【発明の詳細な説明】
【0001】
【発明の利用分野】この発明は、厚膜ガス感応体と微細
加工を施した電極とを混在させたガスセンサに関する。
【0002】
【従来技術】発明者らは、薄膜と厚膜とを混在させたガ
スセンサを検討した。その目的はガスセンサの小型化に
あり、ガス感応体の電極やヒータの電極,ヒータ,層間
絶縁膜,等を薄膜プロセスで成膜し、ガス感応体やフィ
ルタ膜を厚膜プロセスで成膜する。ガスセンサの中で最
も微細化が必要なのは、ガス感応体に接続した電極で、
ガス感応体やそのフィルタは例えば100μm角程度の
大きさで良く、厚膜でも良い。そしてガス感応体やフィ
ルタの性質は膜厚に依存し、メタンやプロパン等のガス
の検出の場合、厚膜の方が好ましい。またこれ以外のガ
スの場合も、厚膜は薄膜に比べて被毒を受け難く、かつ
相対感度の調整も容易である。これらのため、薄膜電極
と厚膜ガス感応体とを混在させたガスセンサが必要にな
る。
【0003】薄膜と厚膜とでは、基板表面に必要な平滑
度が異なり、薄膜では鏡面基板を用いることが必要であ
る。これは第1に、薄膜の成膜でのマスクの位置合わせ
に鏡面基板が必要なためであり、第2に基板表面の断差
のために薄膜電極が断線しないようにするためである。
しかしながら鏡面基板を用いるとガス感応体やフィルタ
膜の付着力は低下し、例えばテープ剥離試験(完成した
ガスセンサ表面にテープを貼付け、テープを剥した際に
フィルタ膜やガス感応体がテープに付着して剥離するか
どうかの試験)を行うと、ほぼ全数のガスセンサが損傷
することが判明した。このため薄膜と厚膜とを混在さ
せ、薄膜でガスセンサを小型化し、厚膜で厚膜ガスセン
サの性能を引き出すことはできなかった。
【0004】このような問題は薄膜電極と厚膜ガス感応
体との組み合せに限るものではなく、厚膜電極と厚膜ガ
ス感応体との組み合せでも生じる。例えば数μm程度の
膜厚で厚膜の電極を印刷し、レジストを用いてエッチン
グし、10μm以下の線幅の櫛の歯電極とする場合、レ
ジスト露光用のマスクの位置合わせが必要になる。そし
てこれは、鏡面基板でなければ実現できない。
【0005】
【発明の課題】この発明の課題は、微細加工を施した電
極と厚膜ガス感応体とを組み合わせたガスセンサを提供
し、
1) ガス感応体の基板への付着力を高め、
2) ガス感応体の電極の微細加工を容易にし、
3) これによって小型で消費電力が小さく、扱い易いガ
スセンサとし、
4) 厚膜のガス感応体を用いることにより、メタンやプ
ロパン等の難燃性ガスの検出が容易で、かつそれ以外の
ガスを検出する場合にも信頼性の高いガスセンサを得る
ことにある。
【0006】
【発明の構成と作用】この発明は、耐熱絶縁基板上に、
厚膜のガス感応体と、この感応体に接続した電極とを設
けたガスセンサにおいて、少なくとも前記感応体の下地
を粗面化すると共に、該粗面化領域に粗面化の程度の異
なる部分を設けたことを特徴とする。このようにする
と、粗面化した部分と粗面化しない部分との境界に断差
が生じ、また粗面化の程度を変えるので深く粗面化した
部分と浅く粗面化した部分との境界に段差が生じ、これ
らの断差を利用して、ガス感応体の付着力を改善する。
ガス感応体の電極は薄膜が好ましいが、これに限るもの
ではない。
【0007】
【実施例】図1〜図9により、ガス感応体をSnO2の
厚膜とし、フィルタ膜としてAl2O3−SnO2−Pd
の厚膜を用いたものを例に、実施例を示す。ガスセンサ
の構造を図7に示すと、2はアルミナ基板で、ZrO
2,ムライト,スピネル,AlN,石英ガラス,等の他
の耐熱絶縁基板でも良く、実施例では99%アルミナ
(表面を鏡面研磨済み)を用い、Ar雰囲気でイオンミ
リングし粗面化部3を設けたものを用いた。4はヒータ
電極,6はRuO2ヒータ,8は層間絶縁膜でSiO2膜
を用い、10は櫛の歯電極で、12はSnO2膜,14
はフィルタ膜である。ヒータ電極4〜櫛の歯電極10ま
では薄膜プロセス、(ここではスパッタリング)、で成
膜し、膜厚は層間絶縁膜8が0.5μm,他は0.3μm
である。また電極4,10は下地との密着性を増すた
