JPH0792123A - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JPH0792123A
JPH0792123A JP26420993A JP26420993A JPH0792123A JP H0792123 A JPH0792123 A JP H0792123A JP 26420993 A JP26420993 A JP 26420993A JP 26420993 A JP26420993 A JP 26420993A JP H0792123 A JPH0792123 A JP H0792123A
Authority
JP
Japan
Prior art keywords
film
electrode
gas sensor
sno2
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26420993A
Other languages
Japanese (ja)
Other versions
JP3380310B2 (en
Inventor
Hiroyoshi Machida
博宜 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP26420993A priority Critical patent/JP3380310B2/en
Publication of JPH0792123A publication Critical patent/JPH0792123A/en
Application granted granted Critical
Publication of JP3380310B2 publication Critical patent/JP3380310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a small gas sensor of a low power consumption by roughing the surface of a heat-resistant dielectric substrate mounting a thick film gas- sensitive body and enhancing adhesion of the gas-sensitive body to the substrate thereby facilitating microfabrication of an electrode. CONSTITUTION:A thick film of SnO2 is employed as the gas-sensitive body and a thick film of Al2O3-SnO2-Pd is employed as the filter film. An alumina substrate 2 is subjected to ion milling in Ar atmosphere thus providing a roughed part 3. A film is formed by thin plate process from a heater electrode 4 to an interdigital electrode 10. The electrodes 4, 10 employ a substrate formed by sequentially laminating an active metal such as Ti, and Pt and gold. An interlayer insulation film 8 insulates the SnO2 film 12 and the heater 6 and isolates the heater 6 from the atmosphere thus enhancing the stability. The roughed part 3 underlies the heater electrode 4 and a unroughened region surrounded by a groove protects the electrode 10 against opening. The roughed part 3 enhances adhesion of the SnO2 film 12 and the filter film 14 and formed under or around the SnO2 film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の利用分野】この発明は、厚膜ガス感応体と微細
加工を施した電極とを混在させたガスセンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas sensor in which a thick film gas sensor and a finely processed electrode are mixed.

【0002】[0002]

【従来技術】発明者らは、薄膜と厚膜とを混在させたガ
スセンサを検討した。その目的はガスセンサの小型化に
あり、ガス感応体の電極やヒータの電極,ヒータ,層間
絶縁膜,等を薄膜プロセスで成膜し、ガス感応体やフィ
ルタ膜を厚膜プロセスで成膜する。ガスセンサの中で最
も微細化が必要なのは、ガス感応体に接続した電極で、
ガス感応体やそのフィルタは例えば100μm角程度の
大きさで良く、厚膜でも良い。そしてガス感応体やフィ
ルタの性質は膜厚に依存し、メタンやプロパン等のガス
の検出の場合、厚膜の方が好ましい。またこれ以外のガ
スの場合も、厚膜は薄膜に比べて被毒を受け難く、かつ
相対感度の調整も容易である。これらのため、薄膜電極
と厚膜ガス感応体とを混在させたガスセンサが必要にな
る。
2. Description of the Related Art The inventors examined a gas sensor in which a thin film and a thick film are mixed. The purpose is to miniaturize the gas sensor, and the electrodes of the gas sensitive body, the electrodes of the heater, the heater, the interlayer insulating film, etc. are formed by a thin film process, and the gas sensitive body and the filter film are formed by a thick film process. The most miniaturized gas sensor is the electrode connected to the gas sensor.
The gas sensitive body and its filter may have a size of, for example, about 100 μm square, and may be a thick film. The properties of the gas sensor and the filter depend on the film thickness, and a thick film is preferable when detecting a gas such as methane or propane. Also, in the case of other gases, the thick film is less likely to be poisoned than the thin film and the relative sensitivity can be easily adjusted. For these reasons, a gas sensor in which a thin film electrode and a thick film gas sensor are mixed is needed.

【0003】薄膜と厚膜とでは、基板表面に必要な平滑
度が異なり、薄膜では鏡面基板を用いることが必要であ
る。これは第1に、薄膜の成膜でのマスクの位置合わせ
に鏡面基板が必要なためであり、第2に基板表面の断差
のために薄膜電極が断線しないようにするためである。
しかしながら鏡面基板を用いるとガス感応体やフィルタ
膜の付着力は低下し、例えばテープ剥離試験(完成した
ガスセンサ表面にテープを貼付け、テープを剥した際に
フィルタ膜やガス感応体がテープに付着して剥離するか
どうかの試験)を行うと、ほぼ全数のガスセンサが損傷
することが判明した。このため薄膜と厚膜とを混在さ
せ、薄膜でガスセンサを小型化し、厚膜で厚膜ガスセン
サの性能を引き出すことはできなかった。
The smoothness required for the substrate surface differs between the thin film and the thick film, and it is necessary to use a mirror-finished substrate for the thin film. This is because, firstly, a mirror-like substrate is required for the alignment of the mask in forming the thin film, and secondly, it is intended to prevent the thin film electrode from breaking due to the difference in the substrate surface.
However, if a mirror-like substrate is used, the adhesive force of the gas sensor and the filter film will decrease.For example, tape peeling test (when tape is attached to the surface of the completed gas sensor and the tape film is peeled off, the filter film and gas sensor will adhere to the tape. It was found that almost all the gas sensors were damaged. For this reason, it has been impossible to reduce the size of the gas sensor by mixing the thin film and the thick film and to obtain the performance of the thick film gas sensor with the thick film.

