JP3378275B2 - Porous sintered substrate, method for producing the same, and impregnated cathode using the same - Google Patents

Porous sintered substrate, method for producing the same, and impregnated cathode using the same

Info

Publication number
JP3378275B2
JP3378275B2 JP24940492A JP24940492A JP3378275B2 JP 3378275 B2 JP3378275 B2 JP 3378275B2 JP 24940492 A JP24940492 A JP 24940492A JP 24940492 A JP24940492 A JP 24940492A JP 3378275 B2 JP3378275 B2 JP 3378275B2
Authority
JP
Japan
Prior art keywords
porous sintered
sintered substrate
impregnated
cathode
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24940492A
Other languages
Japanese (ja)
Other versions
JPH06103885A (en
Inventor
間 繁 貴 梶
森 昇 北
口 悟 山
山 淳 二 畠
島 俊 明 中
村 晋 也 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24940492A priority Critical patent/JP3378275B2/en
Publication of JPH06103885A publication Critical patent/JPH06103885A/en
Application granted granted Critical
Publication of JP3378275B2 publication Critical patent/JP3378275B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Solid Thermionic Cathode (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ブラウン管、撮像管な
どの電子管に用いる含浸型陰極用の多孔質焼結基体、そ
の製造方法およびこの多孔質焼結基体を用いてなる含浸
型陰極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous sintered substrate for an impregnated cathode used in electron tubes such as cathode ray tubes and image pickup tubes, a method for producing the same, and an impregnated cathode formed by using the porous sintered substrate.

【0002】[0002]

【従来の技術】含浸型陰極は、電子管の高性能化を図る
ための陰極として注目されているが、含浸型陰極は高融
点金属の多孔質焼結基体に電子放射性物質(以下、エミ
ッターともいう)を溶融含浸させたものであり、そのカ
ソード面から熱電子を放出する。
2. Description of the Related Art Impregnated cathodes have been attracting attention as cathodes for improving the performance of electron tubes. Impregnated cathodes have a porous sintered substrate of a refractory metal and an electron emissive material (hereinafter also referred to as an emitter). ) Is melt-impregnated, and thermions are emitted from the cathode surface.

【0003】従来、含浸型陰極に用いる多孔質焼結基体
は、原料の金属粉末をプレス成形した後、焼結すること
によって製造するのが一般的である。このようにして得
られた多孔質焼結基体に切削加工や放電加工を施して所
定の形状としあるいは焼結体のままで、エミッターを多
孔質焼結基体の気孔に溶融含浸させて、含浸型陰極を製
造している。しかし、このような従来の方法では、カソ
ードの板厚が不均一となりやく、またカソード面を形成
する表面が粗い(たとえば、表面粗さRmax は焼結体の
状態で10μm、切削加工した状態のもので15μm程
度)ため、電子放射物質を含浸した後、カソード面に電
子放射物質が残ってしまう。図7は焼結後エミッターを
含浸したカソード表面付近の断面図で、カソード表面に
エミッターが残留している様子を示す。この電子放射物
質は水に溶けやすく、わずかな水分にもすぐに反応して
水酸化物になり、電子放出性が著しく低下する。また、
表面に多量に残存するエミッターは蒸発しやすい、とい
う問題がある。
Conventionally, a porous sintered substrate used for an impregnated cathode is generally manufactured by press-molding a raw material metal powder and then sintering it. The porous sintered substrate thus obtained is subjected to cutting or electric discharge machining to have a predetermined shape, or as it is as a sintered body, the emitter is melt-impregnated into the pores of the porous sintered substrate to obtain an impregnation type. Manufactures the cathode. However, in such a conventional method, the plate thickness of the cathode is apt to become non-uniform, and the surface forming the cathode surface is rough (for example, the surface roughness Rmax is 10 μm in the state of a sintered body, and the surface is cut). Therefore, the electron emitting substance remains on the cathode surface after being impregnated with the electron emitting substance. FIG. 7 is a cross-sectional view of the vicinity of the cathode surface impregnated with the emitter after sintering, showing a state where the emitter remains on the cathode surface. This electron-emitting substance is easily soluble in water and reacts with a small amount of water immediately to form a hydroxide, which significantly reduces the electron emission property. Also,
There is a problem in that a large amount of the emitter remaining on the surface easily evaporates.

【0004】多孔質焼結体の最適の気孔率を得るため
に、たとえば特開昭59−18539号公報によれば、
粒径5μmのW粉末にポリビニルアルコールをバインダ
ーとして加え、成形後水素気流中、1000℃×1時間
の仮焼結を行い、さらに1×10-5Torr以下の減圧下で
1900℃×1時間焼結している。しかしながら、この
ような従来の方法では、原料粉末の粒度分布の変化や平
均粒径の変動により焼結条件が変化するため、一定の気
孔率を得るためには、焼結時間等を細く制御する必要が
ある。また、粉末の偏析等により気孔が均一に分散しに
くいなどの問題がある。
In order to obtain the optimum porosity of the porous sintered body, for example, according to JP-A-59-18539,
Polyvinyl alcohol was added as a binder to W powder having a particle size of 5 μm, and after molding, pre-sintering was performed in a hydrogen stream at 1000 ° C. for 1 hour, and further, it was baked at 1900 ° C. for 1 hour under a reduced pressure of 1 × 10 −5 Torr or less. I'm tied. However, in such a conventional method, the sintering conditions change due to changes in the particle size distribution of the raw material powder and changes in the average particle size. Therefore, in order to obtain a constant porosity, the sintering time and the like are finely controlled. There is a need. There is also a problem that it is difficult to uniformly disperse the pores due to segregation of the powder.