め、Ti,W,Mo,Cr等の活性金属の第1層,(実
施例ではTi),Ptの第2層,ボンディングの容易な
金の第3層を積層したものを用い、膜厚はこれらの合計
膜厚である。電極4,10は金系の電極に限るものでは
なく、また厚膜電極を印刷し、レジストの現像とエッチ
ングで微細加工を施したものでも良い。層間絶縁膜8
は、SnO2膜12とヒータ6との絶縁の他に、ヒータ
6を雰囲気から遮断し安定性を高める作用がある。Sn
O2膜12とフィルタ膜14はスクリーン印刷による厚
膜を用い、膜厚は各々5〜30μmとし、その材料は任
意で、フィルタ膜14は無くても良い。なおこの明細書
で薄膜とは例えば膜厚1μm以下の膜を、厚膜とは例え
ば膜厚5μm以上の膜を意味する。
【0008】ヒータ電極4〜フィルタ膜14までの寸法
例を示すと、ヒータ電極4は最小線幅が30μm幅で、
電極4,4間のギャップGが250μm,電極長Lが3
50μmである。ヒータ6はほぼ350μm角で、櫛の
歯電極10は最小線幅と電極10,10間のギャップが
共に20μmである。SnO2膜12やフィルタ膜14
は共に250μm×350μmで、基板2上の相対位置
は同じである。上記のことから明らかなように、最も微
細な加工が必要なのは櫛の歯電極10で、他の膜は厚膜
でも良い。またヒータ6上にSnO2膜12を積層する
必要はなく、ヒータ電極4及びヒータ6と、櫛の歯電極
10及びSnO2膜12とを、分離して平行に配置し、
隣に配置したヒータ6でSnO2膜12を傍熱しても良
い。この場合、薄膜プロセスが必要なのは、櫛の歯電極
12のみとなる。
【0009】粗面化部3はヒータ電極4の下層にあり、
パターンを図8に示す。粗面化部3は、例えば幅10μ
mの溝15を規則的に配置したもので、溝15,15間
のギャップも10μm幅である。これらの線幅やギャッ
プは、レジストによるパターニングが容易な範囲の値と
すれば良い。16は電極通路で、ヒータ電極4,櫛の歯
電極10のネックの位置に有り、電極4,4,10,1
0が溝15で断線するのを防止するために設けた。さら
に溝15で取り囲んだ非粗面化領域17は粗面化せず、
櫛の歯電極10が断線しないようにした。もちろん非粗
面化領域17に、櫛の歯電極10,10のパターンを避
けるように溝15を設けても良い。また粗面化部を溝1
5で形成したことに特に意味がある訳ではなく、例えば
図9のように碁盤目状の粗面化部20等でも良い。
【0010】粗面化部3はSnO2膜12やフィルタ膜
14の付着強度を高めるもので、SnO2膜の下地ある
いは広くともその周辺、例えばSnO2膜の周辺から3
0μm以内の範囲、に設ける。基板2の全面を粗面化す
ることは、薄膜プロセスに必要なマスク合わせを困難に
し、パターンの精度を低下させる。次に粗面化部3は、
櫛の歯電極10,10を避けるため、例えば図8のよう
なパターンとすることが好ましい。SnO2膜12の下
地で、粗面化した部分(溝15)と粗面化しない部分の
間には段差が生じ、この段差がSnO2膜12やフィル
タ膜14の付着強度を改善する。このような段差を有効
に利用するため、段差を多数発生させ、これが図8,図
9の粗面化部3,20である。ここでは溝15を粗面化
し、溝15以外は粗面化しなかったが、マスクの厚さを
変えて溝15とそれ以外の部分とで粗面化の程度を変
え、溝15の中を深く粗面化し、それ以外の部分を浅く
粗面化しても良い。粗面化の意義はSnO2膜12やフ
ィルタ膜14の付着強度を高めることで、基板2に生じ
た凹凸が層間絶縁膜8の凹凸となり、SnO2膜12の
下地の凹凸となることになる。このことから明らかなよ
うに、基板2ではなく、層間絶縁膜8を例えば図8のパ
ターンで粗面化しても良い。
【0011】ガスセンサの製造例を示す。基板2とし
て、いずれも鏡面研磨した、アルミナ(99%アルミ
ナ),ZrO2,AlNを用い、Ar雰囲気(Ar流量
22cc/分,加速電源260Watt)でイオンミリング
した。ミリングにはレジストを印刷・露光・現像し図8
のパターンでミリングしたものと(部分ミリング)、マ
スク無しで基板2の全面をミリングしたもの(全面ミリ
