JP3444011B2 - Active filter for electric power - Google Patents

Active filter for electric power

Info

Publication number
JP3444011B2
JP3444011B2 JP06144995A JP6144995A JP3444011B2 JP 3444011 B2 JP3444011 B2 JP 3444011B2 JP 06144995 A JP06144995 A JP 06144995A JP 6144995 A JP6144995 A JP 6144995A JP 3444011 B2 JP3444011 B2 JP 3444011B2
Authority
JP
Japan
Prior art keywords
current
component
phase
fundamental wave
limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06144995A
Other languages
Japanese (ja)
Other versions
JPH08265971A (en
Inventor
稔 西鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP06144995A priority Critical patent/JP3444011B2/en
Publication of JPH08265971A publication Critical patent/JPH08265971A/en
Application granted granted Critical
Publication of JP3444011B2 publication Critical patent/JP3444011B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Power Conversion In General (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、配電系統電力等から高
調波成分を除去する電力用アクティブフィルタに関し、
特に、補償電流指令値を演算する補償電流指令値演算手
段に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power active filter for removing harmonic components from distribution system power,
In particular, it relates to a compensation current command value computing means for computing a compensation current command value.

【0002】[0002]

【従来の技術】一般に、配電系統に接続されている電力
変換装置における整流回路は、前記系統から見ると、基
本波有効電流を消費する負荷であると同時に基本波無効
電流の発生源であり、また高調波電流の発生源でもある
から、整流回路を用いた電力変換装置においては、配電
系統に悪影響を及ぼす前記基本波無効電流と前記高調波
電流を何等かの方法で分離し除去する必要がある。アク
ティブフィルタは、前記高調波電流を分離し除去するも
のとして周知のものである。
2. Description of the Related Art Generally, a rectifier circuit in a power converter connected to a power distribution system is, from the viewpoint of the system, a load that consumes a fundamental wave active current and a source of a fundamental wave reactive current. Further, since it is also a source of harmonic current, in a power conversion device using a rectifier circuit, it is necessary to separate and remove the fundamental reactive current and the harmonic current that adversely affect the distribution system by some method. is there. Active filters are well known for separating and removing the harmonic currents.

【0003】図2は、アクティブフィルタの基本原理を
示すものであり、アクティブフィルタ1は、系統電源2
から高調波電流発生源である負荷3へ流れる負荷電流i
r(ir=if+ih)から高調波電流検出器1Aによ
り高調波電流ihを検出してインバータ等の補償電流発
生源(1B)に補償電流指令値ic*(ic*=ki
h)を送り、補償電流発生源1Bにおいて前記高調波電
流ihと等しい大きさと位相を持つ補償電流ic(ic
=ih)を系統2に送出して前記高調波電流ihとキャ
ンセルさせ、系統(負荷)電流is(ir)を基本波電
流ifのみとし、高調波電流(電力)の補償を行うもの
である。
FIG. 2 shows the basic principle of an active filter. The active filter 1 is a system power supply 2
Current i flowing from the load current to the load 3 which is the harmonic current source
The harmonic current detector 1A detects the harmonic current ih from r (ir = if + ih), and the compensation current command value ic * (ic * = ki) is supplied to the compensation current generation source (1B) such as an inverter.
h), and the compensation current ic (ic (ic) having the same magnitude and phase as the harmonic current ih in the compensation current generation source 1B.
= Ih) is sent to the system 2 to be canceled with the harmonic current ih, the system (load) current is (ir) is limited to the fundamental wave current if, and the harmonic current (power) is compensated.

【0004】このようなアクティブフィルタ1として
は、種々の提案がなされているが、その性能は、負荷電
流irから高調波電流ihを検出して補償電流指令値i
c*(ic*=kih)を得る高調波電流検出器1A、
及び補償電流指令値ic*に応じて補償電流ic(ic
=in)を発生させる補償電流発生源1Bの特性に係わ
ってくるものである。
Various proposals have been made for such an active filter 1, but the performance thereof is such that the compensation current command value i is detected by detecting the harmonic current ih from the load current ir.
harmonic current detector 1A for obtaining c * (ic * = kih),
And the compensation current ic (ic
= In), which is related to the characteristic of the compensation current generating source 1B.

【0005】図3は、図2におけるアクティブフィルタ
1の高調波電流検出器1Aに相当し、前記補償電流指令
値ic*を求める補償電流指令値演算回路の従来例を示
すものである。
FIG. 3 corresponds to the harmonic current detector 1A of the active filter 1 shown in FIG. 2 and shows a conventional example of a compensation current command value calculation circuit for obtaining the compensation current command value ic *.

【0006】図3に示す従来の補償電流指令値演算回路
において、負荷電流ir(図3参照)を検出した負荷検
出電流irは、3相2相変換回路12により3相信号か
ら2相信号に変換され、更に、座標変換器13において
系統電源2(図3参照)の角速基準でもある基本周波の
電圧位相基準信号ωtにより回転座標変換されて基本周
波の直交座標上の基本波電流if(図3参照)の正相有
効分電流ipを含む有効分電流信号と正相無効分電流i
qを含む無効分電流信号に分離される。その結果、基本
波電流ifの正相有効分電流ipと正相無効分電流iq
は、それぞれ一定の直流成分として取り扱うことがで
き、アクティブフィルタの補償(除去)の対象外である
ため、次段のローパスフィルタ11,11′にて検出さ
れ、それぞれ突合せ回路15,15′にて前記負荷検出
電流ir(有効分、無効分)から減算され該負荷検出電
流irから除去される。
In the conventional compensation current command value calculation circuit shown in FIG. 3, the load detection current ir detecting the load current ir (see FIG. 3) is converted from a three-phase signal to a two-phase signal by the three-phase / two-phase conversion circuit 12. Further, the coordinate converter 13 performs the rotational coordinate conversion by the voltage phase reference signal ωt of the fundamental frequency which is also the angular velocity reference of the system power supply 2 (see FIG. 3), and the fundamental wave current if ( (See FIG. 3) Active component current signal including positive phase active component current ip and positive phase reactive component current i
It is separated into a reactive current signal including q. As a result, the positive phase active component current ip and the positive phase reactive component current iq of the fundamental wave current if
Can be treated as a constant DC component and are not subject to compensation (removal) by the active filter, so they are detected by the low-pass filters 11 and 11 'of the next stage, and are respectively detected by the matching circuits 15 and 15'. It is subtracted from the load detection current ir (effective portion, ineffective portion) and removed from the load detection current ir.