【0004】このような問題は薄膜電極と厚膜ガス感応
体との組み合せに限るものではなく、厚膜電極と厚膜ガ
ス感応体との組み合せでも生じる。例えば数μm程度の
膜厚で厚膜の電極を印刷し、レジストを用いてエッチン
グし、10μm以下の線幅の櫛の歯電極とする場合、レ
ジスト露光用のマスクの位置合わせが必要になる。そし
てこれは、鏡面基板でなければ実現できない。
Such a problem is not limited to the combination of the thin film electrode and the thick film gas sensor, but also occurs in the combination of the thick film electrode and the thick film gas sensor. For example, when a thick electrode having a film thickness of about several μm is printed and is etched using a resist to form a comb tooth electrode having a line width of 10 μm or less, it is necessary to align a mask for resist exposure. And this can be realized only with a mirror substrate.

【0005】[0005]

【発明の課題】この発明の課題は、微細加工を施した電
極と厚膜ガス感応体とを組み合わせたガスセンサを提供
し、 1) ガス感応体の基板への付着力を高め、 2) ガス感応体の電極の微細加工を容易にし、 3) これによって小型で消費電力が小さく、扱い易いガ
スセンサとし、 4) 厚膜のガス感応体を用いることにより、メタンやプ
ロパン等の難燃性ガスの検出が容易で、かつそれ以外の
ガスを検出する場合にも信頼性の高いガスセンサを得る
ことにある。
An object of the present invention is to provide a gas sensor in which a microfabricated electrode and a thick film gas sensor are combined, 1) enhancing the adhesion of the gas sensor to a substrate, and 2) gas sensor. It facilitates microfabrication of the body's electrodes, and 3) makes it a gas sensor that is small, consumes less power, and is easy to handle. 4) Uses a thick film gas sensor to detect flame-retardant gases such as methane and propane. It is to obtain a gas sensor that is easy to perform and has high reliability even when detecting other gases.

【0006】[0006]

【発明の構成と作用】この発明は、耐熱絶縁基板上に、
厚膜のガス感応体と、この感応体に接続した電極とを設
けたガスセンサにおいて、少なくとも前記感応体の下地
を粗面化したことを特徴とする。好ましくは、電極の下
地を粗面化せずに平滑面として、電極断線を防止する。
またさらに好ましくは、ガス感応体の下地とその周囲以
外は平滑面のままとし、電極等の形成時に用いるマスク
の位置合わせを容易にする。さらに好ましくは、粗面化
領域に、粗面化の程度の異なる部分を設ける。このよう
にすると、粗面化した部分と粗面化しない部分との境界
に断差が生じる。同様に粗面化の程度を変えると、深く
粗面化した部分と浅く粗面化した部分との境界に段差が
生じ、これらの断差を利用して、ガス感応体の付着力を
改善する。ガス感応体の電極は薄膜が好ましいが、これ
に限るものではない。
The structure and function of the present invention is as follows.
In a gas sensor provided with a thick film gas sensor and an electrode connected to the gas sensor, at least the base of the sensor is roughened. Preferably, the base of the electrode is made a smooth surface without roughening to prevent electrode breakage.
Still more preferably, the base of the gas sensitive body and its surroundings are left as a smooth surface to facilitate the alignment of the mask used when forming the electrodes and the like. More preferably, the roughened area is provided with portions having different degrees of roughening. In this case, a difference occurs between the roughened portion and the non-roughened portion. Similarly, if the degree of roughening is changed, a step is created at the boundary between the deeply roughened portion and the shallowly roughened portion, and the gap between them is used to improve the adhesive force of the gas sensitive body. . The electrode of the gas sensitive body is preferably a thin film, but is not limited to this.

【0007】[0007]