【0005】従来、金属粉末原料として使用している粉
末の平均粒径は2.5〜3.4μm程度であるが、その
製造工程中に生じる等した2次粒子や形骸粒子は最大で
125μm前後と大きくなる場合があり、このような2
次粒子や形骸粒子を含む粉末をプレス成形し焼結する
と、その焼結体の内部には通常の何倍もの大きさの気孔
が生成される。そのような特異な気孔部の様子(断面
図)を図8に示す。たとえばタングステン粉末はもとも
と粒動性が悪いため、2次粒子や形骸粒子の集合した部
分はプレス、焼結しても気孔はつぶれない。このような
大きな気孔があると、電子放射物質を含浸した際に多量
の電子放射物質がその大きな気孔に含浸され、その熱膨
張によりタングステン焼結体を押し拡げようとする。こ
のため、この部分の粒界強度が弱くクラックの発生や焼
結体の表面が膨れるという問題が起こる。図9は表面の
膨れ部の様子(断面図)を示す。このようなことが起こ
ると含浸型陰極の寿命が短くなるばかりか、カソードと
しての特性も低下させてしまう。従来の製造法ではプレ
ス方式やプレス条件を変えても原料粉末自体に問題があ
るため、大きな気孔をつぶすことができない。
Conventionally, the average particle size of the powder used as the metal powder raw material is about 2.5 to 3.4 μm, but the secondary particles and skeletal particles generated during the manufacturing process are around 125 μm at the maximum. It may become large, and such 2
When powder containing secondary particles and skeletal particles is press-molded and sintered, pores having a size several times larger than usual are generated inside the sintered body. FIG. 8 shows a state (cross-sectional view) of such a unique pore portion. For example, since tungsten powder originally has poor grain kinematics, pores do not collapse even when pressed and sintered in a portion where secondary particles and skeleton particles are aggregated. With such large pores, when impregnated with the electron emitting substance, a large amount of the electron emitting substance is impregnated into the large pores, and the thermal expansion thereof tends to spread the tungsten sintered body. For this reason, the grain boundary strength at this portion is weak, and problems such as crack generation and swelling of the surface of the sintered body occur. FIG. 9 shows a state (cross-sectional view) of a swollen portion on the surface. When this happens, not only the life of the impregnated cathode is shortened, but also the characteristics as a cathode are deteriorated. In the conventional manufacturing method, even if the pressing method or the pressing conditions are changed, the raw material powder itself has a problem, so that the large pores cannot be closed.

【0006】上述のような含浸型陰極用の多孔質焼結基
体の材料には通常Wが用いられ、その多孔質焼結基体の
気孔率の評価には一般に密度の測定が利用されており、
Wの場合、密度15.5〜16.5g/cm3 (理論気孔率
19.7〜14.5%)で使用されている。しかし、最
終的に必要な特性は、エミッターの含浸される割合であ
り、密度による評価の場合には、クローズドポアの量も
含まれるため、密度とエミッター含浸率の相関をとるの
は困難であった。
W is usually used as the material of the porous sintered substrate for the impregnated cathode as described above, and the density measurement is generally used to evaluate the porosity of the porous sintered substrate.
In the case of W, it is used with a density of 15.5 to 16.5 g / cm 3 (theoretical porosity of 19.7 to 14.5%). However, the final required property is the impregnation ratio of the emitter, and in the case of evaluation by density, the amount of closed pores is also included, so it is difficult to correlate the density with the impregnation ratio of the emitter. It was

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記の従来
技術の問題点を解決して、その表面粗さを制御した多孔
質焼結基体、その製造方法、およびこの多孔質焼結基体
を用いてなる含浸型陰極を提供することを目的とし、さ
らに具体的には、以下の通りである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and provides a porous sintered substrate whose surface roughness is controlled, a method for producing the same, and this porous sintered substrate. The purpose is to provide an impregnated cathode used, and more specifically, as follows.

【0008】本発明は、カソードの板厚を均一にするこ
とにより安定した特性を得、また、電子放射物質の含浸
後カソード表面への電子放射物質の残存を抑制して、電
子放射性の低下を防止し、電子放射物質の蒸発量を抑制
することのできる、表面粗さを制御した多孔質焼結基体
およびその製造法を提供することを目的とする。
According to the present invention, stable characteristics can be obtained by making the thickness of the cathode uniform, and the electron emission material can be prevented from remaining on the surface of the cathode after impregnation with the electron emission material to reduce the electron emission property. An object of the present invention is to provide a porous sintered substrate having a controlled surface roughness and a method for producing the same, which can prevent the evaporation of the electron emitting substance and suppress the evaporation amount of the electron emitting substance.

【0009】また、本発明は、使用する粉末の平均粒径
や粒度分布の多少の変動にかかわらず、焼結条件の変動
が少なく、かつ気孔が均一に分散している多孔質焼結基
体の製造法を提供することを目的とする。
Further, according to the present invention, a porous sintered substrate having a small variation in sintering conditions and a uniform distribution of pores regardless of a slight variation in the average particle size or particle size distribution of the powder used. The purpose is to provide a manufacturing method.

【0010】また、本発明は、原料粉末中の2次粒子や
形骸粒子を粉砕することにより、得られる多孔質焼結基
体中への大きな気孔の生成を防止することができる多孔
質焼結基体の製造法を提供することを目的とする。
Further, according to the present invention, by crushing the secondary particles and skeletal particles in the raw material powder, it is possible to prevent the generation of large pores in the obtained porous sintered substrate. It aims at providing the manufacturing method of.

