JP3378410B2 - Active filter - Google Patents

Active filter

Info

Publication number
JP3378410B2
JP3378410B2 JP16321695A JP16321695A JP3378410B2 JP 3378410 B2 JP3378410 B2 JP 3378410B2 JP 16321695 A JP16321695 A JP 16321695A JP 16321695 A JP16321695 A JP 16321695A JP 3378410 B2 JP3378410 B2 JP 3378410B2
Authority
JP
Japan
Prior art keywords
current
phase
component
circuit
compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16321695A
Other languages
Japanese (ja)
Other versions
JPH0919062A (en
Inventor
繁朗 森
稔 西鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Japan Broadcasting Corp
Original Assignee
Meidensha Corp
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Japan Broadcasting Corp filed Critical Meidensha Corp
Priority to JP16321695A priority Critical patent/JP3378410B2/en
Publication of JPH0919062A publication Critical patent/JPH0919062A/en
Application granted granted Critical
Publication of JP3378410B2 publication Critical patent/JP3378410B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、配電系統電力から高調
波電力を除去するアクティブフィルタ(電力用高調波補
償装置)に係り、特に零相回路を有する多相回路におけ
る零相電流の補償を行うアクティブフィルタに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active filter (harmonic compensating device for electric power) for removing harmonic power from electric power of a distribution system, and more particularly to compensating for zero-phase current in a multi-phase circuit having a zero-phase circuit. It relates to an active filter to be performed.

【0002】[0002]

【従来の技術】一般に、配電系統に接続されている電力
変換装置における整流回路は、前記系統からみると、基
本波有効電流を消費する負荷であると同時に基本波無効
電流の発生源であり、また高調波電流の発生源でもある
から、整流回路を用いた電力変換装置においては、配電
系統に悪影響を及ぼす前記基本波無効電流と前記高調波
電流を何等かの方法で分離し除去する必要がある。アク
ティブフィルタは、前記高調波電流を分離し除去するも
のとして周知のものである。
2. Description of the Related Art In general, a rectifier circuit in a power converter connected to a distribution system is a load that consumes a fundamental active current and at the same time is a source of a fundamental reactive current when viewed from the above system. Further, since it is also a source of harmonic current, in a power conversion device using a rectifier circuit, it is necessary to separate and remove the fundamental reactive current and the harmonic current that adversely affect the distribution system by some method. is there. Active filters are well known for separating and removing the harmonic currents.

【0003】図5は、アクティブフィルタの基本原理を
示すものであり、アクティブフィルタ1は、系統電源2
から高調波電流発生源である負荷3(整流回路など)へ
流れる負荷電流ir(=if+ih)から高調波電流検
出器1Aにより高調波電流ihを検出して、電流発生源
1Bに補償電流指令値ic*(=kih)を送り、電流
発生源1Bにおいて前記高調波電流ihと等しい大きさ
と位相を持つ補償電流ic(=ih)を系統2に送出し
て前記高調波電流ihとキャンセルさせ、系統(負荷)
電流isを基本波電流ifのみとし、高調波電流(電
力)の補償を行うものである。
FIG. 5 shows the basic principle of an active filter. The active filter 1 is a system power supply 2
From the load current ir (= if + ih) flowing to the load 3 (rectifier circuit, etc.), which is the harmonic current generation source, detects the harmonic current ih by the harmonic current detector 1A, and the compensation current command value is supplied to the current generation source 1B. ic * (= kih) is sent, and the compensating current ic (= ih) having the same magnitude and phase as the harmonic current ih in the current source 1B is sent to the grid 2 to cancel the harmonic current ih. (load)
The current is is only the fundamental wave current if, and the harmonic current (power) is compensated.

【0004】このようなアクティブフィルタ1として
は、種々の提案がなされている。図6は、図5における
アクティブフィルタ1の高調波電流検出器1Aに相当
し、前記補償電流指令値ic*を求める補償電流指令値
演算回路を示すものである。
Various proposals have been made for such an active filter 1. FIG. 6 corresponds to the harmonic current detector 1A of the active filter 1 in FIG. 5 and shows a compensation current command value calculation circuit for obtaining the compensation current command value ic *.

【0005】この補償電流指令値演算回路において、負
荷電流(図5参照)を検出した負荷検出電流irは、相
数変換回路12により三相信号から二相信号に変換さ
れ、更に、座標変換器13において系統電源2(図5参
照)の角速度基準でもある基本周波の電圧位相基準信号
ωtにより回転座標変換されて基本周波の直交座標上の
基本波電流if(図5参照)の正相有効分電流ipを含
む有効分電流信号と正相無効分電流iqを含む無効分電
流信号に分離される。
In this compensating current command value calculation circuit, the load detection current ir for detecting the load current (see FIG. 5) is converted from the three-phase signal to the two-phase signal by the phase number conversion circuit 12, and further the coordinate converter. In 13, the positive phase effective component of the fundamental wave current if (see FIG. 5) on the rectangular coordinates of the fundamental frequency is converted by the rotation coordinate conversion by the voltage phase reference signal ωt of the fundamental frequency which is also the angular velocity reference of the system power supply 2 (see FIG. 5). The active component current signal including the current ip and the reactive component current signal including the positive-phase reactive component current iq are separated.

【0006】その結果、基本波電流ifの正相有効分電
流ipと正相無効分電流iqは、それぞれ一定の直流成
分として取り扱うことができ、アクティブフィルタの補
償(除去)の対象外であるため、次段のローパスフィル
タ11,11’にて検出され、それぞれ突合せ回路1
5,15’にて前記負荷検出電流ir(有効分、無効
分)から減算され該負荷検出電流irから除去される。
As a result, the positive-phase active component current ip and the positive-phase reactive component current iq of the fundamental wave current if can be treated as constant DC components, and are not subject to compensation (removal) by the active filter. , The low-pass filters 11 and 11 ′ of the next stage detect the matching circuit 1 respectively.
At 5 and 15 ', the load detection current ir (effective and ineffective) is subtracted and removed from the load detection current ir.