【0007】この場合、基本波正相無効分電流iqは、
アクティブフィルタが高周波補償のみを行う場合は、上
記のごときローパスフィルタで検出され除去されるが、
高調波電流補償のみならず無効電流iqの補償を行う場
合はこの直流成分を除去しない構成とする。
In this case, the fundamental positive-phase reactive current iq is
If the active filter only performs high frequency compensation, it will be detected and removed by the low pass filter as described above.
When not only the harmonic current compensation but also the reactive current iq compensation, this DC component is not removed.

【0008】このようにして、基本波正相分電流if
(有効分ip,無効分iq)が除去された負荷検出電流
irは、アクティブフィルタが補償する高調波電流成分
ih(有効分ihp、無効分ihq)のみとなるから、
この高調波電流成分ihを座標変換器13′にて座標逆
変換し、更に相変換器12′により3相信号に変換すれ
ば、アクティブフィルタの補償電流指令値ic*が得ら
れる。
In this way, the fundamental phase positive phase current if
The load detection current ir from which the (effective component ip, the ineffective component iq) is removed becomes only the harmonic current component ih (effective component ihp, ineffective component ihq) compensated by the active filter.
If this harmonic current component ih is subjected to coordinate reverse conversion by the coordinate converter 13 'and further converted into a three-phase signal by the phase converter 12', the compensation current command value ic * of the active filter can be obtained.

【0009】なお、一般に、アクティブフィルタ1(図
3参照)においては、回路損失があるため、補償電流発
生源1Bの直流側電圧が変化してしまい補償電流指令値
ic*どおりの補償電流icが得られなくなるので、前
記直流側電圧を一定に保つ制御ループを設け、直流側電
圧設定値Vsと直流側電圧検出値Vdとを比較し、その
比較偏差信号により電圧制御器14を制御し、その出力
である直流側電圧一定制御信号を突合せ回路16におい
て前記高調波有効分電流信号ihpに加算して補償電流
指令値ic*を回路損失分だけ増加させて補償するもの
である。
Generally, in the active filter 1 (see FIG. 3), since there is a circuit loss, the DC side voltage of the compensation current generating source 1B changes, and the compensation current ic as the compensation current command value ic * is obtained. Since it cannot be obtained, a control loop for keeping the DC side voltage constant is provided, the DC side voltage set value Vs is compared with the DC side voltage detection value Vd, and the voltage controller 14 is controlled by the comparison deviation signal. The constant DC voltage control signal, which is an output, is added to the harmonic effective component current signal ihp in the matching circuit 16 to increase the compensation current command value ic * by the amount of circuit loss for compensation.

【0010】[0010]

【発明が解決しようとする課題】以上のような従来の補
償電流指令値演算回路は、基本波正相分の有効分電流及
び無効分電流は直流成分として扱うことができその分離
が容易であるが、負荷不平衡などに伴い発生する2次調
波成分となる基本波逆相分電流については、その他の高
調波電流との区別、分離が容易にできないため、基本波
逆相分電流をもアクティブフィルタが補償する対象の補
償電流として演算してしまうことになる。
In the conventional compensation current command value arithmetic circuit as described above, the active component current and the reactive component current of the fundamental phase positive phase can be treated as a DC component, and the separation thereof is easy. However, the fundamental anti-phase component current, which is the second harmonic component generated due to load imbalance, cannot be easily distinguished and separated from other harmonic currents. It will be calculated as a compensation current to be compensated by the active filter.

【0011】したがって、アクティブフィルタは、負荷
不平衡などに発生する基本波逆相分電流をも補償するこ
とになるから、本来補償しようとする高調波電流成分が
増加したとき、アクティブフィルタ装置の出力容量の制
限からその高調波電流成分を補償することができないと
いう問題がある。すなわち、、実系統における基本波逆
相分電流(2次調波成分電流)は他の高調波電流に比較
しその割合が大きく、また、該基本波逆相分電流は低調
波の交流成分であるから、これら基本波逆相分電流の補
償分を含めその他の高調波電流成分の全てを補償しよう
とすると、その装置容量が増大し設備容量(設備費用)
に対し弊害を生じさせる。
Therefore, since the active filter also compensates for the fundamental-phase reverse-phase current that occurs due to load imbalance, etc., when the harmonic current component to be compensated for increases, the output of the active filter device increases. There is a problem that the harmonic current component cannot be compensated due to the capacity limitation. That is, the ratio of the fundamental wave anti-phase component current (second harmonic component current) in the actual system is larger than that of the other harmonic currents, and the fundamental wave anti-phase component current is a subharmonic AC component. Therefore, when trying to compensate for all other harmonic current components including compensation of the reverse-phase component current of these fundamental waves, the equipment capacity increases and the equipment capacity (equipment cost)
Cause an adverse effect on.

【0012】この基本波逆相分(2次調波分)電流の分
離方法としては、一般的には、2次調波のバンドパスフ
ィルタの挿入が考えられるが、過渡安定度、周波数変動
に対する位相差の影響などを考慮すると必ずしも良い方
法とはいえない。
As a method of separating the current of the opposite phase (second harmonic) of the fundamental wave, generally, a bandpass filter of the second harmonic can be inserted. It is not always a good method considering the influence of the phase difference.

【0013】また、アクティブフィルタ装置の容量の関
係で基本波逆相分(2次調波成分)電流をリミット制限
しようとしても、その基本波逆相分電流が交流成分であ
るため、その取り扱いが非常に困難となり実現すること
ができない。
Further, even if an attempt is made to limit the current of the fundamental wave anti-phase component (second harmonic component) due to the capacity of the active filter device, the fundamental wave anti-phase component current is an alternating current component, so that it is handled. It will be very difficult to achieve.