【実施例】図1〜図9により、ガス感応体をSnO2の
厚膜とし、フィルタ膜としてAl2O3−SnO2−Pd
の厚膜を用いたものを例に、実施例を示す。ガスセンサ
の構造を図7に示すと、2はアルミナ基板で、ZrO
2,ムライト,スピネル,AlN,石英ガラス,等の他
の耐熱絶縁基板でも良く、実施例では99%アルミナ
(表面を鏡面研磨済み)を用い、Ar雰囲気でイオンミ
リングし粗面化部3を設けたものを用いた。4はヒータ
電極,6はRuO2ヒータ,8は層間絶縁膜でSiO2膜
を用い、10は櫛の歯電極で、12はSnO2膜,14
はフィルタ膜である。ヒータ電極4〜櫛の歯電極10ま
では薄膜プロセス、(ここではスパッタリング)、で成
膜し、膜厚は層間絶縁膜8が0.5μm,他は0.3μm
である。また電極4,10は下地との密着性を増すた
め、Ti,W,Mo,Cr等の活性金属の第1層,(実
施例ではTi),Ptの第2層,ボンディングの容易な
金の第3層を積層したものを用い、膜厚はこれらの合計
膜厚である。電極4,10は金系の電極に限るものでは
なく、また厚膜電極を印刷し、レジストの現像とエッチ
ングで微細加工を施したものでも良い。層間絶縁膜8
は、SnO2膜12とヒータ6との絶縁の他に、ヒータ
6を雰囲気から遮断し安定性を高める作用がある。Sn
O2膜12とフィルタ膜14はスクリーン印刷による厚
膜を用い、膜厚は各々5〜30μmとし、その材料は任
意で、フィルタ膜14は無くても良い。なおこの明細書
で薄膜とは例えば膜厚1μm以下の膜を、厚膜とは例え
ば膜厚5μm以上の膜を意味する。
EXAMPLE As shown in FIGS. 1 to 9, a thick film of SnO2 was used as a gas sensor and Al2O3-SnO2-Pd was used as a filter film.
An example will be described by taking as an example the one using the thick film. The structure of the gas sensor is shown in FIG. 7, 2 is an alumina substrate, and ZrO
2, other heat-resistant insulating substrates such as mullite, spinel, AlN, and quartz glass may be used. In the embodiment, 99% alumina (the surface of which is mirror-polished) is used, and the roughened portion 3 is provided by ion milling in Ar atmosphere. I used the one. 4 is a heater electrode, 6 is a RuO2 heater, 8 is an interlayer insulating film made of SiO2 film, 10 is a comb tooth electrode, 12 is a SnO2 film, 14
Is a filter membrane. The heater electrode 4 to the comb-teeth electrode 10 are formed by a thin film process (here, sputtering), and the film thickness is 0.5 μm for the interlayer insulating film 8 and 0.3 μm for the others.
Is. Further, the electrodes 4 and 10 increase the adhesiveness to the base, so that the first layer of an active metal such as Ti, W, Mo, Cr or the like (Ti in the embodiment), the second layer of Pt, and the gold layer which is easy to bond are used. A laminate of the third layers is used, and the film thickness is the total film thickness thereof. The electrodes 4 and 10 are not limited to gold-based electrodes, and may be thick-film electrodes printed and finely processed by resist development and etching. Interlayer insulation film 8
Has the function of insulating the SnO2 film 12 from the heater 6 and also insulating the heater 6 from the atmosphere to improve the stability. Sn
The O2 film 12 and the filter film 14 are thick films formed by screen printing, and each has a film thickness of 5 to 30 .mu.m. The materials thereof are arbitrary, and the filter film 14 may be omitted. In this specification, a thin film means a film having a film thickness of 1 μm or less, and a thick film means a film having a film thickness of 5 μm or more.

【0008】ヒータ電極4〜フィルタ膜14までの寸法
例を示すと、ヒータ電極4は最小線幅が30μm幅で、
電極4,4間のギャップGが250μm,電極長Lが3
50μmである。ヒータ6はほぼ350μm角で、櫛の
歯電極10は最小線幅と電極10,10間のギャップが
共に20μmである。SnO2膜12やフィルタ膜14
は共に250μm×350μmで、基板2上の相対位置
は同じである。上記のことから明らかなように、最も微
細な加工が必要なのは櫛の歯電極10で、他の膜は厚膜
でも良い。またヒータ6上にSnO2膜12を積層する
必要はなく、ヒータ電極4及びヒータ6と、櫛の歯電極
10及びSnO2膜12とを、分離して平行に配置し、
隣に配置したヒータ6でSnO2膜12を傍熱しても良
い。この場合、薄膜プロセスが必要なのは、櫛の歯電極
12のみとなる。
An example of dimensions from the heater electrode 4 to the filter film 14 is shown. The heater electrode 4 has a minimum line width of 30 μm.
The gap G between the electrodes 4 and 4 is 250 μm, and the electrode length L is 3
It is 50 μm. The heater 6 is approximately 350 μm square, and the comb-teeth electrode 10 has a minimum line width and a gap between the electrodes 10 and 10 of 20 μm. SnO2 film 12 and filter film 14
Are both 250 μm × 350 μm, and the relative positions on the substrate 2 are the same. As is clear from the above, it is the comb-teeth electrode 10 that requires the finest processing, and the other films may be thick films. Further, it is not necessary to stack the SnO2 film 12 on the heater 6, and the heater electrode 4 and the heater 6 and the comb tooth electrode 10 and the SnO2 film 12 are separately arranged in parallel.
The SnO2 film 12 may be indirectly heated by the heater 6 arranged next to it. In this case, the thin film process is required only for the comb-teeth electrode 12.