【0007】この場合、基本波正相無効分電流iqは、
アクティブフィルタが高調波補償のみを行う場合は、上
記のごときローパスフィルタで検出され除去されるが、
高調波電流補償のみならず無効電流iqの補償を行う場
合はこの直流成分を除去しない構成とする。
In this case, the fundamental positive-phase reactive current iq is
If the active filter only performs harmonic compensation, it will be detected and removed by the low-pass filter as described above.
When not only the harmonic current compensation but also the reactive current iq compensation, this DC component is not removed.

【0008】このようにして、基本波正相分電流if
(有効分ip,無効分iq)が除去された負荷検出電流
irは、アクティブフィルタが補償する高調波電流成分
ih(有効分ihp、無効分ihq)のみとなるから、
この高調波電流成分ihを座標変換器13’にて座標逆
変換し、更に相変換器12’により三相信号に変換すれ
ば、アクティブフィルタの補償電流指令値ic*が得ら
れる。
In this way, the fundamental phase positive phase current if
The load detection current ir from which the (effective component ip, the ineffective component iq) is removed becomes only the harmonic current component ih (effective component ihp, ineffective component ihq) compensated by the active filter.
If this harmonic current component ih is subjected to coordinate reverse conversion by the coordinate converter 13 ′ and further converted into a three-phase signal by the phase converter 12 ′, the compensation current command value ic * of the active filter can be obtained.

【0009】なお、一般に、アクティブフィルタ1(図
5参照)においては、回路損失があるため、補償電流発
生源1Bの直流側電圧が変化してしまい補償電流指令値
ic*どおりの補償電流icが得られなくなるので、前
記直流側電圧を一定に保つ制御ループを設け、直流側電
圧設定値Vsと直流側電圧検出値Vdとを比較し、その
比較偏差信号により電圧制御器14を制御し、その出力
である直流側電圧一定制御信号を突合せ回路16におい
て前記高調波有効分電流信号ihpに加算して補償電流
指令値ic*を回路損失分だけ増加させて補償するもの
である。
Generally, in the active filter 1 (see FIG. 5), since there is a circuit loss, the DC side voltage of the compensation current generating source 1B changes, and the compensation current ic as the compensation current command value ic * is obtained. Since it cannot be obtained, a control loop for keeping the DC side voltage constant is provided, the DC side voltage set value Vs is compared with the DC side voltage detection value Vd, and the voltage controller 14 is controlled by the comparison deviation signal. The constant DC voltage control signal, which is an output, is added to the harmonic effective component current signal ihp in the matching circuit 16 to increase the compensation current command value ic * by the amount of circuit loss for compensation.

【0010】[0010]

【発明が解決しようとする課題】以上のような従来のア
クティブフィルタの課題として、零相回路を有する多相
回路に適用した場合、零相電流の制御を行えないため、
そこに流れる高調波電流の抑制が期待できないことであ
る。
As a problem of the conventional active filter as described above, when applied to a multi-phase circuit having a zero-phase circuit, the zero-phase current cannot be controlled.
That is, it is impossible to expect the suppression of the harmonic current flowing there.

【0011】図7には3相3線式アクティブフィルタを
示し、このアクティブフィルタをそのまま3相4線式系
統のアクティブフィルタとして適用すると、各相間に流
れる電流成分は制御可能であるが、中性線に流れる零相
電流成分は制御できない。
FIG. 7 shows a three-phase three-wire active filter. When this active filter is applied as it is as an active filter of a three-phase four-wire system, the current component flowing between each phase can be controlled, but it is neutral. The zero-phase current component flowing in the line cannot be controlled.

【0012】このため、電源側の高調波の抑制や平衡化
ができなくなる。特に、負荷として単相の整流器などが
各相と中性線間に不均一に接続されている場合など、零
相電流の3次高調波成分が増大し、電源電圧を大きく歪
ませてしまう。また、各負荷容量が非常に不均一な場
合、零相電流の基本波成分も増大し、電源側の平衡化が
不可能となる。
Therefore, it becomes impossible to suppress or balance harmonics on the power supply side. In particular, when a single-phase rectifier or the like is unevenly connected as a load between each phase and the neutral line, the third harmonic component of the zero-phase current increases, and the power supply voltage is significantly distorted. Further, when the load capacities are very uneven, the fundamental wave component of the zero-phase current also increases, making it impossible to balance the power supply side.

【0013】本発明は、以上の点に鑑みてなされたもの
であり、零相回路を有する多相回路における零相電流成
分による高調波の発生や不平衡の発生を抑制できるアク
ティブフィルタを得ることを目的とする。
The present invention has been made in view of the above points, and provides an active filter capable of suppressing generation of harmonics and imbalance due to zero-phase current components in a multi-phase circuit having a zero-phase circuit. With the goal.