【0014】本発明は、以上の点に鑑みてなされたもの
であり、特に、負荷不平衡時などに伴って発生する基本
波逆相分電流をも系統(負荷)電流から容易に分離し補
償の対象外とすることができるなど、負荷状況に応じた
補償対象電流の選択ができ、且つ、各補償電流のリミッ
ト値を可変制御して負荷の状況によらず常に装置容量1
00%までの出力を出すことを可能とした補償電流指令
値演算回路を有するアクティブフィルタを得ることを目
的とするものである。
The present invention has been made in view of the above points, and in particular, the reverse-phase component current of the fundamental wave generated due to load imbalance is easily separated from the system (load) current and compensated. It is possible to select the compensation target current according to the load condition, such as being excluded from the target, and variably control the limit value of each compensation current so that the device capacity is always 1 regardless of the load condition.
An object of the present invention is to obtain an active filter having a compensation current command value calculation circuit capable of outputting up to 00%.

【0015】[0015]

【課題を解決するための手段および作用】本発明におい
て、上記の課題を解決するための手段およびその作用
は、電源に対して負荷と並列に接続され、負荷電流から
該負荷電流に含まれる高調波成分を検出して補償電流指
令値を演算する補償電流指令値演算回路と、該補償電流
指令値演算回路により演算された補償電流指令値を制御
信号として入力し、前記高調波成分を打ち消す補償電流
を出力する補償電流発生手段とで構成された電力用アク
ティブフィルタであって、前記補償電流指令値演算回路
は、負荷電流を3相2相変換して電源電圧位相による回
転座標変換し、この回転座標変換により基本波有効成分
と基本波無効成分とに分離して夫々を除去し、次に電源
角周波数の2倍の周波数による回転座標変換して負荷不
平衡などにともなう基本波逆相分の分離、除去を行って
高調波成分を取り出し、且つ、前記分離した逆相成分を
再度加算して逆相成分の補償を可能とするとともに、こ
れら各成分の電流値を所定値に制限する高調波成分電流
リミット回路と基本波逆相分電流リミット回路を設け、
所定値に制限された高調波成分及び逆相成分を電源角周
波数の2倍の周波数による回転座標変換によりもどし
て、先に分離した基本波無効成分を、基本波無効電流リ
ミット回路を介して加算し、電源周期の回転座標変換し
た後2相3相変換して3相の補償電流値指令値を得ると
ともに、前記高調波成分,基本波逆相分及び基本波無効
成分の電流を入力し、高調波成分電流リミット回路,基
本波逆相分電流リミット回路および基本波無効電流リミ
ット回路のリミット値を可変制御するリミット値可変制
御手段を設け、いずれか一方のリミット回路の電流がリ
ミット値に達し、他方のリミット回路の電流がリミット
値に達していないときは、リミット値に達した方のリミ
ット回路のリミット値を変更して、負荷の状態によらず
装置容量に見合った出力を出せるようにしたことを特徴
とする。
In the present invention, the means for solving the above-mentioned problems and the function thereof are connected to a power source in parallel with a load, and a harmonic included in the load current from the load current. A compensation current command value calculation circuit for detecting a wave component and calculating a compensation current command value, and a compensation for canceling the harmonic component by inputting the compensation current command value calculated by the compensation current command value calculation circuit as a control signal. A compensating current generating means for outputting a current, which is an active filter for electric power, wherein the compensating current command value arithmetic circuit converts a load current into three phases and two phases to perform rotational coordinate conversion according to a power supply voltage phase. Rotational coordinate transformation separates the fundamental wave effective component and fundamental wave ineffective component to remove them, and then performs rotational coordinate transformation at a frequency twice the power source angular frequency to accompany load imbalance. The opposite phase component of the main wave is separated and removed to extract the harmonic component, and the separated opposite phase component is added again to enable compensation of the opposite phase component, and the current value of each of these components is set to a predetermined value. A harmonic component current limit circuit that limits the value and a fundamental wave antiphase current limit circuit are provided.
The harmonic component and anti-phase component limited to the specified value are returned by rotational coordinate conversion with a frequency twice the angular frequency of the power supply, and the fundamental reactive component separated earlier is added via the fundamental reactive current limit circuit. Then, after the rotational coordinate conversion of the power supply cycle is performed, the two-phase three-phase conversion is performed to obtain the three-phase compensation current value command value, and the currents of the harmonic component, the fundamental wave antiphase component, and the fundamental wave reactive component are input, A limit value variable control means for variably controlling the limit value of the harmonic component current limit circuit, the fundamental wave reverse phase current limit circuit, and the fundamental wave reactive current limit circuit is provided, and the current of either one of the limit circuits reaches the limit value. , If the current of the other limit circuit has not reached the limit value, change the limit value of the limit circuit that reached the limit value to match the device capacity regardless of the load condition. Characterized in that with the capability to force.

【0016】また、リミット値可変制御手段によるリミ
ット値の変更にあらかじめ成分毎の優先順位を設定して
優先制御を可能とするものである。
In addition, priority control can be performed by setting a priority for each component in advance in changing the limit value by the limit value variable control means.

【0017】[0017]

【実施例】本発明の補償電流指令値演算回路の実施例
を、図1に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a compensation current command value calculation circuit of the present invention will be described with reference to FIG.

【0018】図1において、ローパスフィルタ11,1
1′、相変換器12,12′、座標変換器13,13′
及び電圧制御器14は、図3に示す従来の補償電流指令
値演算回路に用いられるものと同一機能を有する同一機
器を示すものである。
In FIG. 1, low-pass filters 11 and 1
1 ', phase converters 12, 12', coordinate converters 13, 13 '
The voltage controller 14 indicates the same device having the same function as that used in the conventional compensation current command value calculation circuit shown in FIG.