【0009】粗面化部3はヒータ電極4の下層にあり、
パターンを図8に示す。粗面化部3は、例えば幅10μ
mの溝15を規則的に配置したもので、溝15,15間
のギャップも10μm幅である。これらの線幅やギャッ
プは、レジストによるパターニングが容易な範囲の値と
すれば良い。16は電極通路で、ヒータ電極4,櫛の歯
電極10のネックの位置に有り、電極4,4,10,1
0が溝15で断線するのを防止するために設けた。さら
に溝15で取り囲んだ非粗面化領域17は粗面化せず、
櫛の歯電極10が断線しないようにした。もちろん非粗
面化領域17に、櫛の歯電極10,10のパターンを避
けるように溝15を設けても良い。また粗面化部を溝1
5で形成したことに特に意味がある訳ではなく、例えば
図9のように碁盤目状の粗面化部20等でも良い。
The roughened portion 3 is located below the heater electrode 4,
The pattern is shown in FIG. The roughened portion 3 has a width of 10 μ, for example.
m grooves 15 are regularly arranged, and the gap between the grooves 15 is also 10 μm wide. These line widths and gaps may be values within a range where patterning with a resist is easy. Reference numeral 16 denotes an electrode passage, which is located at the neck position of the heater electrode 4 and the comb-teeth electrode 10, and the electrodes 4, 4, 10, 1.
It was provided in order to prevent 0 from breaking in the groove 15. Further, the non-roughened area 17 surrounded by the groove 15 is not roughened,
The comb-teeth electrode 10 was prevented from breaking. Of course, the groove 15 may be provided in the non-roughened area 17 so as to avoid the pattern of the comb tooth electrodes 10, 10. In addition, the roughened portion is provided with the groove 1.
There is no particular meaning to the formation of No. 5, and for example, a grid-like roughened portion 20 as shown in FIG. 9 may be used.

【0010】粗面化部3はSnO2膜12やフィルタ膜
14の付着強度を高めるもので、SnO2膜の下地ある
いは広くともその周辺、例えばSnO2膜の周辺から3
0μm以内の範囲、に設ける。基板2の全面を粗面化す
ることは、薄膜プロセスに必要なマスク合わせを困難に
し、パターンの精度を低下させる。次に粗面化部3は、
櫛の歯電極10,10を避けるため、例えば図8のよう
なパターンとすることが好ましい。SnO2膜12の下
地で、粗面化した部分(溝15)と粗面化しない部分の
間には段差が生じ、この段差がSnO2膜12やフィル
タ膜14の付着強度を改善する。このような段差を有効
に利用するため、段差を多数発生させ、これが図8,図
9の粗面化部3,20である。ここでは溝15を粗面化
し、溝15以外は粗面化しなかったが、マスクの厚さを
変えて溝15とそれ以外の部分とで粗面化の程度を変
え、溝15の中を深く粗面化し、それ以外の部分を浅く
粗面化しても良い。粗面化の意義はSnO2膜12やフ
ィルタ膜14の付着強度を高めることで、基板2に生じ
た凹凸が層間絶縁膜8の凹凸となり、SnO2膜12の
下地の凹凸となることになる。このことから明らかなよ
うに、基板2ではなく、層間絶縁膜8を例えば図8のパ
ターンで粗面化しても良い。
The roughened portion 3 is for enhancing the adhesion strength of the SnO 2 film 12 and the filter film 14, and is provided on the base of the SnO 2 film or at its widest, for example, from the periphery of the SnO 2 film.
It is provided within the range of 0 μm. The roughening of the entire surface of the substrate 2 makes it difficult to align the mask necessary for the thin film process and reduces the accuracy of the pattern. Next, the roughening unit 3
In order to avoid the comb-teeth electrodes 10 and 10, it is preferable to have a pattern as shown in FIG. Under the SnO 2 film 12, a step is formed between the roughened portion (groove 15) and the non-roughened portion, and this step improves the adhesion strength of the SnO 2 film 12 and the filter film 14. In order to effectively use such steps, a large number of steps are generated, which are the roughened portions 3 and 20 of FIGS. 8 and 9. Here, the groove 15 is roughened and the surface other than the groove 15 is not roughened. However, the thickness of the mask is changed to change the degree of roughening between the groove 15 and other portions, and the groove 15 is deepened. The surface may be roughened and the other portions may be roughened shallowly. The meaning of roughening is to increase the adhesion strength of the SnO2 film 12 and the filter film 14, so that the unevenness generated on the substrate 2 becomes unevenness of the interlayer insulating film 8 and becomes unevenness of the base of the SnO2 film 12. As is clear from this, not the substrate 2 but the interlayer insulating film 8 may be roughened by the pattern of FIG. 8, for example.

【0011】ガスセンサの製造例を示す。基板2とし
て、いずれも鏡面研磨した、アルミナ(99%アルミ
ナ),ZrO2,AlNを用い、Ar雰囲気(Ar流量
22cc/分,加速電源260Watt)でイオンミリング
した。ミリングにはレジストを印刷・露光・現像し図8
のパターンでミリングしたものと(部分ミリング)、マ
スク無しで基板2の全面をミリングしたもの(全面ミリ
ング)の2種を用いた。全面ミリングでは、基板2に生
じる凹凸のためマスクアラインメント用のマーカが読み
取れず、マスク合わせが困難となった。粗面化後に、ス
パッタリングでヒータ電極4,ヒータ6,層間絶縁膜
8,櫛の歯電極10を積層し、スクリーン印刷でSnO
2膜12(膜厚10μm)を設け650℃で焼成し、フ
ィルタ膜14(膜厚10μm,アルミナ70wt%−S
nO2 20wt%−Pd10wt%)をスクリーン印刷
し、650℃で焼成した。
An example of manufacturing the gas sensor will be shown. As the substrate 2, alumina (99% alumina), ZrO 2, and AlN, all of which were mirror-polished, were used, and ion milling was performed in an Ar atmosphere (Ar flow rate 22 cc / min, acceleration power supply 260 Watt). For the milling, a resist is printed, exposed, and developed, and then shown in FIG.
Two types were used: one that was milled with the pattern No. 2 (partial milling) and one that was milled over the entire surface of the substrate 2 without a mask (full-surface milling). In the full-face milling, the marker for mask alignment could not be read due to the unevenness formed on the substrate 2, which made mask alignment difficult. After roughening the surface, the heater electrode 4, the heater 6, the interlayer insulating film 8 and the comb-teeth electrode 10 are laminated by sputtering, and SnO is formed by screen printing.
Two films 12 (film thickness 10 μm) are provided and fired at 650 ° C., and filter film 14 (film thickness 10 μm, alumina 70 wt% -S
nO2 20 wt% -Pd 10 wt%) was screen-printed and baked at 650 ° C.