【0014】[0014]

【課題を解決するための手段】本発明は、前記課題の解
決を図るため、零相回路を有する多相回路の系統から負
荷に供給する3相負荷電流の検出電流を相変換して2相
負荷検出電流とし、該2相負荷検出電流から系統の高調
波電流又は無効電流も含めた2相の補償対象電流を検出
し、この2相の補償対象電流を相変換して電流発生源の
3相補償電流指令値とし、該負荷電流から補償対象電流
を除去するアクティブフィルタにおいて、前記3相負荷
電流の検出電流から零相成分を検出し、該零相成分に1
/3を乗じて各相分に分配して前記3相補償電流指令値
に加算する零相電流補償回路を設けたことを特徴とす
る。
In order to solve the above-mentioned problems, the present invention phase-converts a detection current of a three-phase load current supplied from a system of a multi-phase circuit having a zero-phase circuit to a two-phase circuit. As a load detection current, a two-phase compensation target current including a harmonic current or a reactive current of the system is detected from the two-phase load detection current, and the two-phase compensation target current is phase-converted to generate a three-phase current generation source. An active filter that uses the phase compensation current command value and removes the current to be compensated from the load current detects a zero-phase component from the detected current of the three-phase load current, and adds 1 to the zero-phase component.
Multiply by / 3 to distribute to each phase, and the three-phase compensation current command value
A zero-phase current compensation circuit for adding

【0015】また、本発明は、前記補償対象電流の検出
は、負荷検出電流の基本波電流に含まれる正相分電流を
除去し、この電流から基本波逆相分電流を除去する回路
を設けたことを特徴とする。
Further, according to the present invention, the current to be compensated is detected by detecting the positive-phase component current included in the fundamental current of the load detection current.
It is characterized in that a circuit is provided for removing and removing the current of the fundamental wave opposite phase from this current .

【0016】また、本発明は、前記補償対象電流の検出
は、基本波正相無効分電流と基本波逆相分電流および高
調波成分電流を個別に制限する電流リミッタ回路を設け
たことを特徴とする。
The present invention also detects the current to be compensated.
Is the fundamental positive-phase reactive current and the fundamental reverse-phase reactive current and
It is characterized in that a current limiter circuit for individually limiting the harmonic component current is provided.

【0017】[0017]

【作用】補償対象電流を高調波電流又は無効電流も含め
たものとし、さらには基本波逆相分電流を除いたものや
電流リミッタ回路による制限を行うアクティブフィルタ
において、零相回路に発生する零相電流を検出して補償
電流指令値に分配加算することにより、電源側の零相電
流を零にする。
[Function] The current to be compensated includes the harmonic current or the reactive current, and further, the current excluding the reverse phase component current of the fundamental wave and the active filter for limiting by the current limiter circuit, the zero generated in the zero phase circuit The zero-phase current on the power supply side is made zero by detecting the phase current and distributing and adding it to the compensation current command value.

【0018】[0018]

【実施例】図1は、本発明のアクティブフィルタの基本
構成を示す。同図のように、本実施例では、アクティブ
フィルタを3相4線式とし、中性線と各相間に流れる電
流を自由に制御できるようにする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the basic construction of an active filter of the present invention. As shown in the figure, in this embodiment, the active filter is a three-phase four-wire type, and the current flowing between the neutral line and each phase can be freely controlled.

【0019】すなわち、負荷側より発生する零相電流成
分をアクティブフィルタにより循環させ、電源側の零相
電流を零にし、その影響を回避する。
That is, the zero-phase current component generated from the load side is circulated by the active filter, and the zero-phase current on the power source side is made zero to avoid the influence.

【0020】このためのアクティブフィルタの制御回路
は、図2に示す構成で実現される。同図において、ロー
パスフィルタ11,11’、相変換器12,12’、座
標変換器13,13’、及び電圧制御器14は、図6に
示す従来の補償電流指令演算回路に用いられるものと同
一機能を有する同一機器を示すものである。
The active filter control circuit for this purpose is realized by the configuration shown in FIG. In the figure, the low pass filters 11 and 11 ', the phase converters 12 and 12', the coordinate converters 13 and 13 ', and the voltage controller 14 are used in the conventional compensation current command calculation circuit shown in FIG. It shows the same device having the same function.

【0021】この実施例においては、従来の補償電流指
令演算回路に、破線ブロックで示す零相電流補償回路2
0を追加している。
In this embodiment, a zero-phase current compensating circuit 2 shown by a broken line block is added to the conventional compensating current command calculating circuit.
0 is added.

【0022】この零相電流補償回路20は、各相R,
S,Tの各負荷電流変成信号を加算回路21で互いに加
算することにより零相電流成分を求め、この零相電流成
分を係数演算回路22で係数1/3を乗算することによ
り各相分に分配した零相電流補償量を求め、これら零相
電流補償量を加算器23R,23S,23Tにおいて相変
換器12’からの各相補償電流指令値に加算し、これら
各相補償電流指令値を電流発生源1Bの電流制御回路2
4の出力電流指令値とする。
This zero-phase current compensating circuit 20 is provided for each phase R,
A zero-phase current component is obtained by adding the load current change signals of S and T to each other in the adder circuit 21, and this zero-phase current component is multiplied by the coefficient 1/3 in the coefficient calculation circuit 22 to obtain each phase component. The distributed zero-phase current compensation amount is obtained, these zero-phase current compensation amounts are added to the respective phase compensation current command values from the phase converter 12 ′ in the adders 23 R , 23 S , and 23 T , and these phase compensation currents are added. The command value is used as the current control circuit 2 of the current source 1B.
4 output current command value.

【0023】本実施例によれば、3相4線回路に特有の
零相電流をアクティブフィルタから補償零相電流として
発生させることにより、電源側の零相電流を零にし、そ
こに含まれる高調波成分の影響や不平衡成分の影響を除
去できる。
According to this embodiment, the zero-phase current peculiar to the three-phase, four-wire circuit is generated as the compensated zero-phase current from the active filter, so that the zero-phase current on the power supply side is reduced to zero and the harmonics contained therein. The effects of wave components and unbalanced components can be eliminated.