ング)の2種を用いた。全面ミリングでは、基板2に生
じる凹凸のためマスクアラインメント用のマーカが読み
取れず、マスク合わせが困難となった。粗面化後に、ス
パッタリングでヒータ電極4,ヒータ6,層間絶縁膜
8,櫛の歯電極10を積層し、スクリーン印刷でSnO
2膜12(膜厚10μm)を設け650℃で焼成し、フ
ィルタ膜14(膜厚10μm,アルミナ70wt%−S
nO2 20wt%−Pd10wt%)をスクリーン印刷
し、650℃で焼成した。
【0012】ガスセンサのガス検出特性は、Al2O3基
板を用いたもの(ミリング時間1時間)のみを測定し
た。ガス感度に関する比較例として、ヒータ電極4〜電
極10を厚膜プロセス(膜厚各10μm)で製造したも
のを用い、櫛の歯電極10は厚膜では成膜できないの
で、ヒータ電極4と類似のパターンをSnO2膜の電極
とした。ただし電極4,10は厚膜のため、いずれも1
00μmルールで作成した。実施例も比較例もガス感度
は変わらず、SnO2膜12の抵抗値(電極10,10
間の抵抗値)が、櫛の歯電極10では比較例の約1/1
00に低下した。なお発明者の実験の範囲では、SnO
2のスパッタリング膜でメタン感度を発現させるのは出
来なかった。
【0013】図1,図2に、1時間ミリングした後の、
アルミナ基板2の表面を示す。図1は60度傾けて撮影
したもので、溝15の内外で約0.6μmの段差があ
り、レジストでマスクした部分はミリングされず、最初
の基板表面がそのまま残っている。図2に、粗面化部3
の全体像を示す。図8のパターン(溝15や電極通路1
6)が基板2上にそのまま生じており、電極通路16や
溝15で囲まれた非粗面化領域17は最初の基板表面が
そのまま残っている。図3に、粗面化前の鏡面アルミナ
基板2の表面(×10,000倍)を示す。
【0014】図4〜図6に、基板の表面粗さ(ミリング
時間1時間,アルミナ基板)を示す、表面粗さは表面粗
さ計で測定し、縦方向に70,000倍に拡大して表示
した。図4(部分ミリング)では溝15の内外で約0.
6μmの段差が生じ、最大表面粗さRmaxが約0.8μm
である。図5(全面ミリング)では、平均表面粗さRa
は0.03μm,最大表面粗さRmaxが約0.3μmであ
る。図6(ミリング前の鏡面基板)では、Raは0.0
2μm,Rmaxが約0.07μmである。SnO2膜12
やフィルタ膜14の付着力の増加は、第1にRaが約
0.02μmから約0.03μmへ僅かに増すことと,R
maxが約0.07μmから約0.3μmに増すことで生じ
る。また付着力の増加は第2に、溝15の内外での約
0.6μmの段差で生じる。
【0015】これらの基板に対して、SnO2膜12や
フィルタ膜14の付着力を試験した。試験にはテープ剥
離試験を用い、焼成後のガスセンサにセロテープを貼付
け、テープを剥した際の膜12,14の剥離状況をチェ
ックした。結果を表1に示す。表1には、ヒータ電極4
〜櫛の歯電極10の成膜を省略し、基板2上に直接Sn
O2膜12とフィルタ膜14とを成膜した際の結果を示
す。ヒータ電極4〜櫛の歯電極10をSnO2膜12の
下地に設けると、剥離数は約1/2に低下した。
【0016】
【表1】
表 1 ミリングと基板への付着力基板材質 ミリング条件 付着力(剥離数) マスクアラインメント
Al2O3 無し 鏡面 150/560 良
同 部分 15分 〜10/560 良
同 部分 30分 〜 0/560 良
同 部分 1時間 〜10/560 良
同 部分 2時間 〜10/560 良
同 全面 1時間 〜40/560 不良
ZrO2 無し 鏡面 ほぼ全数 良
同 部分 30分 〜50/560 良
同 部分 1時間 〜30/560 良
同 部分 2時間 〜30/560 良
同 部分 3時間 〜40/560 良
AlN 無し 鏡面 ほぼ全数 良
同 部分 30分 〜80/560 良
同 部分 1時間 〜60/560 良
同 部分 2時間 〜60/560 良
* 部分ミリングは図8のマスクを用いて部分的にミリ
ングしたものを、全面ミリングはマスク無しで全面をミ
リングしたものを表す.