【0011】[0011]

【0012】[0012]

【課題を解決するための手段】上記の従来技術の問題点
を解決するために、本発明の多孔質焼結基体は、含浸型
陰極用の多孔質焼結基体において、カソード面の表面粗
さ(Rmax)を5μm以下とすると共に、Cuからな
る評価用含浸材を多孔質焼結基体に含浸させ、除去する
ことにより測定された前記評価用含浸材の含浸率が6〜
10重量%であることを特徴とするものである。
In order to solve the above-mentioned problems of the prior art, the porous sintered substrate of the present invention is a porous sintered substrate for an impregnated cathode, wherein the surface roughness of the cathode surface is (Rmax) is 5 μm or less, and the impregnating rate of the impregnating material for evaluation measured by impregnating and removing the impregnating material made of Cu into the porous sintered substrate is 6 to
It is characterized by being 10% by weight.

【0013】また、前記多孔質焼結基体は、多孔質焼結
基体のカソード面を研磨仕上げしてなることを特徴とし
ている。
The porous sintered substrate is characterized in that the cathode surface of the porous sintered substrate is polished and finished.

【0014】前記多孔質焼結基体は、タングステンまた
はモリブデンからなることが好ましい。
The porous sintered substrate is preferably made of tungsten or molybdenum.

【0015】本発明の多孔質焼結基体の製造方法は、カ
ソード面の表面粗さ(Rmax)を5μm以下とすると
共に、Cuからなる評価用含浸材を多孔質焼結基体に含
浸させ、除去することにより測定された前記Cuからな
る評価用含浸材の含浸率が6〜10重量%である含浸型
陰極用の多孔質焼結基体の製造方法において、金属造粒
粉末またはあらかじめ分級された金属原料粉末をプレス
成形し焼結することにより多孔質焼結体を製造した後、
得られた多孔質焼結体の表面を研磨する工程により表面
粗さ(Rmax)を5μm以下に制御することを特徴と
している。
In the method for producing a porous sintered substrate of the present invention, the surface roughness (Rmax) of the cathode surface is set to 5 μm or less, and the porous sintered substrate is impregnated with the impregnating material for evaluation and removed. In the method for producing a porous sintered substrate for an impregnated-type cathode, wherein the impregnation rate of the evaluation impregnating material made of Cu is 6 to 10% by weight, the metal granulated powder or a pre-classified metal. After producing a porous sintered body by press molding and sintering the raw material powder,
The surface roughness (Rmax) is controlled to 5 μm or less by the step of polishing the surface of the obtained porous sintered body.

【0016】前記研磨する工程は、多孔質焼結基体の気
孔部に封孔材をあらかじめ含浸させたのち研磨すること
が好ましい。
In the polishing step, it is preferable that the pores of the porous sintered substrate are impregnated with the sealing material in advance and then the polishing is performed.

【0017】[0017]

【0018】[0018]

【0019】また、本発明の多孔質材料の気孔率評価法
は、Cuからなる評価用含浸材を多孔質材料に含浸さ
せ、除去し、その含浸材の含浸率を測定して多孔質材料
の気孔率を評価することを特徴としている。
Further, in the porosity evaluation method of the porous material of the present invention, the impregnating material for evaluation made of Cu is impregnated into the porous material and removed, and the impregnation rate of the impregnating material is measured to measure the porosity of the porous material. It is characterized by evaluating the porosity.

【0020】含浸型陰極用の多孔質焼結基体は、上記の
評価法により測定して、Cuからなる評価用含浸材の含
浸率が6〜10重量%であることが好ましい。
The porous sintered substrate for the impregnated-type cathode preferably has an impregnation rate of 6 to 10% by weight of the impregnating material for evaluation made of Cu measured by the above-mentioned evaluation method.

【0021】発明の具体的説明 多孔質焼結基体の構成材料としては、Wが一般的である
が、これに限らず、Mo、Taなどの高融点金属、また
はこれらの合金であってもよい。
Detailed Description of the Invention Although W is generally used as a constituent material of the porous sintered substrate, it is not limited to this and may be a refractory metal such as Mo or Ta, or an alloy thereof. .

【0022】本発明の含浸型陰極用の多孔質焼結基体
は、そのカソード面の表面粗さRmaxを5μm以下、好
ましくは0.01〜5μm、さらに好ましくは0.01
〜2.5μmに制御してなるものである。ここで、表面
粗さRmax というのは、断面曲線から基準長さだけ抜き
取った部分の平均線に平行な2直線で抜き取り部分を挟
んだとき、この2直線の間隔を断面曲線の縦倍率の方向
に測定した値のことである(JIS B0601)。こ
のように表面粗さを制御したので、多孔質焼結基体にエ
ミッターを含浸させた場合、エミッターがカソード表面
に露出する表面積を小さくすることができ、エミッター
の蒸発量を抑制することができる。また、カソード表面
へのエミッターの残留を抑制することができるので、従
来のようなカソード表面に多量に残留したエミッターの
特性劣化による電子放出特性の低下を防ぐことができ
る。なお、多孔質焼結基体に含浸させるエミッターとし
ては、たとえば、酸化バリウムと酸化アルミニウム、酸
化カルシウム、酸化マグネシウムなどの混合物が好まし
く用いられる。
The surface roughness Rmax of the cathode surface of the porous sintered substrate for impregnated cathode of the present invention is 5 μm or less, preferably 0.01 to 5 μm, and more preferably 0.01.
It is controlled to about 2.5 μm. Here, the surface roughness Rmax means that when the extracted portion is sandwiched by two straight lines which are parallel to the average line of the portion extracted by the reference length from the sectional curve, the interval between these two straight lines is the direction of the longitudinal magnification of the sectional curve. It is the value measured in accordance with (JIS B0601). Since the surface roughness is controlled in this way, when the porous sintered substrate is impregnated with the emitter, the surface area of the emitter exposed on the cathode surface can be reduced, and the evaporation amount of the emitter can be suppressed. In addition, since it is possible to prevent the emitter from remaining on the cathode surface, it is possible to prevent the deterioration of the electron emission characteristics due to the deterioration of the characteristics of the emitter that remains on the cathode surface in a large amount as in the conventional case. As the emitter with which the porous sintered substrate is impregnated, for example, a mixture of barium oxide and aluminum oxide, calcium oxide, magnesium oxide or the like is preferably used.