【0024】図3は、本発明の他の実施例を示す。この
実施例においては、図6の補償電流指令演算回路に、系
統2(図5参照)の基本周波の2倍周波数の電圧位相基
準信号2ωtによる座標変換器31、2次調波成分(基
本波逆相分)を検出するローパスフィルタ32,32’
及び突合せ回路33,33’からなる基本波逆相分(2
次調波成分)分離除去回路、並びに座標を元に戻すため
の系統の基本周波の2倍周波数の電圧位相基準信号2ω
tによる座標逆変換器31’を付加したアクティブフィ
ルタに零相電流補償回路を設けた場合である。
FIG. 3 shows another embodiment of the present invention. In this embodiment, in the compensation current command calculation circuit of FIG. 6, the coordinate converter 31 based on the voltage phase reference signal 2ωt having the double frequency of the fundamental frequency of the system 2 (see FIG. 5) is used. Low-pass filter 32, 32 'for detecting the reverse phase component)
And the fundamental wave anti-phase component (2
Next harmonic component) Separation / removal circuit, and voltage phase reference signal 2ω having twice the fundamental frequency of the system for restoring the coordinates
This is a case where the zero-phase current compensation circuit is provided in the active filter to which the coordinate inverse converter 31 ′ based on t is added.

【0025】この構成の補償電流指令演算回路は、負荷
電流の基本波逆相分を補償の対象外とするものである。
このことを以下に詳細に説明する。
The compensation current command calculation circuit having this configuration excludes the component of the load current having the fundamental wave of opposite phase from the compensation target.
This will be described in detail below.

【0026】図5の補償電流指令値演算回路は、基本波
正相分の有効分電流及び無効分電流は直流成分として扱
うことができその分離が容易であるが、負荷不平衡など
に伴い発生する2次調波成分となる基本波逆相分電流に
ついては、その他の高調波電流との区別、分離が容易に
できないため、基本波逆相分電流をもアクティブフィル
タが補償する対象の補償電流として演算してしまうこと
になる。
The compensating current command value calculating circuit of FIG. 5 can treat the active and reactive components of the positive phase of the fundamental wave as DC components and can easily separate them. Since it is not possible to easily distinguish and separate the fundamental anti-phase component current, which is the second harmonic component, from other harmonic currents, the compensation current of the target that the active filter also compensates for the fundamental anti-phase component current. Will be calculated as

【0027】したがって、アクティブフィルタは、負荷
不平衡時などに発生する基本波逆相分電流をも補償する
ことになるから、本来補償しようとする高調波電流成分
が増加したとき、アクティブフィルタ装置の出力容量の
制限からその高調波電流成分を補償することができない
という問題がある。
Therefore, since the active filter also compensates the fundamental-phase reverse-phase current that occurs when the load is unbalanced, when the harmonic current component to be compensated is increased, the active filter device There is a problem that the harmonic current component cannot be compensated due to the limitation of the output capacitance.

【0028】すなわち、実系統における基本波逆相分電
流(2次調波成分電流)は他の高調波電流に比較しその
割合が大きく、また、該基本波逆相分電流は低周波の交
流成分であるから、これら基本波逆相分電流の補償分を
含めその他の高調波電流成分の全てを補償しようとする
と、その装置容量が増大し設備容量(設備費用)に対し
弊害を生じさせる。
That is, the ratio of the fundamental wave anti-phase component current (second harmonic component current) in the actual system is larger than that of the other harmonic currents, and the fundamental wave anti-phase component current is a low frequency alternating current. Since it is a component, if it is attempted to compensate all the other harmonic current components including the compensation component of the fundamental wave anti-phase component current, the device capacity increases, which causes an adverse effect on the equipment capacity (equipment cost).

【0029】この基本波逆相分(2次調波分)電流の分
離方法としては、一般的には、2次調波のバンドパスフ
ィルタの挿入が考えられるが、過渡安定度、周波数変動
に対する位相差の影響などを考慮すると必ずしも良い方
法とはいえない。
As a method of separating the current of the opposite phase of the fundamental wave (second harmonic wave), it is generally considered to insert a band pass filter of the second harmonic wave. It is not always a good method considering the influence of the phase difference.

【0030】また、アクティブフィルタ装置の容量の関
係で基本波逆相分(2次調波成分)電流をリミット制限
しようとしても、その基本波逆相分電流が交流成分であ
るため、その取り扱いが非常に困難となり実現すること
ができない。
Even if an attempt is made to limit the current of the fundamental wave anti-phase component (second harmonic component) due to the capacity of the active filter device, the fundamental wave anti-phase component current is an alternating current component, so that it is handled. It will be very difficult to achieve.

【0031】このような基本波逆相分を補償の対象外と
する部分が31〜33の構成になる。この回路動作を以
下に説明する。
The portions 31 to 33 are the portions where such a reverse phase component of the fundamental wave is excluded from compensation. This circuit operation will be described below.

【0032】系統(負荷)電流を検出した三相負荷検出
電流irは、相数変換回路12により三相信号から二相
信号に変換され、更に、座標変換器13において系統の
基本周波の直交座標上における基本波正相分電流i1
正相有効分電流i1pを含む有効分電流と正相無効分電流
1qを含む無効分電流とに分離される。この直交座標上
における正相有効分電流i1pと正相無効分電流i1qは、
それぞれ一定の直流成分として取り扱うことができ、ア
クティブフィルタの補償の対象外であるから、次段のロ
ーパスフィルタ11、11’にて検出し分離して、それ
ぞれ突合わせ回路15,15’にて二相負荷検出電流i
rから減算することにより該二相負荷検出電流irから
除去される。
The three-phase load detection current ir for detecting the system (load) current is converted from the three-phase signal to the two-phase signal by the phase number conversion circuit 12, and further, in the coordinate converter 13, the orthogonal coordinates of the fundamental frequency of the system. The fundamental wave positive phase current i 1 is separated into an active current containing a positive phase active current i 1p and a reactive current containing a positive phase reactive current i 1q . The positive phase active current i 1p and the positive phase reactive current i 1q on this rectangular coordinate are
Since each of them can be treated as a constant DC component and is not covered by the compensation of the active filter, they are detected and separated by the low-pass filters 11 and 11 'of the next stage, and are detected by the matching circuits 15 and 15'. Phase load detection current i
It is removed from the two-phase load detection current ir by subtracting from r.