【0019】本発明の実施例においては、従来の補償電
流指令演算回路に、系統2(図3参照)の基本周波の2
倍周波数の電圧位相基準信号2ωtによる座標変換器1
9、2次調波成分(基本波逆相分)を検出するローパス
フィルタ18,18′及び突合せ回路20,20′から
なる基本波逆相成分(2次調波成分)分離除去回路、並
びに座標を元に戻すための系統の基本周波の2倍周波数
の電圧位相基準信号2ωtによる座標逆変換器19′お
よびアクティブフィルタの装置容量の制限に伴うリミッ
ト回路、即ち、基本波無効分電流リミット回路22、高
調波成分リミット回路23、基本波逆相分電流リミット
回路24を付加し、更に、これらの電流リミット回路の
リミット値を可変制御するリミット値可変制御回路25
を設けたものである。
In the embodiment of the present invention, the conventional compensation current command calculation circuit is added to the fundamental frequency 2 of the system 2 (see FIG. 3).
Coordinate converter 1 using voltage phase reference signal 2ωt of double frequency
9. A fundamental wave anti-phase component (second harmonic component) separation / removal circuit including low pass filters 18 and 18 'for detecting a second harmonic component (fundamental anti-phase component) and a matching circuit 20, 20', and coordinates For limiting the device capacity of the coordinate inverse converter 19 'and the active filter by the voltage phase reference signal 2ωt having the double frequency of the fundamental frequency of the system, that is, the fundamental reactive current limiting circuit 22. , A harmonic component limit circuit 23, a fundamental wave reverse phase current limit circuit 24, and a limit value variable control circuit 25 for variably controlling the limit values of these current limit circuits.
Is provided.

【0020】よって、図3と同じ部分又は相当部分に
は、これと同一の符号を付して説明を省略し、新たに付
加した本発明の実施例について詳細に説明する。
Therefore, the same or corresponding portions as those in FIG. 3 are designated by the same reference numerals and the description thereof will be omitted, and the newly added embodiment of the present invention will be described in detail.

【0021】しかして、図1の22はローパスフィルタ
11′で検出された基本波正相無効分電流i1qから最
小限の基本波正相無効分電流i1q′をアクティブフィ
ルタの補償対象とするための基本波無効分電流リミット
回路、23は補償対象とする高調波成分(有効分、無効
分)電流ihの上限を定めるための高調波成分電流リミ
ット回路、24はローパスフィルタ18,18′で検出
された基本波逆相分(有効分、無効分)電流i2から最
小限の基本波逆相分電流をアクティブフィルタの補償対
象とするための基本波逆相電流リミット回路、25−
1,25−2,26−1,26−2はそれぞれ所定値以
下の電流はそのまま通過させ所定値以上の電流に対して
のみ前記所定値に制限するリミッタである。
Reference numeral 22 in FIG. 1 is for making the active filter compensation target a minimum fundamental wave positive phase reactive current i1q 'from the fundamental wave positive phase reactive current i1q detected by the low-pass filter 11'. A fundamental wave reactive current limit circuit, 23 is a harmonic component current limit circuit for determining the upper limit of the harmonic component (active component, reactive component) current ih to be compensated, and 24 is detected by the low-pass filters 18, 18 '. A fundamental wave anti-phase current limit circuit for making a minimum fundamental wave anti-phase component current i2 from the fundamental wave anti-phase component current (active component, reactive component) i2 to be an active filter compensation target, 25-
Reference numerals 1, 25-2, 26-1, and 26-2 are limiters that allow currents below a predetermined value to pass through as they are and limit only currents above a predetermined value to the predetermined value.

【0022】25はリミット値可変制御回路で、基本波
正相無効成分,基本波逆相分および高調波成分の各補償
電流を取り込み、これら各補償電流からトータルの出力
容量を演算し、各電流リミット回路8,9,12のリミ
ット値を可変制御し、補償電流のトータルが装置容量を
超えない場合は、ある成分がリミット値に達していて
も、そのリミット値の上限を変更して装置容量100%
まで出力できるようにする。
Reference numeral 25 denotes a variable limit value control circuit, which takes in the respective compensation currents of the fundamental wave in-phase reactive component, the fundamental wave anti-phase component and the harmonic component, calculates the total output capacity from these compensation currents, and calculates the respective currents. If the limit values of the limit circuits 8, 9, 12 are variably controlled and the total compensation current does not exceed the device capacity, the upper limit of the limit value is changed and the device capacity is changed even if a certain component reaches the limit value. 100%
Up to output.

【0023】次に、この補償電流指令値演算回路の動作
を説明する。
Next, the operation of the compensation current command value calculation circuit will be described.

【0024】系統(負荷)電流を検出した3相負荷検出
電流irは、相数変換回路12により3相信号から2相
信号に変換され、更に、座標変換器13において系統の
基本周波の電圧位相基準信号ωtにより回転座標変換さ
れ、前記系統の基本周波の直交座標上における基本波正
相分電流i1の正相有効分電流i1pを含む有効分電流
と正相無効電流i1qを含む無効分電流とに分離され
る。この直交座標上における正相有効分電流i1pと正
相無効分電流i1qは、それぞれ一定の直流成分として
取り扱うことができ、アクティブフィルタの補償の対象
外であるから、次段のローパスフィルタ11,11′に
て検出し分離して、それぞれ突合せ回路15,15′に
て2相負荷検出電流irから減算することにより該2相
負荷検出電流irから除去される。
The three-phase load detection current ir for detecting the system (load) current is converted from the three-phase signal to the two-phase signal by the phase number conversion circuit 12, and further, in the coordinate converter 13, the voltage phase of the fundamental frequency of the system. Rotational coordinate conversion is performed by the reference signal ωt, and an active component current including the positive phase active component current i1p of the fundamental wave positive phase active current i1 and a reactive component current including the positive phase reactive current i1q on the orthogonal coordinates of the fundamental frequency of the system. Is separated into The positive-phase effective component current i1p and the positive-phase reactive component current i1q on the Cartesian coordinates can be treated as constant DC components and are not covered by the active filter compensation. ′ Is detected and separated, and the matching circuits 15 and 15 ′ are subtracted from the two-phase load detection current ir to remove the two-phase load detection current ir.

【0025】この場合、基本波正相無効分電流i1q
は、アクティブフィルタが高調波補償のみを行う場合
は、上記のごとくローパスフィルタ11′で除去し補償
対象外にされるが、高調波電流補償のみならず無効電流
補償をも行う場合はこの直流成分を除去しない構成、す
なわち、ローパスフィルタ11のみとするのは当然であ
る。
In this case, the fundamental phase positive phase reactive current i1q
When the active filter performs only harmonic compensation, it is removed by the low-pass filter 11 'as described above and excluded from compensation. However, when performing not only harmonic current compensation but also reactive current compensation, this DC component Is not removed, that is, only the low-pass filter 11 is used.