【0023】このような多孔質焼結基体のカソード面の
表面粗さの制御は、多孔質焼結基体のカソード面を研磨
仕上げすることにより好ましく行うことができる。かか
る研磨工程によって、多孔質焼結基体の板厚を均一にす
ることができるので、この点からも特性の安定化を図る
ことができる。
The control of the surface roughness of the cathode surface of the porous sintered substrate can be preferably carried out by polishing the cathode surface of the porous sintered substrate. Since the plate thickness of the porous sintered substrate can be made uniform by such a polishing step, the characteristics can be stabilized in this respect as well.

【0024】この研磨工程は、多孔質焼結基体の気孔部
に封孔材をあらかじめ含浸せておいてから研磨すること
により行う。多孔質焼結基体はポーラスなため、そのま
ま研磨すると焼結基体の構成材料である金属が目づまり
して、電子放射物質が含浸できなくなる。これを防止す
るため、研磨工程の前に多孔質焼結基体の気孔部を保護
するための封孔材を含浸させておく。この封孔材は研磨
処理後不要となるため、研磨処理した後溶剤に溶解させ
たり、熱処理により除去する。
This polishing step is carried out by previously impregnating the pores of the porous sintered substrate with a sealing material and then polishing. Since the porous sintered substrate is porous, if it is polished as it is, the metal that is a constituent material of the sintered substrate is clogged, and the electron emitting substance cannot be impregnated. In order to prevent this, a sealing material for protecting the pores of the porous sintered substrate is impregnated before the polishing step. Since this sealing material becomes unnecessary after the polishing treatment, it is dissolved in a solvent after the polishing treatment or removed by a heat treatment.

【0025】したがって、研磨に際して含浸させる封孔
材としては、1)研磨処理後除去が容易であること、
2)熱処理による封孔材の除去に際し、高温においても
多孔質焼結基体と反応しないこと、の要件を満足する必
要がある。このような要件を満足する物質として、C
u、プラスチック、各種樹脂等が挙げられ、多孔質焼結
基体としてたとえばWを用いる場合、Wと反応せずかつ
融点の比較的低いCuが好ましい。
Therefore, as a sealing material to be impregnated during polishing, 1) easy removal after polishing treatment,
2) When removing the sealing material by heat treatment, it is necessary to satisfy the requirement that it does not react with the porous sintered substrate even at high temperatures. As a substance satisfying such requirements, C
Examples of the material include u, plastics, various resins, and the like. When using, for example, W as the porous sintered substrate, Cu that does not react with W and has a relatively low melting point is preferable.

【0026】ところで、熱処理により封孔材を除去する
場合には、加熱炉を用いるが、その熱処理により封孔材
が気散して炉芯に付着する。このように炉芯に封孔材が
付着すると、均一な加熱が困難となり、雰囲気を一定に
保つことが困難となり、炉の熱効率を悪化させる。この
ため、炉芯に付着した封孔材を除去する必要があるが、
従来の加熱炉は、炉芯管が炉に固定されているため管内
部に付着した封孔材の除去が困難であった。そこで、炉
芯管を2重構造とし内側の管を取り外すことができるよ
うにしておくことが好ましい。このようにすれば封孔材
の除去が容易となり、また常に良好な炉芯を用いて熱処
理することができる。
By the way, when the sealing material is removed by heat treatment, a heating furnace is used, but the sealing material diffuses and adheres to the furnace core by the heat treatment. When the sealing material adheres to the furnace core in this manner, it becomes difficult to uniformly heat the furnace core, and it becomes difficult to keep the atmosphere constant, which deteriorates the thermal efficiency of the furnace. Therefore, it is necessary to remove the sealing material attached to the furnace core,
In the conventional heating furnace, since the furnace core tube is fixed to the furnace, it is difficult to remove the sealing material adhering to the inside of the tube. Therefore, it is preferable that the furnace core tube has a double structure so that the inner tube can be removed. In this way, the sealing material can be easily removed, and the heat treatment can always be performed using a good furnace core.

【0027】上記の多孔質焼結基体は、金属原料粉末を
プレス成形したのち焼結することにより製造するが、本
発明においては、均質な多孔質焼結基体を得るために、
次ぎのような改良を行う。なお下記の改良は、含浸型陰
極用の多孔質焼結基体の製造に限らず、多孔質焼結体の
一般的な製造法に適用することができる。
The above-mentioned porous sintered substrate is manufactured by press-molding a metal raw material powder and then sintering it. In the present invention, in order to obtain a homogeneous porous sintered substrate,
Make the following improvements. The following improvements can be applied not only to the production of the porous sintered substrate for the impregnated cathode, but also to the general production method of the porous sintered body.