【0012】ガスセンサのガス検出特性は、Al2O3基
板を用いたもの(ミリング時間1時間)のみを測定し
た。ガス感度に関する比較例として、ヒータ電極4〜電
極10を厚膜プロセス(膜厚各10μm)で製造したも
のを用い、櫛の歯電極10は厚膜では成膜できないの
で、ヒータ電極4と類似のパターンをSnO2膜の電極
とした。ただし電極4,10は厚膜のため、いずれも1
00μmルールで作成した。実施例も比較例もガス感度
は変わらず、SnO2膜12の抵抗値(電極10,10
間の抵抗値)が、櫛の歯電極10では比較例の約1/1
00に低下した。なお発明者の実験の範囲では、SnO
2のスパッタリング膜でメタン感度を発現させるのは出
来なかった。
Regarding the gas detection characteristics of the gas sensor, only those using an Al 2 O 3 substrate (milling time 1 hour) were measured. As a comparative example regarding the gas sensitivity, the heater electrodes 4 to 10 manufactured by a thick film process (film thickness of 10 μm each) are used, and since the comb-teeth electrode 10 cannot be formed with a thick film, it is similar to the heater electrode 4. The pattern was an electrode of SnO2 film. However, since electrodes 4 and 10 are thick films, both are 1
It was created by the 00 μm rule. The gas sensitivity does not change in the examples and the comparative examples, and the resistance value of the SnO2 film 12 (electrodes 10, 10
Resistance value between the comb-teeth electrodes 10 is about 1/1 of that of the comparative example.
It dropped to 00. It should be noted that within the scope of the inventors' experiments, SnO
It was not possible to develop methane sensitivity with the sputtered film of 2.

【0013】図1,図2に、1時間ミリングした後の、
アルミナ基板2の表面を示す。図1は60度傾けて撮影
したもので、溝15の内外で約0.6μmの段差があ
り、レジストでマスクした部分はミリングされず、最初
の基板表面がそのまま残っている。図2に、粗面化部3
の全体像を示す。図8のパターン(溝15や電極通路1
6)が基板2上にそのまま生じており、電極通路16や
溝15で囲まれた非粗面化領域17は最初の基板表面が
そのまま残っている。図3に、粗面化前の鏡面アルミナ
基板2の表面(×10,000倍)を示す。
1 and 2, after milling for 1 hour,
The surface of the alumina substrate 2 is shown. FIG. 1 was taken at an angle of 60 degrees, and there is a level difference of about 0.6 μm inside and outside the groove 15, and the portion masked with the resist is not milled and the initial substrate surface remains. In FIG. 2, the roughening unit 3
Shows the whole picture of. 8 pattern (groove 15 and electrode passage 1
6) is generated as it is on the substrate 2, and the first substrate surface remains as it is in the non-roughened region 17 surrounded by the electrode passage 16 and the groove 15. FIG. 3 shows the surface (× 10,000 times) of the specular alumina substrate 2 before roughening.

【0014】図4〜図6に、基板の表面粗さ(ミリング
時間1時間,アルミナ基板)を示す、表面粗さは表面粗
さ計で測定し、縦方向に70,000倍に拡大して表示
した。図4(部分ミリング)では溝15の内外で約0.
6μmの段差が生じ、最大表面粗さRmaxが約0.8μm
である。図5(全面ミリング)では、平均表面粗さRa
は0.03μm,最大表面粗さRmaxが約0.3μmであ
る。図6(ミリング前の鏡面基板)では、Raは0.0
2μm,Rmaxが約0.07μmである。SnO2膜12
やフィルタ膜14の付着力の増加は、第1にRaが約
0.02μmから約0.03μmへ僅かに増すことと,R
maxが約0.07μmから約0.3μmに増すことで生じ
る。また付着力の増加は第2に、溝15の内外での約
0.6μmの段差で生じる。
4 to 6 show the surface roughness of the substrate (milling time: 1 hour, alumina substrate). The surface roughness was measured by a surface roughness meter and magnified 70,000 times in the vertical direction. displayed. In FIG. 4 (partial milling), the inside and outside of the groove 15 is about 0.
6 μm step is generated and maximum surface roughness Rmax is about 0.8 μm
Is. In FIG. 5 (entire milling), the average surface roughness Ra
Is 0.03 μm, and the maximum surface roughness Rmax is about 0.3 μm. In FIG. 6 (mirror surface substrate before milling), Ra is 0.0.
2 μm and Rmax is about 0.07 μm. SnO2 film 12
The increase in the adhesive force of the filter film 14 is as follows: Ra is slightly increased from about 0.02 μm to about 0.03 μm.
It occurs when max increases from about 0.07 μm to about 0.3 μm. Secondly, the increase in the adhesive force occurs at a step difference of about 0.6 μm inside and outside the groove 15.

