power consumption at the time of temperature rise of a heating device having a single heater is suppressed without requiring a system having a complicated configuration. The effect which can be done is produced.
本発明に係る制御方法では、さらに、
前記低減工程では、前記いずれかの時点から前記終了時点までの間、前記ヒータに供給する前記電力をゼロにすることが好ましい。 In the control method according to the present invention, further,
In the reduction step, it is preferable that the electric power supplied to the heater is set to zero during any period from the time point to the end time point.
前記低減工程では、前記いずれかの時点から前記終了時点までの間、前記ヒータに供給する前記電力をゼロにすることが好ましい。 In the control method according to the present invention, further,
In the reduction step, it is preferable that the electric power supplied to the heater is set to zero during any period from the time point to the end time point.
前記の構成によれば、ヒータの消費電力量の急激な上昇を最大限に抑制することができる。
According to the above configuration, it is possible to suppress the rapid increase in the power consumption of the heater to the maximum.
本発明に係る制御方法では、さらに、
前記時間は、前記加熱装置が設置される施設に対して設定される、電力供給者との間の電力供給契約の基準時間であることが好ましい。 In the control method according to the present invention, further,
The time is preferably a reference time for a power supply contract with a power supplier, which is set for a facility where the heating device is installed.
前記時間は、前記加熱装置が設置される施設に対して設定される、電力供給者との間の電力供給契約の基準時間であることが好ましい。 In the control method according to the present invention, further,
The time is preferably a reference time for a power supply contract with a power supplier, which is set for a facility where the heating device is installed.
前記の構成によれば、加熱装置が設置される施設全体の電力がデマンド契約電力を超えることの防止に寄与することができる。
According to the above configuration, it is possible to contribute to preventing the power of the entire facility where the heating device is installed from exceeding the demand contract power.
本発明に係る制御装置は、前記の課題を解決するために、
ヒータを備えた加熱装置における温度立ち上げを制御する制御装置であって、
所定の時間における開始時点から当該所定の時間におけるいずれかの時点までに測定された前記消費電力量の積算値が、所定の閾値に達したか否かを判定する判定部と、
前記判定部によって前記積算値が前記所定の閾値を達したと判定された場合、前記いずれかの時点から前記所定の時間における終了時点までの間、前記ヒータに供給される電力を低減する低減部とを備えていることを特徴としている。 In order to solve the above problems, a control device according to the present invention provides:
A control device for controlling temperature rise in a heating device provided with a heater,
A determination unit that determines whether or not an integrated value of the power consumption measured from a start time at a predetermined time to any time at the predetermined time has reached a predetermined threshold;
When the determination unit determines that the integrated value has reached the predetermined threshold value, a reduction unit that reduces the power supplied to the heater from any one of the time points to the end point in the predetermined time It is characterized by having.
ヒータを備えた加熱装置における温度立ち上げを制御する制御装置であって、
所定の時間における開始時点から当該所定の時間におけるいずれかの時点までに測定された前記消費電力量の積算値が、所定の閾値に達したか否かを判定する判定部と、
前記判定部によって前記積算値が前記所定の閾値を達したと判定された場合、前記いずれかの時点から前記所定の時間における終了時点までの間、前記ヒータに供給される電力を低減する低減部とを備えていることを特徴としている。 In order to solve the above problems, a control device according to the present invention provides:
A control device for controlling temperature rise in a heating device provided with a heater,
A determination unit that determines whether or not an integrated value of the power consumption measured from a start time at a predetermined time to any time at the predetermined time has reached a predetermined threshold;
When the determination unit determines that the integrated value has reached the predetermined threshold value, a reduction unit that reduces the power supplied to the heater from any one of the time points to the end point in the predetermined time It is characterized by having.
前記の構成によれば、前述した制御方法と同様の作用効果を奏する。
According to the above configuration, the same operational effects as the control method described above can be obtained.
本発明に係る制御装置は、コンピュータによって実現してもよく、この場合には、コンピュータを前記制御装置が備える各手段として動作させることにより前記制御装置をコンピュータにて実現させる制御装置の制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。
The control device according to the present invention may be realized by a computer, and in this case, a control program for the control device for realizing the control device by a computer by causing the computer to operate as each unit included in the control device, A computer-readable recording medium on which it is recorded also falls within the scope of the present invention.
本発明は前述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the claims, and the embodiments can be obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
本発明は、加熱装置の温度立ち上げ時においてヒータの消費電力量を制御する制御方法として、幅広く利用できる。
The present invention can be widely used as a control method for controlling the power consumption of the heater when the temperature of the heating device is raised.