【0028】原料粉末として、金属造粒粉末またはあら
かじめ分級された粉末を用いる。このように金属造粒粉
末またはあらかじめ分級された粉末を用いることによ
り、原料粉末の粒径や粒度分布の多少の差によらず、焼
結条件一定で気孔が均一に分散した均質な多孔質焼結基
体を得ることができる。造粒または分級は、従来用いら
れている方法により適宜行えばよい。造粒粉末の粒径は
35〜70μm程度が好ましい。また、分級により、大
粒径側および小粒径側を各々体積比で5〜10%程度除
去することが好ましい。
As the raw material powder, a metal granulated powder or a powder classified beforehand is used. By using the metal granulated powder or pre-classified powder in this way, it is possible to obtain a homogeneous porous calcinated material in which pores are uniformly dispersed under constant sintering conditions, regardless of the difference in the particle size and particle size distribution of the raw material powder. A bonded substrate can be obtained. Granulation or classification may be appropriately performed by a conventionally used method. The particle size of the granulated powder is preferably about 35 to 70 μm. Further, it is preferable to remove about 5 to 10% by volume of each of the large particle size side and the small particle size side by classification.

【0029】また、金属原料粉末のプレス成形工程前
に、金属原料粉末をあらかじめ粉砕する工程を設ける。
かかる工程により大きな気孔の生成の原因となる原料粉
末中に存在する2次粒子や形骸粒子が粉砕されるので、
大きな気孔のない多孔質焼結基体を得ることができる。
Further, before the press forming step of the metal raw material powder, a step of previously pulverizing the metal raw material powder is provided.
By this step, secondary particles and skeletal particles existing in the raw material powder, which cause generation of large pores, are crushed,
It is possible to obtain a porous sintered substrate without large pores.

【0030】上記のような造粒または分級、あるいは粉
砕された原料粉末を従来法と同様にプレス成形、焼結す
ることにより多孔質焼結基体を得る。この場合、プレス
成形は、原料粉末に適宜PVA、パラフィンなどのバイ
ンダーを混合しまたは混合せずに、成形圧力2〜5ton/
cm2 で行う。得られた成形体をたとえばH2 中で145
0〜1600℃×250〜400分間程度の仮焼結を行
い、次いで、たとえばH2 中、1700〜1900℃で
所定の気孔率となるまで焼結して、多孔質焼結基体を得
る。
A porous sintered substrate is obtained by press-molding and sintering the above-mentioned granulated or classified or pulverized raw material powder in the same manner as in the conventional method. In this case, the press molding is carried out by mixing the raw material powder with or without a binder such as PVA or paraffin, and molding pressure of 2 to 5 ton /
Perform in cm 2 . 145 The obtained compact for example in H 2
Preliminary sintering is performed at 0 to 1600 ° C. for about 250 to 400 minutes, and then, for example, in H 2 at 1700 to 1900 ° C. until a predetermined porosity is obtained to obtain a porous sintered substrate.

【0031】多孔質焼結体を含浸型陰極用の多孔質焼結
基体として用いる場合、従来は、密度の測定によって多
孔質焼結基体へのエミッターの含浸率の評価を行ってい
たが、本発明においては、これに替わって、含浸率評価
用含浸材を多孔質焼結基体に含浸させ、除去し、その含
浸材の含浸率からエミッターの含浸率を求めることがで
きる。
When a porous sintered body is used as a porous sintered substrate for an impregnated cathode, the impregnation ratio of the emitter to the porous sintered substrate has conventionally been evaluated by measuring the density. In the invention, instead of this, the impregnation material for impregnation rate evaluation can be impregnated into the porous sintered substrate and removed, and the impregnation rate of the emitter can be determined from the impregnation rate of the impregnation material.

【0032】多孔質焼結基体には開気孔の他に閉気孔も
存在し、エミッターはこのうち開気孔にのみ含浸され閉
気孔には入り込めない。密度はこれらの開気孔と閉気孔
の区別なく全気孔率に対応するため、従来の密度による
評価では正確なエミッター含浸率に対応しない。本発明
によれば、評価用含浸材はエミッターと同じく開気孔部
にのみ含浸されるので、評価用含浸材の含浸率から正確
にエミッターの含浸率を推定することができる。
The porous sintered substrate has closed pores in addition to open pores, and the emitter is impregnated only in the open pores and cannot enter the closed pores. Since the density corresponds to the total porosity without distinguishing between open and closed pores, the conventional density evaluation does not correspond to the accurate emitter impregnation rate. According to the present invention, since the impregnating material for evaluation is impregnated only in the open pores like the emitter, the impregnation ratio of the emitter can be accurately estimated from the impregnation ratio of the impregnating material for evaluation.

【0033】上記エミッターの含浸率の評価は、エミッ
ターのみに限らず、多孔質材料の気孔率評価方法として
も採用することが可能である。すなわち、例えばCuや
プラスチックなどの評価用含浸材を多孔質材料に含浸さ
せ、その後除去することにより、その結果、多孔質材料
の気孔率を評価することが可能となる。
The evaluation of the impregnation rate of the emitter can be applied not only to the emitter but also as a method of evaluating the porosity of the porous material. That is, for example, by impregnating the porous material with an impregnating material for evaluation such as Cu or plastic and then removing it, the porosity of the porous material can be evaluated.

【0034】この場合、含浸率評価用含浸材として、上
述の研磨加工時に必要となる封孔材と同一の物質を用い
れば、両者の効果を得ることができ有益である。
In this case, if the same substance as the sealing material required for the above-mentioned polishing is used as the impregnating material for evaluating the impregnation rate, both effects can be obtained, which is beneficial.