【0026】更に、突合せ回路15,15′にて基本波
正相分電流i1の正相有効分電流i1p及び正相無効分
電流i1qが除去された2相負荷検出電流irは、系統
の基本周波の2倍周数の電圧位相基準信号2ωtによる
座標変換器19により回転座標変換され、系統の2倍周
波の直交座標上における基本波逆相分電流、i2の逆相
有効分電流i2pを含む有効分電流と逆相無効分電流i
2qを含む無効分電流とに分離され、分離された逆相有
効分電流i2pと逆相無効分電流i2qは、それぞれ一
定の直流成分として取り扱うことができるようになる。
Further, the two-phase load detection current ir from which the positive-phase active component current i1p and the positive-phase reactive component current i1q of the fundamental wave positive-phase component current i1 are removed by the matching circuits 15 and 15 'is the fundamental frequency of the system. The coordinate conversion unit 19 uses the voltage phase reference signal 2ωt having a frequency of 2 times the rotation frequency to perform the rotational coordinate conversion, and the effective phase current i2p of the fundamental wave on the Cartesian coordinates of the double frequency of the system and the effective phase current i2p of the reverse phase of i2 Component current and reverse-phase reactive component current i
The active component current i2p and the active component reactive current i2q that have been separated are separated into a reactive current containing 2q, and can be treated as constant DC components.

【0027】そこで、この実施例においては、基本波逆
相分電流i2をもアクティブフィルタの補償の対象外と
するものであるから、基本波逆相分電流i2の逆相有効
分電流i2pと逆相無効分電流i2qを次段のローパス
フィルタ18,18′にて検出分離して、それぞれ突合
せ回路20,20′にて前記2相負荷検出電流irから
減算することにより、前段の基本波正相分電流i1と同
様に、基本波逆相分(2次調波成分)電流i2も前記2
相負荷検出電流irから除去される。
Therefore, in this embodiment, since the fundamental wave anti-phase component current i2 is also excluded from the compensation of the active filter, it is opposite to the anti-phase effective component current i2p of the fundamental wave anti-phase component current i2. The phase reactive current i2q is detected and separated by the low-pass filters 18 and 18 'of the next stage, and subtracted from the two-phase load detection current ir by the matching circuits 20 and 20', respectively. Similarly to the component current i1, the fundamental phase antiphase component (second harmonic component) current i2 is also equal to
It is removed from the phase load detection current ir.

【0028】基本波正相分電流i1と基本波逆相分電流
i2が除去された前記2相負荷検出電流irは、アクテ
ィブフィルタの補償対象である高調波成分電流のみとな
り、座標を元に戻すための系統の基本周波の2倍周波の
電圧位相基準信号2ωtによる座標逆変換器19′、基
本周波の電圧位相基準信号ωtによる座標逆変換器1
3′、及び相変換器12′を介することによりアクティ
ブフィルタの3相補償電流指令値ic*が得られる。
The two-phase load detection current ir from which the fundamental wave positive-phase component current i1 and the fundamental wave anti-phase component current i2 are removed becomes only the harmonic component current which is the compensation target of the active filter, and the coordinates are restored. The coordinate inverse converter 19 'based on the voltage phase reference signal 2ωt of the double frequency of the fundamental frequency of the system, and the coordinate inverse transformer 1 based on the voltage phase reference signal ωt of the fundamental frequency
The three-phase compensation current command value ic * of the active filter is obtained through 3'and the phase converter 12 '.

【0029】以下、リミット回路の動作について説明を
する。
The operation of the limit circuit will be described below.

【0030】アクティブフィルタの補償の対象である高
調波成分電流ihについては、高調波成分電流リミット
回路23において、基本波正相電流i1と基本波逆相分
電流i2が序御された高調波成分(有効分ihp,無効
分ihd)電流ihを取り入れ、その高調波成分電流i
hがある所定値を超えるとリミッタ25−1,25−2
にリミット信号を出力し、そのリミッタ25−1,25
−2を作動させ高調波成分電流ihを前記所定値に制限
することにより前記所定値を下回る高調波成分電流ih
ついてのみアクティブフィルタの補償対象とするもので
ある。また、アクティブフィルタの補償の対象外とした
基本波正相無効分電流i1qに対して、基本波無効分電
流リミット回路22において、ローパスフィルタ11′
により検出分離された基本波正相無効分電流i1qを取
り入れ、所定値を下回る基本波正相無効分電流i1q′
を出力して突合せ回路16′にて既に基本波正相無効分
電流i1qが除去されている2相負荷検出電流irに加
算することによって、前記所定値を下回る基本波正相無
効分電流i1q′に対してはアクティブフィルタの補償
対象とするものである。更に、アクティブフィルタの補
償の対象外とした基本波逆相分電流i2に対しても、基
本波逆相分電流リミット回路24において、ローパスフ
ィルタ18,18′により検出分離された基本波逆相分
(有効分i2p,無効分i2q)電流i2を取り入れ、
該基本波逆相分電流i2が所定値を超えるとリミッタ2
6−1,26−2にリミット信号を出力し、該リミット
回路26−1,26−2を作動させ基本波逆相分電流i
2をある所定値に制限することにより該所定値を下回る
基本波逆相分電流i2′を出力して突合せ回路21,2
1′にて既に基本波逆相分電流i2が除去されている2
相負荷検出電流irに敢えて加算することによって、前
記所定値を下回る基本波逆相分電流i2′に対してもア
クティブフィルタの補償の対象とするものである。
Regarding the harmonic component current ih to be compensated by the active filter, the harmonic component current limit circuit 23 controls the harmonic component current i1 and the fundamental wave anti-phase component current i2. (Effective component ihp, reactive component ihd) Incorporating the current ih, its harmonic component current i
If h exceeds a predetermined value, the limiters 25-1, 25-2
Limit signal is output to the limiters 25-1, 25
-2 is activated to limit the harmonic component current ih to the predetermined value, thereby lowering the harmonic component current ih below the predetermined value.
Only the active filter is subject to compensation. Further, in the fundamental wave reactive current limit circuit 22, the low pass filter 11 ′ is applied to the fundamental wave positive phase reactive current i1q which is not subject to the compensation of the active filter.
Incorporating the fundamental wave positive phase reactive current i1q detected and separated by, the fundamental wave positive phase reactive current i1q ′ below a predetermined value
Is output and added to the two-phase load detection current ir from which the fundamental wave positive phase reactive current i1q has already been removed by the matching circuit 16 ', whereby the fundamental wave positive phase reactive current i1q' below the predetermined value is added. Are subject to compensation of the active filter. Further, even with respect to the fundamental wave anti-phase component current i2 that is not subject to compensation by the active filter, the fundamental wave anti-phase component current limit circuit 24 detects the fundamental wave anti-phase component current separated by the low-pass filters 18 and 18 '. (Effective part i2p, ineffective part i2q) Taking in current i2,
If the fundamental-phase antiphase current i2 exceeds a predetermined value, the limiter 2
A limit signal is output to 6-1 and 26-2, the limit circuits 26-1 and 26-2 are operated, and the fundamental wave antiphase current i
By limiting 2 to a certain predetermined value, a fundamental wave antiphase current i2 ′ that is less than the predetermined value is output to output the matching circuits 21 and 2.
At 1 ′, the fundamental wave antiphase current i2 has already been removed 2
By intentionally adding to the phase load detection current ir, the active filter compensation target is also applied to the fundamental wave reverse phase component current i2 ′ below the predetermined value.