【0015】これらの基板に対して、SnO2膜12や
フィルタ膜14の付着力を試験した。試験にはテープ剥
離試験を用い、焼成後のガスセンサにセロテープを貼付
け、テープを剥した際の膜12,14の剥離状況をチェ
ックした。結果を表1に示す。表1には、ヒータ電極4
〜櫛の歯電極10の成膜を省略し、基板2上に直接Sn
O2膜12とフィルタ膜14とを成膜した際の結果を示
す。ヒータ電極4〜櫛の歯電極10をSnO2膜12の
下地に設けると、剥離数は約1/2に低下した。
The adhesion of the SnO2 film 12 and the filter film 14 was tested on these substrates. A tape peeling test was used for the test, and cellophane tape was attached to the gas sensor after firing, and the peeling state of the films 12 and 14 when the tape was peeled off was checked. The results are shown in Table 1. Table 1 shows the heater electrode 4
-Sn is directly formed on the substrate 2 by omitting the film formation of the comb-teeth electrode 10.
The results obtained when the O2 film 12 and the filter film 14 are formed are shown. When the heater electrode 4 to the comb-teeth electrode 10 were provided on the base of the SnO2 film 12, the number of peeled-offs was reduced to about 1/2.

【0016】[0016]

【表1】 表 1 ミリングと基板への付着力基板材質 ミリング条件 付着力(剥離数) マスクアラインメント Al2O3 無し 鏡面 150/560 良 同 部分 15分 〜10/560 良 同 部分 30分 〜 0/560 良 同 部分 1時間 〜10/560 良 同 部分 2時間 〜10/560 良 同 全面 1時間 〜40/560 不良 ZrO2 無し 鏡面 ほぼ全数 良 同 部分 30分 〜50/560 良 同 部分 1時間 〜30/560 良 同 部分 2時間 〜30/560 良 同 部分 3時間 〜40/560 良 AlN 無し 鏡面 ほぼ全数 良 同 部分 30分 〜80/560 良 同 部分 1時間 〜60/560 良 同 部分 2時間 〜60/560 良 * 部分ミリングは図8のマスクを用いて部分的にミリ
ングしたものを、全面ミリングはマスク無しで全面をミ
リングしたものを表す. * 付着数は、基板上にガス感応体膜12とフィルタ膜
14とを印刷・焼成した後、セロテープを付着させて剥
し、テープへの粉体の付着状況から判断,各560個中
でフィルタ膜14がその根元から剥離した以上の損傷を
受けた個数を表示. * 薄膜プロセスで、ヒータ電極4〜櫛の歯電極10を
形成した後に、ガス感応体膜12とフィルタ膜14を成
膜して同じ試験を行うと、損傷数は約1/2に減少.
[Table 1] Table 1 Adhesion to Milling and Substrate Substrate Material Milling Conditions Adhesion (Peeling Number) Mask Alignment No Al2O3 Mirror Surface 150/560 Good Same as 15 minutes 10/560 Good Same as 30 minutes to 0/560 Good Same part 1 hour to 10/560 Good Good part 2 hours to 10/560 Good Same whole surface 1 hour to 40/560 Bad ZrO2 None Mirror surface Almost all good 30 minutes to 50/560 Good same part 1 hour to 30/560 Good part 2 hours to 30/560 Good part 3 hours to 40/560 Good AlN no mirror surface Almost all good parts 30 minutes to 80/560 Good part 1 hour to 60/560 Good parts 2 hours to 60 / 560 Good * Partial milling is performed by partially milling using the mask in FIG. 8. Full-face milling is performed without the mask. * The number of adhesion is determined from the adhesion status of the powder to the tape after printing and baking the gas sensitive film 12 and the filter film 14 on the substrate, and then peeling off with a cellophane tape. Shows the number of pieces of the filter that have been damaged beyond the root of the filter film 14 peeled off. * After forming the heater electrode 4 to the comb tooth electrode 10 in the thin film process, the gas sensitive film 12 and the filter film 14 are formed. When the film is formed and the same test is performed, the number of damages is reduced to about 1/2.