【0035】本発明の含浸型陰極用の多孔質焼結基体に
おいて、上記の方法により測定されるCuからなる評価
用含浸材の含浸率は、6〜10重量%、好ましくは7〜
9重量%の範囲である。評価用含浸材の含浸率が大きす
ぎると、含浸されるエミッターの蒸発量が多くなり、一
方、少なすぎるとエミッターの効果が十分に発揮できな
い。
In the porous sintered substrate for the impregnated cathode of the present invention, the impregnation rate of the impregnating material for evaluation made of Cu measured by the above method is 6 to 10% by weight, preferably 7 to
It is in the range of 9% by weight. When the impregnation rate of the impregnating material for evaluation is too large, the amount of evaporation of the impregnated emitter increases, while when it is too small, the effect of the emitter cannot be fully exhibited.

【0036】[0036]

【実施例】実施例1 研磨 粒径3μm程度のタングステン粉末にパラフィンを混合
し、1枚5gの粉末を使用してプレス成形により約30
mmφの成形体を得る。得られた成形体をH2 中、800
℃×275分間脱脂した後、H2 中、1500℃×33
0分間焼結を行う。さらにH2 中、1700℃で気孔率
が15〜18%になるまで焼結する。
Example 1 Tungsten powder having a polishing particle size of about 3 μm is mixed with paraffin, and 5 g of powder is used to press-mold about 30 g of powder.
Obtain a molded body of mmφ. 800 in H 2
After degreasing at ℃ × 275 minutes, in H 2 at 1500 ℃ × 33
Sinter for 0 minutes. Further, it is sintered in H 2 at 1700 ° C. until the porosity becomes 15 to 18%.

【0037】得られた焼結体にH2 中、1100℃×1
20分間で銅を含浸させ、得られた試料を平行研削、ラ
ップ研磨を経て目的の板厚にする。この試料を硝酸と水
1:1の混合液に漬け、さらに熱処理して完全に銅を除
去する。
The resulting sintered body was placed in H 2 at 1100 ° C. × 1.
The sample is impregnated with copper for 20 minutes, and the obtained sample is subjected to parallel grinding and lapping to a target plate thickness. This sample is immersed in a mixed solution of nitric acid and water at a ratio of 1: 1 and heat-treated to completely remove copper.

【0038】以上のようにして表面の研磨された多孔質
焼結基体を得る。この多孔質焼結基体にエミッターを含
浸させて、含浸型陰極の母体とした。
As described above, a porous sintered substrate whose surface is polished is obtained. This porous sintered substrate was impregnated with an emitter to obtain a base of an impregnated cathode.

【0039】一方、比較のために、銅の含浸、研磨、銅
の除去の各工程を除き、上記実施例と同様の条件で成
形、焼結して多孔質焼結基体を得、この焼結基体にエミ
ッターを含浸させて含浸型陰極の母体を得た(比較
例)。
On the other hand, for comparison, a porous sintered substrate was obtained by molding and sintering under the same conditions as in the above-mentioned example except for the steps of impregnating copper, polishing and removing copper. The base was impregnated with the emitter to obtain a base of an impregnated cathode (comparative example).

【0040】これらの実施例1および比較例について、
カソードのディスク表面粗さRmaxおよびディスク表面
のエミッター残留量を比較した結果を表1に示す。
Regarding these Example 1 and Comparative Example,
Table 1 shows the results of comparing the disk surface roughness Rmax of the cathode and the residual amount of the emitter on the disk surface.

【0041】 表1 実施例 比較例 表面粗さRmax 0.2 〜0.5 μm 5 〜10μm表面のエミッター残留量 少ない 多い また、この実施例1により得られたカソードのディスク
表面付近の状態を断面図で模式的に図1に示す。図1お
よび表1からも明らかなように、研磨処理を施し表面粗
さを制御することにより、ディスク表面のエミッター残
留量を低く押さえることができることが分かる。したが
って、本実施例によれば、電子放射特性の低下を防止
し、エミッターの蒸発量を抑制することができる。
Table 1 Examples Comparative Examples Surface Roughness Rmax 0.2-0.5 μm 5-10 μm Small amount of residual emitters on the surface Large In addition, the state near the disk surface of the cathode obtained in this Example 1 is schematically shown in a sectional view. Are shown in FIG. As is clear from FIG. 1 and Table 1, it can be understood that the amount of residual emitter on the disk surface can be suppressed to a low level by performing a polishing treatment to control the surface roughness. Therefore, according to the present embodiment, it is possible to prevent the electron emission characteristic from deteriorating and suppress the evaporation amount of the emitter.

【0042】実施例2 造粒 平均粒径3μmのW粉末にPVAをドープし純水を溶媒
として、スプレードライヤーで造粒し60μm相当とし
た。これを7.65gを1ヶ分として28mmφの円筒プ
レス治具を用いてプレス成形(成形圧力2ton/cm2 )し
た。次いで、H2 中、800℃×275分間脱脂した
後、H2 中、1700℃×330分間仮焼結を行った。
次に、これらの仮焼結体を1800℃で目的の比重(1
6±0.15)となるように焼結を行った。
Example 2 Pelletization W powder having an average particle size of 3 μm was doped with PVA, and the mixture was granulated with a spray dryer using pure water as a solvent to have a particle size of 60 μm. 7.65 g of this was press-molded (molding pressure 2 ton / cm 2 ) using a 28 mmφ cylindrical pressing jig. Then, after degreasing in H 2 at 800 ° C. for 275 minutes, temporary sintering was performed in H 2 at 1700 ° C. for 330 minutes.
Next, these pre-sintered bodies were subjected to a specific gravity (1
6 ± 0.15) was sintered.