* 付着数は、基板上にガス感応体膜12とフィルタ膜
14とを印刷・焼成した後、セロテープを付着させて剥
し、テープへの粉体の付着状況から判断,各560個中
でフィルタ膜14がその根元から剥離した以上の損傷を
受けた個数を表示.
* 薄膜プロセスで、ヒータ電極4〜櫛の歯電極10を
形成した後に、ガス感応体膜12とフィルタ膜14を成
膜して同じ試験を行うと、損傷数は約1/2に減少.
【0017】表1から明らかなように、アルミナ基板の
部分ミリングで、SnO2膜やフィルタ膜14の付着力
は最も高く、マスクアラインメントに問題は生じず、ま
た電極10等の断線も生じない。ZrO2基板やAlN
基板でも、ミリングによりSnO2膜12やフィルタ膜
14の付着力が増すが、付着力はアルミナ基板に劣る。
このため最も好ましい基板2はアルミナ基板である。ま
た部分ミリングし、櫛の歯電極10の断線が生じず、か
つマスクアラインメントが困難にならないようにするの
が好ましい。またミリング時間の影響は小さく、例えば
実施例の場合、30分以上のミリングではミリング時間
の影響は判然としなかった。粗面化の手法は任意である
が、基板2や層間絶縁膜8をエッチングするものが好ま
しく、例えば逆スパッタでも良く、CVD等により絶縁
膜を付着させて、この膜の表面粗さを利用するもので
は、付着させた絶縁膜の付着強度が問題になり、好まし
くない。
【0018】
【発明の効果】この発明では、微細電極と厚膜ガス感応
体とを併用したガスセンサを提供し、
1) ガス感応体の基板への付着力を高め、
2) ガス感応体の電極の微細加工を容易にし、
3) これによって小型で消費電力が小さく、扱い易いガ
スセンサとし、
4) 厚膜のガス感応体を用いることにより、メタンやプ
ロパン等の難燃性ガスの検出が容易で、かつそれ以外の
ガスを検出する場合にも信頼性の高いガスセンサを得
る、ことができる。さらにこの発明では、粗面化領域で
も、粗面化の程度を場所によって変え、粗面化を進めた
部分と進めない部分との間の段差を利用し、ガス感応体
の付着力をさらに高めることができる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas sensor in which a thick film gas sensitive body and an electrode subjected to fine processing are mixed. [0002] The inventors have studied a gas sensor in which a thin film and a thick film are mixed. The purpose is to reduce the size of the gas sensor. The electrodes of the gas sensitive body and the electrodes of the heater, the heater, the interlayer insulating film, and the like are formed by a thin film process, and the gas sensitive body and the filter film are formed by a thick film process. Of the gas sensors, the one that requires the most miniaturization is the electrode connected to the gas sensitive body,
The gas sensitive body and its filter may have a size of, for example, about 100 μm square, and may be a thick film. The properties of the gas sensing element and the filter depend on the film thickness. In the case of detecting a gas such as methane or propane, a thick film is preferable. Also, in the case of other gases, the thick film is less susceptible to poisoning than the thin film, and the relative sensitivity can be easily adjusted. For these reasons, a gas sensor in which a thin film electrode and a thick film gas sensing element are mixed is required. The required smoothness of the substrate surface is different between a thin film and a thick film, and it is necessary to use a mirror surface substrate for the thin film. This is firstly because a mirror-like substrate is required for mask positioning during thin film formation, and secondly because the thin film electrode is not disconnected due to a difference in the substrate surface.