【0033】突合せ回路15,15’にて基本波正相分
電流i1の正相有効分電流i1P及び正相無効分電流i1q
が除去された二相負荷検出電流irは、系統の基本周波
の2倍周波数の電圧位相基準信号2ωtによる座標変換
器31により回転座標変換され、系統の2倍周波の直交
座標上における基本波逆相分電流i2の逆相有効分電流
2pを含む有効分電流と逆相無効分電流i2qを含む無効
分電流とに分離され、分離された逆相有効分電流i2p
逆相無効分電流i2qは、それぞれ一定の直流成分として
取り扱うことができるようになる。
The positive phase active current of the fundamental wave positive phase component of the current i 1 in the butt circuit 15,15 'i 1P and positive-phase reactive current i 1q
The two-phase load detection current ir from which is removed is subjected to rotational coordinate conversion by the coordinate converter 31 using the voltage phase reference signal 2ωt having the double frequency of the system fundamental frequency, and the fundamental wave inverse on the orthogonal coordinate of the system double frequency is inverted. The active component current i 2p including the anti-phase active component current i 2p of the phase component current i 2 and the reactive component current including the anti-phase reactive component current i 2q are separated, and the separated anti-phase active component current i 2p and anti-phase reactive component are separated. The divided current i 2q can be treated as a constant DC component.

【0034】そこで、この実施例においては、基本波逆
相分電流i2をもアクティブフィルタの補償の対象外と
するものであるから、基本波逆相分電流i2の逆相有効
分電流i2pと逆相無効分電流i2qを次段のローパスフィ
ルタ32、32’にて検出分離して、それぞれ突合せ回
路33、33’にて前記二相負荷検出電流irから減算
することにより、前段の基本波正相分電流i1と同様
に、基本波逆相分(2次調波成分)電流i2も前記二相
負荷検出電流irから除去される。
Therefore, in this embodiment, since the fundamental wave anti-phase component current i 2 is also excluded from the compensation of the active filter, the anti-phase effective component current i 2 of the fundamental wave anti-phase component current i 2 is 2p and the negative-phase reactive current i 2q are detected and separated by the low-pass filters 32 and 32 ′ of the next stage, and are subtracted from the two-phase load detection current ir by the matching circuits 33 and 33 ′, respectively. Similarly to the fundamental wave positive phase current i 1 , the fundamental wave antiphase (second harmonic component) current i 2 is also removed from the two-phase load detection current ir.

【0035】基本波正相分電流i1と基本波逆相分電流
2が除去された前記二相負荷検出電流irは、アクテ
ィブフィルタの補償対象である高調波成分電流のみとな
り、座標を元に戻すための系統の基本周波の2倍周波の
電圧位相基準信号2ωtによる座標逆変換器31’、基
本周波の電圧位相基準信号ωtによる座標逆変換器1
3’、及び相変換器12’を介することによりアクティ
ブフィルタの三相補償電流指令値ic*が得られる。
The two-phase load detection current ir from which the fundamental wave positive-phase component current i 1 and the fundamental wave anti-phase component current i 2 are removed is only the harmonic component current to be compensated for by the active filter, and the original coordinate is used. Inverter 31 'based on the voltage phase reference signal 2ωt of the fundamental frequency of the system for returning to the system, and the coordinate inverse transformer 1 based on the voltage phase reference signal ωt of the fundamental frequency
The three-phase compensation current command value ic * of the active filter is obtained through 3'and the phase converter 12 '.

【0036】以上のように、基本波逆相分を補償の対象
外とするアクティブフィルタを零相回路を有する多相回
路に適用する場合にも、零相電流の制御が行えないた
め、そこに流れる高調波の抑制が期待できない。
As described above, even when the active filter for which the reverse phase component of the fundamental wave is excluded from the compensation target is applied to the multi-phase circuit having the zero-phase circuit, the zero-phase current cannot be controlled. It is not possible to expect suppression of flowing harmonics.

【0037】そこで、本実施例においても、零相電流補
償回路20を設け、負荷電流の零相成分を検出してこれ
を補償電流指令の増分として加算することにより、電源
側の零相電流を零にしてその影響を回避する。
Therefore, also in the present embodiment, the zero-phase current compensating circuit 20 is provided, the zero-phase component of the load current is detected, and this is added as the increment of the compensation current command, so that the zero-phase current on the power supply side is reduced. Set to zero to avoid the effect.

【0038】なお、図3の実施例にアクティブフィルタ
の装置容量の制限に伴うリミット回路を付加した図4の
構成とすることもできる。
The configuration shown in FIG. 4 may be added to the embodiment shown in FIG. 3 by adding a limit circuit for limiting the device capacity of the active filter.

【0039】図4において、図3と同一の符号を付与し
ているものは、図3に示すものと同一の機能を有する同
一機器を示すものである。
In FIG. 4, the same reference numerals as those in FIG. 3 denote the same devices having the same functions as those shown in FIG.

【0040】この実施例は、図3に示す補償電流指令値
演算回路において、系統2に悪影響を及ぼす各成分(基
本波正相無効分、基本波逆相分、高調波成分)電流に対
してリミット回路を施すものであり、その他の回路部分
については図3に示す補償電流指令値演算回路と同一の
動作をするものであるから、リミット回路についての説
明にとどめることとする。
In this embodiment, in the compensation current command value calculation circuit shown in FIG. 3, for each component (fundamental wave positive phase reactive component, fundamental wave antiphase component, harmonic component) current that adversely affects the system 2. Since the limit circuit is provided and the other circuit portions operate in the same manner as the compensation current command value calculation circuit shown in FIG. 3, only the limit circuit will be described.