【0043】比較のために、造粒処理を行わない従来法
によっても多孔質焼結体を製造した。すなわち、平均粒
径3μmのW粉末にPVAをドープし、7.65gを1
ヶ分として28mmφの円筒プレス治具を用いてプレス成
形(成形圧力2ton/cm2 )した。次いで、H2 中、80
0℃×275分間脱脂した後、H2 中、1700℃×3
30分間仮焼結を行った。次に、これらの仮焼結体を1
800℃で目的の比重(16±0.15)となるまで焼
結を行った。
For comparison, a porous sintered body was also manufactured by the conventional method without granulation. That is, W powder having an average particle size of 3 μm was doped with PVA, and 7.65 g was
A 28 mmφ cylindrical press jig was used for press molding (molding pressure 2 ton / cm 2 ). Then, in H 2 , 80
After degreasing at 0 ° C x 275 minutes, in H 2 at 1700 ° C x 3
Temporary sintering was performed for 30 minutes. Next, these temporary sintered bodies are
Sintering was performed at 800 ° C. until the target specific gravity (16 ± 0.15) was reached.

【0044】本実施例および比較例について各設定時間
での合格率を求めた結果を図2に示す。この図2から明
らかなように、本実施例によれば、目的の比重となる設
定時間のバラツキが極めて小さく、比較例における場合
の1/5以下になった。したがって、本実施例によれ
ば、焼結工程が管理しやすくなる。
FIG. 2 shows the result of obtaining the pass rate at each set time for this example and the comparative example. As is clear from FIG. 2, according to the present embodiment, the variation in the set time, which is the target specific gravity, is extremely small, which is 1/5 or less of that in the comparative example. Therefore, according to this embodiment, the sintering process can be easily controlled.

【0045】実施例3 分級 平均粒径3μmのW粉末を乾式分級機で小粒径側と大粒
径側を各々体積比で30%づつ除去した。得られたW粉
末にPVAをドープし、7.65gを1ヶ分として28
mmφの円筒プレス治具を用いてプレス成形(成形圧力2
ton/cm2 )した。次いで、H2 中、800℃×275分
間脱脂した後、H2 中、1700℃×330分間仮焼結
を行った。次に、これらの仮焼結体を1800℃で目的
の比重(16±0.15)となるように焼結を行った。
Example 3 W powder having an average particle size of 3 μm was removed by a dry classifier at a volume ratio of 30% on each of the small particle size side and the large particle size side. The obtained W powder was doped with PVA, and 7.65 g was used as one portion for 28
Press forming using a cylindrical press jig of mmφ (forming pressure 2
ton / cm 2 ). Then, after degreasing in H 2 at 800 ° C. for 275 minutes, temporary sintering was performed in H 2 at 1700 ° C. for 330 minutes. Next, these pre-sintered bodies were sintered at 1800 ° C. so as to have a desired specific gravity (16 ± 0.15).

【0046】比較のために、分級処理を行わない従来法
によっても多孔質焼結体を製造した。この比較例は、上
記実施例2において述べた比較例の多孔質焼結体の製造
法と同じである。
For comparison, a porous sintered body was also manufactured by a conventional method without classification treatment. This comparative example is the same as the method for manufacturing the porous sintered body of the comparative example described in the above-mentioned Example 2.

【0047】本実施例および比較例について各設定時間
での合格率を求めた結果を図3に示す。この図3から明
らかなように、本実施例によれば、目的の比重となる設
定時間のバラツキが極めて小さく、比較例における場合
の1/6以下になった。したがって、本実施例によれ
ば、焼結工程が管理しやすくなる。
FIG. 3 shows the result of obtaining the pass rate at each set time for this example and the comparative example. As is clear from FIG. 3, according to the present embodiment, the variation in the set time, which is the target specific gravity, is extremely small, which is 1/6 or less of that in the comparative example. Therefore, according to this embodiment, the sintering process can be easily controlled.

【0048】実施例4 原料粉砕 Wの原料粉末10kg、ボール(超硬もしくはアルミ
ナ)100個、磁性ポットを準備し、磁性ポットに原料
粉末とボールを入れポットローラにかける。48〜96
H処理した後、粉末を磁性ポットから取り出し、従来と
同様の条件下でプレス成形(成形圧力2ton/cm2 )、焼
結(H2 中、1700℃×330分間の仮焼結の後、H
2 中、1800℃で目的の比重(16±0.15)とな
るまで焼結)を行う。
Example 4 10 kg of raw material powder of raw material crushed W, 100 balls (carbide or alumina), a magnetic pot were prepared, and the raw material powder and the ball were put in the magnetic pot and placed on a pot roller. 48-96
After H treatment, take out the powder from the magnetic pot, press-mold under the same conditions as before (molding pressure 2 ton / cm 2 ), sinter (in H 2 after temporary sintering at 1700 ° C. for 330 minutes, H
Sintering is performed at 1800 ° C. in 2 until the desired specific gravity (16 ± 0.15) is reached.

【0049】本実施例による方法によれば、原料粉末中
の2次粒子や形骸粒子が砕けているため、大きな気孔の
ないW多孔質焼結基体を得ることができる。このように
して得られる多孔質焼結基体の断面の様子を図4に模式
的に示す。焼結基体中に気孔が均質に分散している様子
が分かる。
According to the method of this embodiment, since the secondary particles and skeletal particles in the raw material powder are crushed, it is possible to obtain a W porous sintered substrate without large pores. The cross-sectional appearance of the porous sintered substrate thus obtained is schematically shown in FIG. It can be seen that the pores are uniformly dispersed in the sintered substrate.