However, the use of a mirror-finished substrate reduces the adhesion of the gas sensitive body and the filter film. For example, a tape peeling test (tape is applied to the completed gas sensor surface, and when the tape is peeled off, the filter film and the gas sensitive body adhere to the tape. Test of whether or not the gas sensor was peeled off, it was found that almost all of the gas sensors were damaged. For this reason, it has not been possible to mix a thin film and a thick film, reduce the size of the gas sensor with the thin film, and bring out the performance of the thick gas sensor with the thick film. [0004] Such a problem is not limited to the combination of the thin film electrode and the thick film gas sensitive body, but also occurs in the combination of the thick film electrode and the thick film gas sensitive body. For example, when printing a thick-film electrode with a thickness of about several μm, etching using a resist, and forming a comb-shaped electrode having a line width of 10 μm or less, it is necessary to align a mask for resist exposure. This can only be achieved with a mirror substrate. SUMMARY OF THE INVENTION An object of the present invention is to provide a gas sensor in which a finely processed electrode and a thick film gas sensitive body are combined, and 1) to increase the adhesion of the gas sensitive body to a substrate, ) Facilitating the microfabrication of the electrodes of the gas sensitive body, 3) This makes the gas sensor small, low power consumption, and easy to handle. 4) The use of a thick gas sensitive body makes it possible to use flammable substances such as methane and propane. An object of the present invention is to provide a gas sensor which can easily detect a gas and has high reliability even when detecting other gases. According to the present invention, a heat-resistant insulating substrate is provided on a heat-resistant insulating substrate.
In a gas sensor provided with a thick-film gas sensitive body and an electrode connected to the sensitive body, at least the underlayer of the sensitive body is roughened, and a portion having a different degree of roughening is formed in the roughened region. It is characterized by having been provided. In this case, a difference occurs at the boundary between the roughened portion and the non-roughened portion, and the degree of the roughening is changed, so that the boundary between the deeply roughened portion and the shallowly roughened portion is changed. A step is generated in the gas sensing element, and the adhesive force of the gas sensing element is improved by using the difference.
The electrode of the gas sensitive body is preferably a thin film, but is not limited to this. Referring to FIGS. 1 to 9, a gas sensing element is formed of a thick SnO2 film, and a filter film is formed of Al2O3-SnO2-Pd.
An example will be described with reference to an example using a thick film. FIG. 7 shows the structure of the gas sensor.
2. Other heat-resistant insulating substrates such as mullite, spinel, AlN, quartz glass, etc. may be used. In this embodiment, 99% alumina (surface is polished) is used, and ion milling is performed in an Ar atmosphere to provide a roughened portion 3. Was used. 4 is a heater electrode, 6 is a RuO2 heater, 8 is an SiO2 film as an interlayer insulating film, 10 is a comb tooth electrode, 12 is a SnO2 film, 14
Is a filter membrane. The heater electrode 4 to the comb tooth electrode 10 are formed by a thin film process (here, sputtering), and the thickness is 0.5 μm for the interlayer insulating film 8 and 0.3 μm for the others.
It is. The electrodes 4 and 10 have a first layer of an active metal such as Ti, W, Mo, and Cr, a second layer of Ti (in this embodiment) and Pt, and a gold layer that can be easily bonded. The third layer is used, and the film thickness is the total thickness of these. The electrodes 4 and 10 are not limited to gold-based electrodes, and may be those obtained by printing a thick film electrode and performing fine processing by developing and etching a resist. Interlayer insulating film 8
In addition to the insulation between the SnO2 film 12 and the heater 6, there is an action to shut off the heater 6 from the atmosphere and to enhance the stability. Sn
The O2 film 12 and the filter film 14 are thick films formed by screen printing, each having a thickness of 5 to 30 [mu] m, the material thereof is arbitrary, and the filter film 14 may be omitted. In this specification, a thin film means, for example, a film having a thickness of 1 μm or less, and a thick film means, for example, a film having a thickness of 5 μm or more. As an example of the dimensions from the heater electrode 4 to the filter film 14, the heater electrode 4 has a minimum line width of 30 μm.