【0041】図4において、41はローパスフィルタ1
1’で検出された基本波正相無効分電流i1qから最小限
の基本波正相無効分電流i1q’をアクティブフィルタの
補償対象とするための基本波無効分電流リミット回路、
42は補償対象とする高調波成分(有効分,無効分)電
流ihの上限を定めるための高調波成分電流リミット回
路、43はローパスフィルタ18,18’で検出された
基本波逆相分(有効分、無効分)電流i2から最小限の
基本波逆相分電流をアクティブフィルタの補償対象とす
るための基本波逆相電流リミット回路、421,422
431,432はそれぞれ所定値以下の電流はそのまま通
過させ所定値以上の電流に対してのみ前記所定に制限す
るリミッタである。
In FIG. 4, 41 is the low-pass filter 1.
1 ', the fundamental reactive current limiting circuit for subjecting the active positive filter to the minimum fundamental positive reactive current i 1q from the positive reactive current i 1q detected in 1',
Reference numeral 42 denotes a harmonic component current limit circuit for determining the upper limit of the harmonic component (effective component, reactive component) current i h to be compensated, and 43 denotes a fundamental wave anti-phase component detected by the low-pass filters 18 and 18 ′ ( Active component, reactive component) fundamental wave anti-phase current limit circuit for subjecting a minimum amount of fundamental wave anti-phase current from current i 2 to compensation of the active filter, 42 1 , 42 2 ,
Numerals 43 1 and 43 2 are limiters which allow currents of a predetermined value or less to pass through as they are and to limit the currents of a predetermined value or more to the predetermined value.

【0042】以下、この実施例におけるリミット回路の
動作について説明をする。
The operation of the limit circuit in this embodiment will be described below.

【0043】アクティブフィルタの補償の対象である高
調波成分電流ihについては、高調波成分電流リミット
回路42において、基本正相分電流i1と基本波逆相分
電流i2が除去された高調波成分(有効分ihp,無効分
hq)電流ihを取り入れ、その高調波成分電流ihがあ
る所定値を越えるとリミッタ421,422にリミット信
号を出力し、そのリミッタ421,422を作動させ、高
調波成分電流ihを前記所定値に制限することにより前
記所定値を下回る高調波成分電流ihについてのみアク
ティブフィルタの補償対象とするものである。
Regarding the harmonic component current i h to be compensated by the active filter, the harmonic component current limit circuit 42 removes the basic positive phase component current i 1 and the fundamental wave anti-phase component current i 2 from each other. wave component (active ingredient i hp, reactive component i hq) incorporating current i h, and outputs a limit signal to the limiter 42 1, 42 2 exceeds a predetermined value where that harmonic component current i h, the limiter 42 1 , 42 2 are activated to limit the harmonic component current i h to the predetermined value so that only the harmonic component current i h below the predetermined value is subject to compensation by the active filter.

【0044】また、アクティブフィルタの補償の対象外
とした基本波正相無効分電流i1qに対して、基本波無効
分電流リミット回路41において、ローパスフィルタ1
1’により検出分離された基本波正相無効分電流i1q
取り入れ、所定値を下回る基本波正相無効分電流i1q
を出力して突合せ回路16’にて既に基本波正相無効分
電流i1qが除去されている二相負荷検出電流irに加算
することによって、前記所定値を下回る基本波正相無効
分電流i1q’に対してはアクティブフィルタの補償対象
とするものである。
Further, with respect to the fundamental wave positive phase reactive current i 1q which is not covered by the active filter compensation, the low pass filter 1 in the fundamental wave reactive current limit circuit 41 is used.
Incorporating the fundamental wave positive phase reactive current i 1q detected and separated by 1 ′, the fundamental wave positive phase reactive current i 1q 'below a predetermined value
Is output and is added to the two-phase load detection current ir from which the fundamental wave positive-phase reactive current i 1q has already been removed by the matching circuit 16 ′, whereby the fundamental-wave positive-phase reactive current i below the predetermined value is added. For 1q ', it is the compensation target of the active filter.

【0045】更に、アクティブフィルタの補償の対象外
とした基本波逆相分電流i2に対しても、基本波逆相分
電流リミット回路43において、ローパスフィルタ1
8,18’により検出分離された基本波逆相分(有効分
2p,無効分i2p)電流i2を取り入れ、該基本波逆相
分電流i2が所定値を越えるとリミッタ431,432
リミット信号を出力し、該リミット回路431,432
作動させ基本波逆相分電流i2をある所定値に制限する
ことにより該所定値を下回る基本波逆相分電流i2’を
出力して突合せ回路44,44’にて既に基本波逆相分
電流i2が除去されている二相負荷検出電流irに敢え
て加算することによって、前記所定値を下回る基本波逆
相分電流i2’に対してもアクティブフィルタの補償の
対象とするものである。
Further, with respect to the fundamental wave anti-phase component current i 2 which is excluded from the compensation of the active filter, the low-pass filter 1 in the fundamental wave anti-phase component current limit circuit 43 is used.
When the fundamental wave antiphase component current (effective component i 2p , reactive component i 2p ) current i 2 detected and separated by 8, 18 'is taken in and the fundamental wave antiphase component current i 2 exceeds a predetermined value, the limiter 43 1 , 43 2 outputs a limit signal to, the limit circuit 43 1, 43 2 fundamental wave negative-sequence current i 2 below the predetermined value by limiting to a predetermined value is activated is the fundamental wave negative-sequence current i 2 a 'Is output and the summing circuit 44, 44' intentionally adds to the two-phase load detection current ir from which the fundamental wave antiphase current i 2 has already been removed. The current i 2 'is also an object of compensation by the active filter.