【0017】表1から明らかなように、アルミナ基板の
部分ミリングで、SnO2膜やフィルタ膜14の付着力
は最も高く、マスクアラインメントに問題は生じず、ま
た電極10等の断線も生じない。ZrO2基板やAlN
基板でも、ミリングによりSnO2膜12やフィルタ膜
14の付着力が増すが、付着力はアルミナ基板に劣る。
このため最も好ましい基板2はアルミナ基板である。ま
た部分ミリングし、櫛の歯電極10の断線が生じず、か
つマスクアラインメントが困難にならないようにするの
が好ましい。またミリング時間の影響は小さく、例えば
実施例の場合、30分以上のミリングではミリング時間
の影響は判然としなかった。粗面化の手法は任意である
が、基板2や層間絶縁膜8をエッチングするものが好ま
しく、例えば逆スパッタでも良く、CVD等により絶縁
膜を付着させて、この膜の表面粗さを利用するもので
は、付着させた絶縁膜の付着強度が問題になり、好まし
くない。
As is clear from Table 1, the partial milling of the alumina substrate has the highest adhesion of the SnO2 film and the filter film 14, no problem occurs in the mask alignment, and the disconnection of the electrode 10 does not occur. ZrO2 substrate and AlN
Also in the substrate, the adhesion of the SnO2 film 12 and the filter film 14 is increased by milling, but the adhesion is inferior to that of the alumina substrate.
Therefore, the most preferable substrate 2 is an alumina substrate. Further, it is preferable to carry out partial milling so as not to cause disconnection of the comb-teeth electrode 10 and to make mask alignment difficult. Further, the influence of the milling time was small, and for example, in the case of the example, the influence of the milling time was not obvious when milling for 30 minutes or more. The method of roughening is arbitrary, but a method of etching the substrate 2 or the interlayer insulating film 8 is preferable, for example, reverse sputtering may be used, and an insulating film is attached by CVD or the like and the surface roughness of this film is used. However, the adhesive strength of the deposited insulating film becomes a problem, which is not preferable.

【0018】[0018]

【発明の効果】この発明では、微細電極と厚膜ガス感応
体とを併用したガスセンサを提供し、 1) ガス感応体の基板への付着力を高め、 2) ガス感応体の電極の微細加工を容易にし、 3) これによって小型で消費電力が小さく、扱い易いガ
スセンサとし、 4) 厚膜のガス感応体を用いることにより、メタンやプ
ロパン等の難燃性ガスの検出が容易で、かつそれ以外の
ガスを検出する場合にも信頼性の高いガスセンサを得
る、ことができる(請求項1〜3)。 また請求項2の発明では、電極の下地を除いて粗面化
し、粗面化により生じる段差で電極が断線しないように
することができる。請求項3の発明では、粗面化領域で
も、粗面化の程度を場所によって変え、粗面化を進めた
部分と進めない部分との間の段差を利用し、ガス感応体
の付着力をさらに高めることができる。
The present invention provides a gas sensor using a fine electrode and a thick film gas sensor in combination, 1) enhancing the adhesion of the gas sensor to the substrate, and 2) fine processing of the electrode of the gas sensor. 3) This makes it a gas sensor that is small, consumes less power, and is easy to handle. 4) Uses a thick-film gas sensor to facilitate detection of flame-retardant gases such as methane and propane. It is possible to obtain a highly reliable gas sensor when detecting gases other than the above (claims 1 to 3). According to the second aspect of the invention, the surface of the electrode is roughened except for the underlying layer so that the electrode is not broken due to a step generated by the roughening. According to the invention of claim 3, even in the roughened area, the degree of roughening is changed depending on the location, and the step between the portion where the roughening is performed and the portion where the roughening is not performed is used to increase the adhesive force of the gas sensitive body. It can be further increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】 1時間のイオンミリング後のアルミナ基板
の表面構造を示す3,500倍の電子顕微鏡写真
FIG. 1 is a 3,500 times electron micrograph showing the surface structure of an alumina substrate after ion milling for 1 hour.

【図2】 1時間のイオンミリング後のアルミナ基板
の表面構造を示す350倍の電子顕微鏡写真
FIG. 2 is a 350 × electron micrograph showing the surface structure of an alumina substrate after ion milling for 1 hour.

【図3】 HF処理前の、鏡面アルミナ基板の表面構
造を示す10,000倍の電子顕微鏡写真
FIG. 3 is a 10,000 times electron micrograph showing the surface structure of a mirror-like alumina substrate before HF treatment.

【図4】 図3の部分ミリング後の、アルミナ基板の
表面粗さを示す特性図
FIG. 4 is a characteristic diagram showing the surface roughness of the alumina substrate after the partial milling of FIG.

【図5】 全面ミリング後の、アルミナ基板の表面粗
さを示す特性図
FIG. 5 is a characteristic diagram showing the surface roughness of the alumina substrate after the entire surface is milled.

【図6】 ミリング前の鏡面アルミナ基板の表面粗さ
を示す特性図
FIG. 6 is a characteristic diagram showing the surface roughness of a mirror-like alumina substrate before milling.

【図7】 実施例のガスセンサの分解状態を示す斜視
FIG. 7 is a perspective view showing a disassembled state of the gas sensor of the embodiment.

【図8】 部分ミリングのパターンを示す平面図FIG. 8 is a plan view showing a pattern of partial milling.

【図9】 変形例のミリングパターンを示す平面図FIG. 9 is a plan view showing a milling pattern of a modified example.