The gap G between the electrodes 4 and 4 is 250 μm, and the electrode length L is 3
50 μm. The heater 6 is approximately 350 μm square, and the comb tooth electrode 10 has a minimum line width and a gap between the electrodes 10 and 20 both of 20 μm. SnO2 film 12 and filter film 14
Are 250 μm × 350 μm, and the relative positions on the substrate 2 are the same. As is clear from the above, the finest processing is required for the comb-teeth electrode 10, and the other films may be thick. Further, it is not necessary to stack the SnO2 film 12 on the heater 6, and the heater electrode 4 and the heater 6 and the comb tooth electrode 10 and the SnO2 film 12 are separated and arranged in parallel.
The SnO2 film 12 may be indirectly heated by the heater 6 disposed next to the heater. In this case, only the comb tooth electrode 12 needs a thin film process. The roughening portion 3 is located below the heater electrode 4.
The pattern is shown in FIG. The roughening portion 3 has a width of, for example, 10 μm.
m are regularly arranged, and the gap between the grooves 15, 15 is also 10 μm wide. These line widths and gaps may be set to values in a range where patterning with a resist is easy. Reference numeral 16 denotes an electrode passage, which is located at the position of the neck of the heater electrode 4, the comb tooth electrode 10, and the electrodes 4, 4, 10, 1
0 is provided to prevent disconnection at the groove 15. Further, the non-roughened area 17 surrounded by the groove 15 is not roughened,
The comb tooth electrode 10 was prevented from breaking. Of course, the groove 15 may be provided in the non-roughened region 17 so as to avoid the pattern of the comb tooth electrodes 10, 10. Also, the roughened part is groove 1
There is no particular significance in the formation at 5, for example, a grid-like roughened portion 20 as shown in FIG. 9 may be used. The surface roughening portion 3 is for increasing the adhesion strength of the SnO2 film 12 and the filter film 14, and is formed from the base of the SnO2 film or at least the periphery thereof, for example, from the periphery of the SnO2 film.
It is provided within a range of 0 μm or less. Roughening the entire surface of the substrate 2 makes it difficult to align a mask necessary for a thin film process, and lowers the precision of a pattern. Next, the roughening unit 3
In order to avoid the comb tooth electrodes 10, 10, for example, a pattern as shown in FIG. 8 is preferably used. In the base of the SnO2 film 12, a step is formed between the roughened portion (groove 15) and the non-roughened portion, and this step improves the adhesion strength of the SnO2 film 12 and the filter film 14. In order to effectively use such steps, a number of steps are generated, and these are the roughening portions 3 and 20 in FIGS. Here, the groove 15 was roughened, and the surface other than the groove 15 was not roughened. However, the degree of surface roughening was changed between the groove 15 and the other portions by changing the thickness of the mask, and the inside of the groove 15 was deepened. The surface may be roughened, and other portions may be roughened shallowly. The significance of the surface roughening is that by increasing the adhesion strength of the SnO2 film 12 and the filter film 14, the unevenness formed on the substrate 2 becomes the unevenness of the interlayer insulating film 8 and the unevenness of the base of the SnO2 film 12. As is apparent from this, instead of the substrate 2, the interlayer insulating film 8 may be roughened by, for example, the pattern shown in FIG. An example of manufacturing a gas sensor will be described. As the substrate 2, ion milling was performed in an Ar atmosphere (Ar flow rate 22 cc / min, acceleration power supply 260 Watt) using alumina (99% alumina), ZrO2, and AlN, all of which were mirror-polished. For milling, print, expose, and develop the resist.
(Milling the entire surface of the substrate 2 without a mask). In the whole-surface milling, a marker for mask alignment could not be read due to unevenness generated on the substrate 2, and mask alignment became difficult. After the surface roughening, the heater electrode 4, the heater 6, the interlayer insulating film 8, and the comb tooth electrode 10 are laminated by sputtering, and SnO is formed by screen printing.