【0046】本来、アクティブフィルタは、高調波成分
電流ihを補償の対象とし、基本波正相無効分電流i1q
や基本波逆相分電流i2は補償の対象外とするものであ
るが、叙上のように、それら基本波正相無効分電流i1q
や基本波逆相分電流i2は系統2に対し悪影響を及ぼす
ものであるから何等かの方法で系統(負荷)電流から除
去する必要があるものである。
Originally, the active filter compensates the harmonic component current i h , and the fundamental wave positive phase reactive current i 1q
And the fundamental wave anti-phase current i 2 are excluded from compensation, but as mentioned above, the fundamental wave positive phase reactive current i 1q
Since the fundamental wave anti-phase component current i 2 adversely affects the system 2, it is necessary to remove it from the system (load) current by some method.

【0047】したがって、この実施例回路によれば、系
統に悪影響を及ぼす各成分電流に対して所定のリミット
値を有するリミット回路41,42,43を施すことに
より、アクティブフィルタ装置容量、及び系統(負荷)
電流irに含まれている高調波成分電流ih、基本波正
相無効分電流i1q、基本波逆相分電流i2の大きさに応
じて、それらの成分電流を補償の対象とすれば、アクテ
ィブフィルタ装置のみを施すだけで系統2に悪影響を及
ぼす成分電流の全てを系統(負荷)電流irから除去す
ることも可能な補償電流指令値ic*が得られる。
Therefore, according to the circuit of this embodiment, by providing limit circuits 41, 42 and 43 having predetermined limit values for each component current which adversely affects the system, the active filter device capacity and the system ( load)
Harmonic component current i h contained in the current ir, the fundamental wave positive phase reactive current i 1q, in accordance with the magnitude of the fundamental wave negative-sequence current i 2, if their component current subject to compensation , A compensation current command value ic * that can remove all the component currents that adversely affect the system 2 from the system (load) current ir only by applying the active filter device is obtained.

【0048】この場合、リミット回路、及びリミット値
の選択は、負荷状況に応じフィルタの許容容量内におい
て適宜決定すればよく、また、基本波無効分電流リミッ
ト回路41及び基本波逆相分電流リミット回路443
リミット値を「零」にすることもできること当然のこと
である。
In this case, the selection of the limit circuit and the limit value may be appropriately determined within the allowable capacity of the filter according to the load condition, and the fundamental wave reactive component current limit circuit 41 and the fundamental wave anti-phase component current limit may be selected. As a matter of course, the limit value of the circuit 44 3 can be set to “zero”.

【0049】[0049]

【発明の効果】以上のとおり、本発明によれば、補償対
象電流を高調波電流又は無効電流も含めたものとし、さ
らには基本波逆相分電流を除いたものや電流リミッタ回
路による制限を行うアクティブフィルタにおいて、3相
負荷電流の検出電流から零相成分を検出し、該零相成分
を3相補償電流指令値に分配加算する零相電流補償回路
を設けたため、3相4線回路等の多相回路に特有の零相
電流の補償ができ、電源側に高調波の発生や不平衡の発
生を無くすことができる。
As described above, according to the present invention, the current to be compensated includes the harmonic current or the reactive current, and further, the current excluding the reverse-phase component current of the fundamental wave or the limitation by the current limiter circuit is applied. In the active filter to be performed, a zero-phase current compensating circuit that detects the zero-phase component from the detected current of the three-phase load current and distributes and adds the zero-phase component to the three-phase compensation current command value is provided. The zero-phase current peculiar to the multi-phase circuit can be compensated, and harmonics and imbalances on the power supply side can be eliminated.

【0050】特に、負荷として単相の整流器などが各相
と中性線間に不均一に接続されている場合など、零相電
流の3次高調波成分が増大し、電源電圧を大きく歪ませ
てしまう場合や、各負荷容量が非常に不均一で零相電流
の基本波成分も増大して電源側の不平衡が発生する場合
に適用して効果的となる。
In particular, when a single-phase rectifier or the like is connected as a load unevenly between each phase and the neutral line, the third harmonic component of the zero-phase current increases, and the power supply voltage is significantly distorted. This is effective when applied to the case where the load capacities are very uneven and the fundamental wave component of the zero-phase current increases to cause imbalance on the power supply side.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のアクティブフィルタの基本構成。FIG. 1 is a basic configuration of an active filter of the present invention.

【図2】本発明の一実施例を示すアクティブフィルタの
制御回路。
FIG. 2 is a control circuit of an active filter showing an embodiment of the present invention.

【図3】本発明の他の実施例を示すアクティブフィルタ
の制御回路。
FIG. 3 is a control circuit of an active filter showing another embodiment of the present invention.

【図4】本発明の他の実施例を示すアクティブフィルタ
の制御回路。
FIG. 4 is a control circuit of an active filter showing another embodiment of the present invention.

【図5】アクティブフィルタの原理図。FIG. 5 is a principle diagram of an active filter.

【図6】従来のアクティブフィルタの補償電流指令値演
算回路。
FIG. 6 shows a compensation current command value calculation circuit for a conventional active filter.

【図7】従来の3相3線式アクティブフィルタ。FIG. 7 is a conventional 3-phase 3-wire active filter.