1 加熱装置
2 温度調節装置
3 電力制御装置
11 加熱炉
12 ヒータ
21 温度センサ
22 ヒータ制御部
31 電力計
32 タイマー
33 ヒータ制御部(判定部、低減部) DESCRIPTION OF SYMBOLS 1Heating apparatus 2 Temperature control apparatus 3 Electric power control apparatus 11 Heating furnace 12 Heater 21 Temperature sensor 22 Heater control part 31 Wattmeter 32 Timer 33 Heater control part (determination part, reduction part)
2 温度調節装置
3 電力制御装置
11 加熱炉
12 ヒータ
21 温度センサ
22 ヒータ制御部
31 電力計
32 タイマー
33 ヒータ制御部(判定部、低減部) DESCRIPTION OF SYMBOLS 1
Claims (6)
- ヒータを備えた加熱装置における温度立ち上げを制御する制御方法であって、
所定の時間における開始時点から当該所定の時間におけるいずれかの時点までに測定された前記ヒータの消費電力量の積算値が、所定の閾値に達したか否かを判定する判定工程と、
前記判定工程において前記積算値が前記所定の閾値に達したと判定された場合、前記いずれかの時点から前記所定の時間における終了時点までの間、前記ヒータに供給される電力を低減する低減工程とを含んでいることを特徴とする制御方法。 A control method for controlling a temperature rise in a heating device including a heater,
A determination step of determining whether an integrated value of the power consumption amount of the heater measured from a start time at a predetermined time to any time at the predetermined time has reached a predetermined threshold;
In the determination step, when it is determined that the integrated value has reached the predetermined threshold value, a reduction step of reducing the power supplied to the heater from any one of the time points to the end time point in the predetermined time The control method characterized by including these. - 前記低減工程では、前記いずれかの時点から前記終了時点までの間、前記ヒータに供給する前記電力をゼロにすることを特徴とする請求項1に記載の制御方法。 2. The control method according to claim 1, wherein in the reduction step, the electric power supplied to the heater is set to zero during any period from the time point to the end time point.
- 前記所定の時間は、前記加熱装置が設置される施設に対して設定される、電力供給者との間の電力供給契約の基準時間であることを特徴とする請求項1または2に記載の制御方法。 3. The control according to claim 1, wherein the predetermined time is a reference time of a power supply contract with a power supplier, which is set for a facility where the heating device is installed. Method.
- ヒータを備えた加熱装置における温度立ち上げを制御する制御装置であって、
所定の時間における開始時点から当該所定の時間におけるいずれかの時点までに測定された前記消費電力量の積算値が、所定の閾値に達したか否かを判定する判定部と、
前記判定部によって前記積算値が前記所定の閾値を達したと判定された場合、前記いずれかの時点から前記所定の時間における終了時点までの間、前記ヒータに供給される電力を低減する低減部とを備えていることを特徴とする制御装置。 A control device for controlling temperature rise in a heating device provided with a heater,
A determination unit that determines whether or not an integrated value of the power consumption measured from a start time at a predetermined time to any time at the predetermined time has reached a predetermined threshold;
When the determination unit determines that the integrated value has reached the predetermined threshold value, a reduction unit that reduces the power supplied to the heater from any one of the time points to the end point in the predetermined time And a control device. - 請求項4に記載の制御装置としてコンピュータを機能させるためのプログラムであって、コンピュータを前記制御装置として機能させるためのプログラム。 A program for causing a computer to function as the control device according to claim 4, wherein the program causes the computer to function as the control device.