2 A film 12 (thickness 10 μm) is provided and baked at 650 ° C., and a filter film 14 (thickness 10 μm, alumina 70 wt% -S
(nO2 20 wt% -Pd10 wt%) was screen-printed and fired at 650 ° C. As for the gas detection characteristics of the gas sensor, only those using an Al 2 O 3 substrate (milling time 1 hour) were measured. As a comparative example relating to gas sensitivity, a heater electrode 4 to an electrode 10 manufactured by a thick film process (each having a thickness of 10 μm) was used, and the comb tooth electrode 10 could not be formed with a thick film. The pattern was a SnO2 film electrode. However, since the electrodes 4 and 10 are thick films,
It was created according to the 00 μm rule. The gas sensitivity of the example and the comparative example did not change, and the resistance value of the SnO2 film 12 (electrodes 10, 10
Resistance of the comb tooth electrode 10 is about 1/1 of that of the comparative example.
00. Note that within the scope of the inventors' experiments, SnO
The methane sensitivity could not be expressed by the sputtering film of No. 2. FIG. 1 and FIG. 2 show that after milling for one hour,
2 shows the surface of an alumina substrate 2. FIG. 1 is a photograph taken at an angle of 60 degrees. There is a step of about 0.6 μm inside and outside the groove 15, the portion masked with the resist is not milled, and the first substrate surface remains as it is. FIG.
1 shows the whole image. 8 (groove 15 and electrode passage 1)
6) occurs on the substrate 2 as it is, and the first substrate surface remains as it is in the non-roughened area 17 surrounded by the electrode passage 16 and the groove 15. FIG. 3 shows the surface (× 10,000 times) of the mirror-finished alumina substrate 2 before surface roughening. FIGS. 4 to 6 show the surface roughness of the substrate (milling time: 1 hour, alumina substrate). The surface roughness was measured by a surface roughness meter, and was magnified 70,000 times in the vertical direction. displayed. In FIG. 4 (partial milling), about 0.2
A step of 6 μm is generated, and the maximum surface roughness Rmax is about 0.8 μm
It is. In FIG. 5 (overall milling), the average surface roughness Ra
Is 0.03 μm and the maximum surface roughness Rmax is about 0.3 μm. In FIG. 6 (mirror substrate before milling), Ra is 0.0.
2 μm and Rmax are about 0.07 μm. SnO2 film 12
First, the increase in the adhesive force of the filter film 14 is caused by a slight increase in Ra from about 0.02 μm to about 0.03 μm,
This occurs when max is increased from about 0.07 μm to about 0.3 μm. Second, the increase in adhesive force occurs at a step of about 0.6 μm inside and outside the groove 15. The adhesion of the SnO 2 film 12 and the filter film 14 was tested on these substrates. Using a tape peeling test, a cellophane tape was stuck to the gas sensor after firing, and the state of peeling of the films 12 and 14 when the tape was peeled was checked. Table 1 shows the results. Table 1 shows that the heater electrode 4
Omitting the film formation of the comb tooth electrode 10 and directly forming Sn on the substrate 2
The results when the O2 film 12 and the filter film 14 are formed are shown. When the heater electrode 4 to the comb tooth electrode 10 were provided under the SnO2 film 12, the number of peelings was reduced to about 1/2. Table 1 Milling and Adhesion to Substrate Material of Substrate Milling Conditions Adhesion (number of peelings ) No mask alignment Al2O3 Mirror surface 150/560 Good Same part 15 minutes to 10/560 Good Same part 30 minutes to 0 / 560 good part 1 hour to 10/560 good part 2 hours to 10/560 good same whole surface 1 hour to 40/560 no defective ZrO2 mirror surface almost all good parts 30 minutes to 50/560 good part 1 hour to 30/560 Good part 2 hours 〜 30/560 Good part 3 hours 〜 40/560 Good AlN None Mirror surface Almost all Good Good part 30 minutes 〜 80/560 Good part 1 hour 〜 60/560 Good part 2 hours * 60/560 good * Partial milling was partially milled using the mask of FIG. 8; * The adhesion number is determined by printing and baking the gas-sensitive body film 12 and the filter film 14 on the substrate, attaching a cellophane tape and peeling it off, and judging from the state of powder adhesion to the tape. The number of the filter films 14 out of 560 that has been damaged beyond the peeling from the root is displayed. * After the heater electrode 4 to the comb tooth electrode 10 are formed by the thin film process, the gas sensitive film 12 and the filter are removed. When the same test is performed with the film 14 formed, the number of damages is reduced to about 1/2. As is apparent from Table 1, the adhesion of the SnO2 film and the filter film 14 is caused by partial milling of the alumina substrate. Is the highest, no problem occurs in the mask alignment, and no disconnection of the electrode 10 or the like occurs. ZrO2 substrate or AlN
Even on the substrate, the adhesion of the SnO2 film 12 and the filter film 14 increases by milling, but the adhesion is inferior to that of the alumina substrate.