【符号の説明】[Explanation of symbols]

1…アクティブフィルタ 2…配電系統 3…系統負荷 11,11’,32,32’…ローパスフィルタ 12,12’…相変換器 13,13’,31,31’…座標変換器 20…零相電流補償回路 21…加算回路 22…係数演算回路 23R,23S,23T…加算器 41…基本波無効分電流リミット回路 42…高調波成分電流リミット回路 43…基本波逆相分電流リミット回路1 ... Active filter 2 ... Distribution system 3 ... System load 11, 11 ', 32, 32' ... Low pass filter 12, 12 '... Phase converter 13, 13', 31, 31 '... Coordinate converter 20 ... Zero phase current Compensation circuit 21 ... Addition circuit 22 ... Coefficient calculation circuit 23 R , 23 S , 23 T ... Adder 41 ... Fundamental wave reactive current limit circuit 42 ... Harmonic component current limit circuit 43 ... Fundamental wave antiphase current limit circuit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−189456(JP,A) 特開 平7−135735(JP,A) 特開 平4−344172(JP,A) 特開 平2−13230(JP,A) 実開 平6−36330(JP,U) (58)調査した分野(Int.Cl.7,DB名) H02J 3/00 - 5/00 H02M 1/00 H02M 1/12 ─────────────────────────────────────────────────── --Continued from the front page (56) References JP-A-6-189456 (JP, A) JP-A-7-135735 (JP, A) JP-A-4-344172 (JP, A) JP-A-2- 13230 (JP, A) Actual Kaihei 6-36330 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) H02J 3/00-5/00 H02M 1/00 H02M 1/12

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 零相回路を有する多相回路の系統から負
荷に供給する3相負荷電流の検出電流を相変換して2相
負荷検出電流とし、該2相負荷検出電流から系統の高調
波電流又は無効電流も含めた2相の補償対象電流を検出
し、この2相の補償対象電流を相変換して電流発生源の
3相補償電流指令値とし、該負荷電流から補償対象電流
を除去するアクティブフィルタにおいて、 前記3相負荷電流の検出電流から零相成分を検出し、
零相成分に1/3を乗じて各相分に分配して前記3相補
償電流指令値に加算する零相電流補償回路を設けたこと
を特徴とするアクティブフィルタ。
1. A two-phase load detection current is phase-converted from a detected current of a three-phase load current supplied from a multi-phase circuit system having a zero-phase circuit to a load, and a harmonic of the system is generated from the two-phase load detection current. The two-phase compensation target current including the current or the reactive current is detected, and the two-phase compensation target current is phase-converted into the three-phase compensation current command value of the current generation source, and the compensation target current is removed from the load current. in the active filter which detects the zero-phase component from the detected current of the three-phase load current, the
Multiply the zero-phase component by 1/3 and distribute to each phase to complement the 3
An active filter comprising a zero-phase current compensation circuit for adding to a compensation current command value .
【請求項2】 前記補償対象電流の検出は、負荷検出電
流の基本波電流に含まれる正相分電流を除去し、この電
流から基本波逆相分電流を除去する回路を設けたことを
特徴とする請求項1記載のアクティブフィルタ。
2. The load detection voltage is detected by the compensation target current.
The positive phase current contained in the fundamental current of the
The active filter according to claim 1, further comprising a circuit that removes a fundamental-phase antiphase current from the flow .
【請求項3】 前記補償対象電流の検出は、基本波正相
無効分電流と基本波逆相分電流および高調波成分電流を
個別に制限する電流リミッタ回路を設けたことを特徴と
する請求項2記載のアクティブフィルタ。
3. The compensation target current is detected in a positive phase of a fundamental wave.
Reactive component current, fundamental wave anti-phase component current and harmonic component current
3. The active filter according to claim 2, further comprising a current limiter circuit for individually limiting the current limiter circuit.
JP16321695A 1995-06-29 1995-06-29 Active filter Expired - Lifetime JP3378410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16321695A JP3378410B2 (en) 1995-06-29 1995-06-29 Active filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16321695A JP3378410B2 (en) 1995-06-29 1995-06-29 Active filter

Publications (2)

Publication Number Publication Date
JPH0919062A JPH0919062A (en) 1997-01-17
JP3378410B2 true JP3378410B2 (en) 2003-02-17

Family

ID=15769519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16321695A Expired - Lifetime JP3378410B2 (en) 1995-06-29 1995-06-29 Active filter

Country Status (1)

Country Link
JP (1) JP3378410B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5211952B2 (en) * 2008-09-08 2013-06-12 富士電機株式会社 Parallel redundancy system for power converter
JP5211953B2 (en) * 2008-09-08 2013-06-12 富士電機株式会社 Power converter
US11735917B2 (en) * 2021-04-29 2023-08-22 Schneider Electric USA, Inc. Systems and methods for paralleling 3-wire and 4-wire 3-phase active harmonic filters

Also Published As

Publication number Publication date
JPH0919062A (en) 1997-01-17

Similar Documents

Publication Publication Date Title
US20110128054A1 (en) Phase lock loop with tracking filter for synchronizing an electric grid
JPH10225131A (en) Controller of power converter
JPH1141812A (en) Controller of power system self-excited converter
US5065304A (en) Controller for AC power converter
JP3378410B2 (en) Active filter
EP0177754A2 (en) Frequency converter apparatus
JPH09149553A (en) Active filter
JP3742316B2 (en) Power converter
JPH0779574A (en) Control circuit for three-level inverter
JP3444011B2 (en) Active filter for electric power
JPH09312930A (en) Detection of defect in power system and protection of the system from the defect
JP3316860B2 (en) Power converter
JPH10201099A (en) Active filter
Benyettou et al. Comparative study of different methods of active power compensation
JP3261852B2 (en) Active filter compensation current command value calculation circuit
JP3265397B2 (en) Power converter control method and power converter using the method
JP3247252B2 (en) Control device for power converter
Patel et al. Control of distributed static compensator using extended structure‐enhanced phase‐locked loop–based algorithm under nonideal AC mains
JP3135600B2 (en) Unbalance compensator
JPH10243561A (en) Flicker suppressor
JP2701663B2 (en) Limiter device
JP2839702B2 (en) Power / harmonic current / negative phase current detection circuit
JP3723967B2 (en) Active filter control device
JPH08111937A (en) General purpose compensating apparatus
JP3162578B2 (en) Power converter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121206

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131206

Year of fee payment: 11

EXPY Cancellation because of completion of term