- 請求項5に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium on which the program according to claim 5 is recorded.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-108061 | 2014-05-26 | ||
JP2014108061A JP6292031B2 (en) | 2014-05-26 | 2014-05-26 | Control method, control device, program, and recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015182331A1 true WO2015182331A1 (en) | 2015-12-03 |
Family
ID=54698671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/063033 WO2015182331A1 (en) | 2014-05-26 | 2015-04-30 | Control method, control device, program, and recording medium |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6292031B2 (en) |
TW (1) | TWI634299B (en) |
WO (1) | WO2015182331A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6874719B2 (en) * | 2018-03-02 | 2021-05-19 | オムロン株式会社 | Heating device and abnormality detection method for heating device |
CN112413387B (en) * | 2020-10-14 | 2022-04-08 | 沈阳鼓风机集团自动控制系统工程有限公司 | Control method and device of oil tank heater |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58113862A (en) * | 1981-12-28 | 1983-07-06 | Toshiba Corp | Indicating method for maximum demand power |
JPH01114653A (en) * | 1987-10-28 | 1989-05-08 | Matsushita Seiko Co Ltd | Electric power demand controller |
JP3381140B2 (en) * | 1997-12-26 | 2003-02-24 | 澁谷工業株式会社 | Heater power control device in bonding equipment |
JP2005125340A (en) * | 2003-10-22 | 2005-05-19 | Senju Metal Ind Co Ltd | Reflow furnace and its starting method |
JP4137632B2 (en) * | 2002-12-27 | 2008-08-20 | ▲隆▼夫 石井 | Demand control system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2951193B2 (en) * | 1994-02-28 | 1999-09-20 | 株式会社東芝 | Refrigerator defroster |
JP2005012540A (en) * | 2003-06-19 | 2005-01-13 | Matsushita Electric Ind Co Ltd | Power amplifier |
JP2012257195A (en) * | 2011-05-18 | 2012-12-27 | Nippon Dempa Kogyo Co Ltd | Temperature control circuit of crystal oscillator with thermostatic oven |
JP5077475B1 (en) * | 2011-11-02 | 2012-11-21 | オムロン株式会社 | Heating furnace, its control device, its control program, and its control method |
-
2014
- 2014-05-26 JP JP2014108061A patent/JP6292031B2/en active Active
-
2015
- 2015-04-30 WO PCT/JP2015/063033 patent/WO2015182331A1/en active Application Filing
- 2015-05-07 TW TW104114522A patent/TWI634299B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58113862A (en) * | 1981-12-28 | 1983-07-06 | Toshiba Corp | Indicating method for maximum demand power |
JPH01114653A (en) * | 1987-10-28 | 1989-05-08 | Matsushita Seiko Co Ltd | Electric power demand controller |
JP3381140B2 (en) * | 1997-12-26 | 2003-02-24 | 澁谷工業株式会社 | Heater power control device in bonding equipment |
JP4137632B2 (en) * | 2002-12-27 | 2008-08-20 | ▲隆▼夫 石井 | Demand control system |
JP2005125340A (en) * | 2003-10-22 | 2005-05-19 | Senju Metal Ind Co Ltd | Reflow furnace and its starting method |
Also Published As
Publication number | Publication date |
---|---|
JP2015225711A (en) | 2015-12-14 |
JP6292031B2 (en) | 2018-03-14 |
TWI634299B (en) | 2018-09-01 |
TW201606252A (en) | 2016-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2741568B1 (en) | Heater control device, method, and program | |
JP2006136193A (en) | Method and apparatus for providing temporary peak power from switching regulator | |
WO2014010245A1 (en) | Server device, electrical power control device, and electrical power control system | |
WO2015182331A1 (en) | Control method, control device, program, and recording medium | |
CN107726427B (en) | Temperature control method of heat storage device and heat supply system | |
JP2010032072A (en) | Power consumption control device, cooling system and power consumption control method | |
KR20150100552A (en) | Enhanced method for controlling a pumping station within a fluid circulation system, related circulation system and pumping station for realizing said method | |
AU2018334832A1 (en) | Method for controlling ESS output | |
CN111749920A (en) | Stepless speed regulation method and device for fan of electromechanical system | |
US9684287B2 (en) | Controlling device and controlling method | |
WO2015133215A1 (en) | Power demand control device, power demand control method, power demand control system, program, and recording medium | |
WO2013001659A1 (en) | Control device, heating device control system, control method, program, and recording medium | |
JP6375826B2 (en) | Supply power control device | |
JP2010238843A (en) | Power control device, electronic circuit mounted device and power control method | |
US8640968B2 (en) | Temperature gain control device and method thereof | |
JP2015122674A (en) | Amplification device | |
JP2009296853A (en) | Method and apparatus for controlling power generation quantity of gas turbine power generation plant | |
JP6474368B2 (en) | Laser equipment | |
CN112041782A (en) | Power supply controller | |
WO2023281872A1 (en) | Abnormality determination device, abnormality determination method, and abnormality determination system | |
JP2018014840A (en) | Power load control system and power load control method | |
TWI487844B (en) | Method for fan monitoring and server system using the same | |
JP6244426B1 (en) | Hot water supply apparatus and hot water supply system | |
JP7073097B2 (en) | Control device, power control system, boiling control method, and control program | |
JP2010088279A (en) | Method for controlling receiving power |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15800250 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15800250 Country of ref document: EP Kind code of ref document: A1 |