【0031】本来、アクティブフィルタは、高調波成分
電流ihを補償の対象とし、基本波正相無効分電流i1
qや基本波逆相分電流i2は補償の対象とするものであ
るが、叙上のように、それら基本波正相無効分電流i1
qや基本波逆相分電流i2は系統2(図2参照)に対し
悪影響を及ぼすものであるから何等かの方法で系統(負
荷)電流から除去する必要があるものである。
Originally, the active filter compensates the harmonic component current ih, and the fundamental wave positive phase reactive current i1.
Although q and the fundamental wave anti-phase component current i2 are to be compensated, as described above, the fundamental wave positive phase reactive component current i1
Since q and the fundamental wave anti-phase component current i2 have an adverse effect on the system 2 (see FIG. 2), they must be removed from the system (load) current by some method.

【0032】したがって、この実施例回路によれば、系
統に悪影響を及ぼす各成分電流に対して所定のリミット
値を有するリミット回路22,23,24を施すことに
より、アクティブフィルタ装置容量、及び系統(負荷)
電流irに含まれている高調波成分電流ih、基本波正
相無効分電流i1q、基本波逆相分電流i2の大きさに
応じて、それらの成分電流を補償の対象とすれば、アク
ティブフィルタ装置のみを施すだけで系統2(図2参
照)に悪影響を及ぼす成分電流の全てを系統負荷電流i
fから除去することも可能な補償電流指令値ic*が得
られる。
Therefore, according to the circuit of this embodiment, by providing the limit circuits 22, 23, and 24 having a predetermined limit value for each component current that adversely affects the system, the active filter device capacity and the system ( load)
Depending on the magnitudes of the harmonic component current ih, the fundamental positive-phase reactive current i1q, and the fundamental anti-phase negative current i2 included in the current ir, if these component currents are to be compensated, the active filter All of the component currents that adversely affect the system 2 (see FIG. 2) only by applying the device are analyzed by the system load current i.
A compensation current command value ic * that can be removed from f is obtained.

【0033】このように、高調波成分、基本波逆相成分
及び基本波無効成分の夫々に電流リミット回路を設け
て、これらの電流を一定値以下に制御すると、それぞれ
のリミット値のトータルがアクティブフィルタの装置容
量の上限値となり、これら全ての成分がそれぞれのリミ
ット値に達した場合に限って装置容量100%の出力が
出せることになる。そこで、本発明においては、更に、
負荷の状況によって、ある成分はリミット値を超える
が、他の成分はリミット値を下回っているということが
生じて装置容量に余裕がある場合は、リミット値可変制
御回路25はそれを判断してそのリミット値に達した電
流リミット回路のリミット値の上限設定値を上げ、すべ
ての成分の補償電流値がリミット値がリミット値に達す
るように制御する。このことにより、装置容量100%
まで出力を出すことを可能とするものである。
As described above, when the current limit circuits are provided for the harmonic component, the fundamental wave anti-phase component and the fundamental wave ineffective component, respectively, and when these currents are controlled to be equal to or less than the fixed values, the total of the respective limit values becomes active. It becomes the upper limit value of the device capacity of the filter, and only when all of these components reach their respective limit values, the output of the device capacity of 100% can be output. Therefore, in the present invention, further,
If some components exceed the limit value and other components fall below the limit value depending on the load situation, and the device capacity has a margin, the limit value variable control circuit 25 judges it. The upper limit setting value of the current limit circuit that has reached the limit value is increased, and the compensation current values of all components are controlled so that the limit values reach the limit values. This makes the device capacity 100%
It is possible to output up to.

【0034】なお、図1に示す実施例回路における、ア
クティブフィルタの回路損失に伴う電流発生源(図2、
1B)の直流側電圧の変動による補償電流指令値ic*
の補償を行うため、前記直流側電圧を一定に保つ制御ル
ープを設け、直流側電圧設定値Vsと直流側電圧検出値
Vdとを比較し、その比較偏差信号により電圧制御器1
4を制御し、その出力である直流側電圧一定制御信号を
突合せ回路16において前記負荷検出電流irの高調波
有効分電流ihpに加算することにより補償電流指令値
ic*を回路損失分だけ増加させ補償することは、図3
に示す従来の補償電流指令値演算回路と同様である。
In the circuit of the embodiment shown in FIG. 1, a current source (FIG. 2,
1B) Compensation current command value ic * due to fluctuation of DC side voltage
In order to compensate for the above, a control loop for keeping the DC side voltage constant is provided, the DC side voltage set value Vs and the DC side voltage detection value Vd are compared, and the voltage controller 1 is based on the comparison deviation signal.
4 and adds the constant DC side voltage control signal, which is the output, to the harmonic effective current ihp of the load detection current ir in the matching circuit 16 to increase the compensation current command value ic * by the circuit loss. Compensating is shown in FIG.
This is the same as the conventional compensation current command value calculation circuit shown in FIG.

【0035】また、リミット値可変制御回路において、
ある保障電流成分を優先的に補償し、装置容量に余裕が
あれば、その他の補償成分に、その部分を割り当てるこ
とで優先制御を可能とすることができる。
In the limit value variable control circuit,
If a certain guaranteed current component is compensated preferentially and there is a margin in the device capacity, priority control can be made possible by allocating that portion to other compensation components.