【符号の説明】[Explanation of symbols]

2 アルミナ基板 3 粗面化部 4 ヒータ電極 6 RuO2ヒータ 8 層間絶縁膜 10 櫛の歯電極 12 SnO2膜 14 フィルタ膜 15 溝 16 電極通路 17 非粗面化領域 20 粗面化部 2 Alumina substrate 3 Roughened part 4 Heater electrode 6 RuO2 heater 8 Interlayer insulation film 10 Comb tooth electrode 12 SnO2 film 14 Filter film 15 Groove 16 Electrode passage 17 Non-roughened region 20 Roughened part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 耐熱絶縁基板上に、厚膜のガス感応体
と、この感応体に接続した電極とを設けたガスセンサに
おいて、 少なくとも前記感応体の下地の領域を粗面化したことを
特徴とする、ガスセンサ。
1. A gas sensor provided with a thick film gas sensor and an electrode connected to the sensor on a heat-resistant insulating substrate, characterized in that at least the underlying region of the sensor is roughened. Yes, a gas sensor.
【請求項2】 前記粗面化領域を、少なくとも感応体の
下地で前記電極の下地を除いた領域としたことを特徴と
する、請求項1のガスセンサ。
2. The gas sensor according to claim 1, wherein the roughened region is a region at least a base of the sensitive body excluding a base of the electrode.
【請求項3】 前記粗面化領域に、粗面化の程度の異な
る部分を設けたことを特徴とする、請求項1のガスセン
サ。
3. The gas sensor according to claim 1, wherein the roughened region is provided with portions having different degrees of roughening.
JP26420993A 1993-09-27 1993-09-27 Gas sensor Expired - Fee Related JP3380310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26420993A JP3380310B2 (en) 1993-09-27 1993-09-27 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26420993A JP3380310B2 (en) 1993-09-27 1993-09-27 Gas sensor

Publications (2)

Publication Number Publication Date
JPH0792123A true JPH0792123A (en) 1995-04-07
JP3380310B2 JP3380310B2 (en) 2003-02-24

Family

ID=17400012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26420993A Expired - Fee Related JP3380310B2 (en) 1993-09-27 1993-09-27 Gas sensor

Country Status (1)

Country Link
JP (1) JP3380310B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100812996B1 (en) * 2006-12-07 2008-03-13 한국전자통신연구원 Micro gas sensor and method for manufacturing the same
CN108362740A (en) * 2017-12-27 2018-08-03 武汉微纳传感技术有限公司 A kind of metal-oxide semiconductor (MOS) gas sensor and preparation method thereof
US11415537B2 (en) 2017-06-01 2022-08-16 Robert Bosch Gmbh MEMS gas sensor having a media-sensitive material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102313761B (en) * 2011-07-11 2014-05-28 西安交通大学 Array gas-sensitive sensor structure for detection of hydrogen

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100812996B1 (en) * 2006-12-07 2008-03-13 한국전자통신연구원 Micro gas sensor and method for manufacturing the same
US7963147B2 (en) 2006-12-07 2011-06-21 Electronics And Telecommunications Research Institute Micro gas sensor and method for manufacturing the same
US11415537B2 (en) 2017-06-01 2022-08-16 Robert Bosch Gmbh MEMS gas sensor having a media-sensitive material
CN108362740A (en) * 2017-12-27 2018-08-03 武汉微纳传感技术有限公司 A kind of metal-oxide semiconductor (MOS) gas sensor and preparation method thereof
CN108362740B (en) * 2017-12-27 2020-10-16 武汉微纳传感技术有限公司 Metal oxide semiconductor gas sensor and manufacturing method thereof

Also Published As

Publication number Publication date
JP3380310B2 (en) 2003-02-24

Similar Documents

Publication Publication Date Title
JP3494747B2 (en) Thin film temperature sensor and method of manufacturing the same
JP2000081354A (en) Electric temperature sensor having at least one layer or multilayer and its manufacture
JPH02226017A (en) Sensor construction having adhesive layer for thin film platinum element
JPH0792123A (en) Gas sensor
JP2000088671A (en) Electrical resistor having at least two connection contact fields arranged on substrate having at least one recess and its production
JP2005292120A (en) Platinum resistor type temperature sensor
JP3380311B2 (en) Gas sensor and manufacturing method thereof
JPH0755523A (en) Flow rate sensor
JP3000711B2 (en) Gas sensor
JP2013068478A (en) Infrared absorption film, infrared detection element using the same, and method of manufacturing the same
US6602428B2 (en) Method of manufacturing sensor having membrane structure
JP3555739B2 (en) Manufacturing method of thin film gas sensor
JPH09105735A (en) Oxygen sensor
JPH02138858A (en) Detecting device of gas
JPH0147739B2 (en)
JP2010276459A (en) Gas sensor
JP2679811B2 (en) Gas detector
JPH06347432A (en) Gas sensor
JP2001165796A (en) Pressure sensor
CN109037049B (en) Method for completely removing metal layer between wafer-level SOI material and glass electrostatic bonding surface
RU2206082C1 (en) Semiconductor metal-oxide gas sensor
JP2023091320A (en) gas sensor
JP2003163102A (en) Electronic component having overcoating glass layer
JP2004093389A (en) Gas sensor element
JPH0650919A (en) Gas sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20111213

LAPS Cancellation because of no payment of annual fees