For this reason, the most preferred substrate 2 is an alumina substrate. In addition, it is preferable that partial milling is performed so that the comb tooth electrode 10 is not disconnected and mask alignment is not difficult. Further, the influence of the milling time was small. For example, in the case of the embodiment, the effect of the milling time was not apparent in the milling of 30 minutes or more. The method of surface roughening is arbitrary, but it is preferable to etch the substrate 2 or the interlayer insulating film 8. For example, reverse sputtering may be used, and an insulating film is attached by CVD or the like, and the surface roughness of this film is used. In this case, the adhesion strength of the attached insulating film becomes a problem, which is not preferable. According to the present invention, there is provided a gas sensor using both a fine electrode and a thick-film gas sensitive body. 1) The adhesion of the gas sensitive body to the substrate is increased, and 2) the electrode of the gas sensitive body is provided. 3) This makes a small, low power consumption, and easy-to-use gas sensor. 4) The use of a thick-film gas sensor makes it easy to detect flammable gas such as methane and propane. In addition, a highly reliable gas sensor can be obtained even when detecting other gases. Further, in the present invention, even in the roughened region, the degree of surface roughening is changed depending on the location, and the step between the roughened portion and the unsmoothed portion is used to further increase the adhesive force of the gas sensitive body. be able to.
【図面の簡単な説明】
【図1】 1時間のイオンミリング後のアルミナ基板
の表面構造を示す3,500倍の電子顕微鏡写真
【図2】 1時間のイオンミリング後のアルミナ基板
の表面構造を示す350倍の電子顕微鏡写真
【図3】 HF処理前の、鏡面アルミナ基板の表面構
造を示す10,000倍の電子顕微鏡写真
【図4】 図3の部分ミリング後の、アルミナ基板の
表面粗さを示す特性図
【図5】 全面ミリング後の、アルミナ基板の表面粗
さを示す特性図
【図6】 ミリング前の鏡面アルミナ基板の表面粗さ
を示す特性図
【図7】 実施例のガスセンサの分解状態を示す斜視
図
【図8】 部分ミリングのパターンを示す平面図
【図9】 変形例のミリングパターンを示す平面図
【符号の説明】
2 アルミナ基板
3 粗面化部
4 ヒータ電極
6 RuO2ヒータ
8 層間絶縁膜
10 櫛の歯電極
12 SnO2膜
14 フィルタ膜
15 溝
16 電極通路
17 非粗面化領域
20 粗面化部BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a 3,500-fold electron micrograph showing the surface structure of an alumina substrate after one hour of ion milling. FIG. 2 is a diagram showing the surface structure of the alumina substrate after one hour of ion milling. Electron micrograph of 350 times shown. [FIG. 3] Electron micrograph of 10,000 times showing the surface structure of mirror-surface alumina substrate before HF treatment. [FIG. 4] Surface roughness of alumina substrate after partial milling in FIG. FIG. 5 is a characteristic diagram showing the surface roughness of the alumina substrate after the entire surface is milled. FIG. 6 is a characteristic diagram showing the surface roughness of the mirror-finished alumina substrate before the milling. FIG. 8 is a plan view showing a partial milling pattern. FIG. 9 is a plan view showing a milling pattern according to a modification. [Description of References] 2 Alumina substrate 3 Roughening portion 4 Heater electrode 6 RuO2 Heater 8 Interlayer insulating film 10 Comb tooth electrode 12 SnO2 film 14 Filter film 15 Groove 16 Electrode passage 17 Non-roughened area 20 Roughened portion
─────────────────────────────────────────────────────
フロントページの続き
(58)調査した分野(Int.Cl.7,DB名)
G01N 27/12 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) G01N 27/12