【0036】[0036]

【発明の効果】以上のとおり、基本波正相分電流や基本
波逆相分電流など各成分電流を直流成分として取り扱う
ことができることを基本とした本発明の補償電流指令値
演算回路によれば、系統の負荷(系統)電流を検出した
負荷検出電流から基本波正相分電流だけではなく基本波
逆相分電流も簡単に分離することができるので、系統に
悪影響を及ぼす高調波電流成分はもちろんのこと、基本
波正相分電流や基本波逆相分電流など負荷状況に応じて
補償対象電流の選択ができ、負荷(系統)電流からそれ
ら補償対象電流を除去することができる。また、負荷検
出電流からの各成分電流の分離は、単に直流分を分離す
ればよい時定数の長い一次遅れ要素の簡単なフィルタの
使用で充分であるにもかかわらず、負荷変動に対する過
渡安定度がよく、かつ、系統電源周波数の変動に対して
も逐次電源周波数による回転座標変換により各成分電流
の直流値に変動を与えない周波数安定度のよいローパス
フィルタによる分離動作が得られる。
As described above, according to the compensation current command value calculation circuit of the present invention, which is based on the fact that each component current such as the fundamental wave positive phase component current and the fundamental wave antiphase component current can be treated as a DC component. , It is possible to easily separate not only the positive-phase component current of the fundamental wave but also the negative-phase component current of the fundamental wave from the load detection current that has detected the load (system) current of the system. Of course, the compensation target currents such as the fundamental wave positive phase component current and the fundamental wave antiphase component current can be selected according to the load condition, and the compensation target currents can be removed from the load (system) current. Moreover, in order to separate each component current from the load detection current, it is sufficient to simply separate the direct current component, but it is sufficient to use a simple filter with a first-order lag element having a long time constant, but the transient stability against load fluctuation is sufficient. In addition, even if the system power supply frequency fluctuates, the separation operation by the low-pass filter having a good frequency stability that does not fluctuate the DC value of each component current can be obtained by the rotational coordinate conversion by the successive power supply frequency.

【0037】更に、各成分電流を直流成分として取り扱
うことができることは、各成分電流に対するリミット回
路の構成も簡単になり容易に設置することができるか
ら、リミット回路の設置により、アクティブフィルタ装
置容量の算定が容易になるばかりではなく、実際の運転
においてフィルタ装置が過負荷状態になることが防止さ
れると共に、フィルタの許容容量内において所定量の基
本波正相分無効電流、基本波逆相分電流の除去を行うこ
ともできる。
Further, since each component current can be treated as a DC component, the structure of the limit circuit for each component current can be simplified and can be easily installed. Therefore, by installing the limit circuit, the capacity of the active filter device can be reduced. Not only is the calculation easier, but the filter device is prevented from becoming overloaded during actual operation, and a certain amount of the fundamental wave positive-phase reactive current and fundamental wave anti-phase It is also possible to remove the current.

【0038】また、高調波成分,基本波逆相成分および
基本波無効成分にそれぞれ電流リミット回路を設けて、
一定値以内に制御する場合、それぞれのリミット値のト
ータルが装置容量の上限値となり、これらすべての成分
がそれぞれのリミット値に達した場合に限って装置容量
100%の出力となる。
Further, a current limit circuit is provided for each of the harmonic component, the fundamental wave anti-phase component and the fundamental wave ineffective component,
When controlling within a fixed value, the total of the respective limit values becomes the upper limit value of the device capacity, and the device capacity 100% is output only when all these components reach their respective limit values.

【0039】本発明は上記のように、高調波成分,基本
波逆相分および基本波無効分の各補償電流のリミット値
を個々に可変制御ができるようにし、各成分がリミット
値に達する制御をするようにしたので、負荷の状態によ
らず、常にアクティブフィルタの装置容量100%まで
の出力を出すことができる。
As described above, the present invention makes it possible to individually variably control the limit value of each compensation current of the harmonic component, the fundamental wave anti-phase component and the fundamental wave reactive component, and the control in which each component reaches the limit value. Since this is done, it is possible to always output up to 100% of the device capacity of the active filter regardless of the load condition.

【0040】また、各成分リミット値の変更課程に、優
先順位をつけて補償電流の優先制御が可能となる等の優
れた効果を奏する。
Further, there is an excellent effect that priority is given to the compensation current by giving priority to the changing process of each component limit value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のアクティブフィルタの補償電流指令値
演算回路の実施例。
FIG. 1 is an embodiment of a compensation current command value calculation circuit for an active filter according to the present invention.

【図2】アクティブフィルタの基本原理図。FIG. 2 is a basic principle diagram of an active filter.

【図3】従来のアクティブフィルタの補償電流指令値演
算回路。
FIG. 3 shows a compensation current command value calculation circuit for a conventional active filter.

【符号の説明】[Explanation of symbols]

1…アクティブフィルタ 2…配電系統 3…系統負荷 11,11′,18,18′…ローパスフィルタ 12,12′…相変換器 13,13′,19,19′…座標変換器 22…基本波無効分電流リミット回路 23…高調波成分電流リミット回路 24…基本波逆相分電流リミット回路 25…リミット値可変制御回路。 1 ... Active filter 2 ... power distribution system 3 ... Grid load 11, 11 ', 18, 18' ... Low-pass filter 12, 12 '... Phase converter 13, 13 ', 19, 19' ... Coordinate converter 22 ... Basic wave reactive current limit circuit 23 ... Harmonic component current limit circuit 24 ... Basic wave reverse phase current limit circuit 25 ... Variable limit value control circuit.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電源に対して負荷と並列に接続され、負
荷電流から該負荷電流に含まれる高調波成分を検出して
補償電流指令値を演算する補償電流指令値演算回路と、
該補償電流指令値演算回路により演算された補償電流指
令値を制御信号として入力し、前記高調波成分を打ち消
す補償電流を出力する補償電流発生手段とで構成された
電力用アクティブフィルタであって、前記補償電流指令
値演算回路は、負荷電流を3相2相変換して電源電圧位
相により回転座標変換し、この回転座標変換により基本
波有効成分と基本波無効成分とに分離して夫々を除去
し、次に電源角周波数の2倍の周波数による回転座標変
換して負荷不平衡などにともなう基本波逆相分の分離、
除去を行って高調波成分を取り出し、且つ、前記分離し
た逆相成分を再度加算して逆相成分の補償を可能とする
とともに、これら各成分の電流値を所定値に制限する高
調波成分電流リミット回路と基本波逆相分電流リミット
回路を設け、所定値に制限された高調波分及び逆相成分
を電源角周波数の2倍の周波数による回転座標変換によ
りもどして、先に分離した基本波無効成分を、基本波無
効電流リミット回路を介して加算し、電源周期の回転座
標変換した後2相3相変換して3相の補償電流指令値を
得るとともに、前記高周波成分,基本波逆相分及び基本
波無効成分の電流を入力し、高調波成分電流リミット回
路,基本波逆相分電流リミット回路および基本波無効電
流リミット回路のリミット値を可変制御するリミット値
可変制御手段を設け、いずれか一方のリミット回路の電
流がリミット値に達し、他方のリミット回路の電流がリ
ミット値に達していないときは、リミット値に達した方
のリミット回路のリミット値を変更して、負荷の状態に
よらず装置容量に見合った出力を出せるようにしたこと
を特徴とする電力用アクティブフィルタ。
1. A compensating current command value calculating circuit, which is connected to a power source in parallel with a load and detects a harmonic component contained in the load current from the load current to calculate a compensating current command value.
An active power filter comprising: a compensation current command value calculated by the compensation current command value calculation circuit as a control signal; and a compensation current generating means for outputting a compensation current for canceling the harmonic component, The compensation current command value calculation circuit converts the load current into three phases and two phases and performs rotation coordinate conversion according to the power supply voltage phase, and by this rotation coordinate conversion, the fundamental wave effective component and the fundamental wave ineffective component are separated and removed. Then, the rotational coordinate conversion at a frequency twice the angular frequency of the power source is performed to separate the reverse phase of the fundamental wave due to load imbalance,
A harmonic component current is obtained by removing the harmonic component, removing the harmonic component again, and adding the separated negative phase component again to enable compensation of the negative component, and limiting the current value of each component to a predetermined value. A limit circuit and a fundamental wave anti-phase component current limit circuit are provided, and the harmonic component and the anti-phase component limited to a predetermined value are returned by rotational coordinate conversion with a frequency twice the angular frequency of the power supply, and the fundamental wave separated first The reactive components are added through a fundamental wave reactive current limit circuit, the rotational coordinates of the power supply cycle are converted, and then the two-phase and three-phase conversion is performed to obtain a three-phase compensation current command value. Minute variable and fundamental wave reactive component currents are input, and a limit value variable control means is provided to variably control the limit values of the harmonic component current limit circuit, fundamental wave anti-phase component current limit circuit, and fundamental wave reactive current limit circuit. , If the current of one of the limit circuits reaches the limit value and the current of the other limit circuit does not reach the limit value, change the limit value of the limit circuit of the one that reached the limit value, An active filter for electric power, characterized in that an output suitable for the device capacity can be output regardless of the state.
【請求項2】 前記リミット値可変制御手段によるリミ
ット値の変更にあらかじめ成分毎の優先順位を設定した
ことを特徴とする請求項1記載の電力用アクティブフィ
ルタ。
2. The active filter for electric power according to claim 1, wherein priority is set in advance for each component in changing the limit value by the limit value variable control means.
JP06144995A 1995-03-22 1995-03-22 Active filter for electric power Expired - Lifetime JP3444011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06144995A JP3444011B2 (en) 1995-03-22 1995-03-22 Active filter for electric power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06144995A JP3444011B2 (en) 1995-03-22 1995-03-22 Active filter for electric power

Publications (2)

Publication Number Publication Date
JPH08265971A JPH08265971A (en) 1996-10-11
JP3444011B2 true JP3444011B2 (en) 2003-09-08

Family

ID=13171385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06144995A Expired - Lifetime JP3444011B2 (en) 1995-03-22 1995-03-22 Active filter for electric power

Country Status (1)

Country Link
JP (1) JP3444011B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19936873B4 (en) * 1999-08-05 2006-05-24 Rolf Louis circuitry
JP5019823B2 (en) * 2006-08-16 2012-09-05 三菱電機株式会社 Reactive power compensator
CN104113065A (en) * 2014-07-21 2014-10-22 国家电网公司 Amplitude limiting method for output current of active power filter
KR20170027178A (en) * 2015-09-01 2017-03-09 서울대학교산학협력단 Power conversion system having filters utilizing the phase of voltage harmonics
CN106849135B (en) * 2017-03-10 2019-04-19 湖南大学 The power/current quality Synergistic method of microgrid inverter and active filter

Also Published As

Publication number Publication date
JPH08265971A (en) 1996-10-11

Similar Documents

Publication Publication Date Title
KR100934311B1 (en) Inverter device
US5909366A (en) Controller for power transducers
JP2714195B2 (en) Voltage fluctuation and harmonic suppression device
JPH011429A (en) Reactive power regulator
JP5051127B2 (en) Power converter and control method thereof
JP3444011B2 (en) Active filter for electric power
JP3742316B2 (en) Power converter
JP3561119B2 (en) Synchronization control method, frequency detection method, and synchronization control device
JPH11262265A (en) Converter controlling device
JP4971758B2 (en) Power converter
JPH09149553A (en) Active filter
JP3261852B2 (en) Active filter compensation current command value calculation circuit
JP3378410B2 (en) Active filter
JP3444030B2 (en) Active filter
JP2005003530A (en) Phase detector
JP3505626B2 (en) Power converter and power converter controller
JPH10201099A (en) Active filter
JP2774246B2 (en) Control device for current source converter
JP3271319B2 (en) Current detector
JP3494677B2 (en) Voltage type inverter device
JP6640317B1 (en) Self-excited reactive power compensator
JP2839702B2 (en) Power / harmonic current / negative phase current detection circuit
JPH1080200A (en) Method and apparatus for control of vector of induction motor
JPH07115770A (en) Control system for power converter
JP4279520B2 (en) Control device for self-excited power converter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 10

EXPY Cancellation because of completion of term