【0050】本実施例の方法により得られたW多孔質焼
結基体には大きな気孔が存在しないので、粒界強度が高
く電子放射物質を含浸してもカソード表面が膨れたりク
ラックが発生するようなことがない。したがって、カソ
ードの寿命や特性が低下し難くなる。
Since the W porous sintered substrate obtained by the method of the present example does not have large pores, the grain boundary strength is high and the cathode surface swells or cracks even when impregnated with the electron emitting material. There is nothing. Therefore, it becomes difficult for the life and characteristics of the cathode to decrease.

【0051】実施例5 エミッター含浸率評価法 比重の異なる数種の多孔質焼結体を準備し、それぞれの
試料にCuを溶融含浸させ、次いで含浸させたCuを除
去し、その重量差からCu含浸率を測定した。次に、エ
ミッターを含浸させてエミッター含浸率を測定した。こ
のようにして得られたCu含浸率とエミッター含浸率と
の相関関係を図5に示す。
Example 5 Emitter Impregnation Rate Evaluation Method Several kinds of porous sintered bodies having different specific gravities were prepared, and Cu was melt-impregnated in each sample, and then the impregnated Cu was removed. The impregnation rate was measured. Next, the emitter was impregnated and the impregnation ratio of the emitter was measured. FIG. 5 shows the correlation between the Cu impregnation ratio and the emitter impregnation ratio thus obtained.

【0052】一方、比較のために、多孔質焼結体の密度
とエミッター含浸率との対応関係も調べた。
On the other hand, for comparison, the correspondence between the density of the porous sintered body and the impregnation ratio of the emitter was also examined.

【0053】図5からも明らかなように、本実施例によ
る評価法では、Cu含浸率とエミッター含浸率とがよく
対応していることが分かる。したがって、本実施例によ
る評価法によれば、Cu含浸率からエミッター含浸率を
正確に制御することができる。
As is clear from FIG. 5, in the evaluation method of this embodiment, the Cu impregnation rate and the emitter impregnation rate correspond well. Therefore, according to the evaluation method of this example, the emitter impregnation ratio can be accurately controlled from the Cu impregnation ratio.

【0054】また、Cu含浸率が6〜10%の範囲にあ
るとき、良好なエミッター含浸率が得られることが分か
った。
It was also found that a good emitter impregnation rate was obtained when the Cu impregnation rate was in the range of 6 to 10%.

【0055】[0055]

【発明の効果】本発明によれば、多孔質焼結基体のカソ
ード面を研磨仕上し、その表面粗さRmax を5μm以下
に制御してなるので、カソード表面へのエミッターの残
留量を抑制して、電子放射性の低下を防止し、エミッタ
ーの蒸発量を抑制できる。また、造粒または分級された
原料粉末を用いるので、使用する粉末の平均粒径や粒度
分布の多少の変動にかかわらず、焼結条件の変動が少な
く、かつ気孔の均一に分散した多孔質焼結基体を得るこ
とができる。また、原料粉末をあらかじめ粉砕して用い
るので、原料粉末中の2次粒子や形骸粒子が粉砕され、
大きな気孔のない均一な気孔の分散した多孔質焼結基体
を得ることができる。さらに、評価用含浸材を多孔質材
料に含浸させ、その含浸率を測定して多孔質材料の含浸
率を評価するので、多孔質焼結基体のエミッター含浸率
との正確な相関関係をとることができる。
According to the present invention, since the cathode surface of the porous sintered substrate is polished and the surface roughness Rmax is controlled to 5 μm or less, the residual amount of the emitter on the cathode surface is suppressed. As a result, a decrease in electron emission can be prevented and the amount of evaporation of the emitter can be suppressed. In addition, since the raw material powder that has been granulated or classified is used, there is little fluctuation in the sintering conditions, regardless of the slight fluctuations in the average particle size and particle size distribution of the powder used, and the porous calcination in which the pores are uniformly dispersed. A bonded substrate can be obtained. In addition, since the raw material powder is crushed and used in advance, secondary particles and skeletal particles in the raw material powder are crushed,
It is possible to obtain a porous sintered substrate in which uniform pores are dispersed without large pores. Furthermore, since the impregnating material for evaluation is impregnated into the porous material and the impregnation rate of the porous material is measured by measuring the impregnation rate, it is necessary to take an accurate correlation with the emitter impregnation rate of the porous sintered substrate. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例における、表面研磨後エミッターを含浸
したディスク表面付近の断面図。
FIG. 1 is a cross-sectional view of the vicinity of a disk surface impregnated with an emitter after surface polishing in an example.

【図2】実施例2および比較例について、熱処理の各設
定時間での合格率を求めた結果を示すグラフ。
FIG. 2 is a graph showing the results of determining the pass rate at each set time of heat treatment for Example 2 and Comparative Example.

【図3】実施例3および比較例について、熱処理の各設
定時間での合格率を求めた結果を示すグラフ。
FIG. 3 is a graph showing the results of obtaining the pass rate at each set time of heat treatment for Example 3 and Comparative Example.

【図4】原料粉末を粉砕処理後、プレス成形、焼結して
得られた多孔質焼結基体の断面図。
FIG. 4 is a cross-sectional view of a porous sintered substrate obtained by crushing raw material powder, followed by press molding and sintering.

【図5】Cu含浸率とエミッター含浸率との相関関係を
示す図。
FIG. 5 is a diagram showing a correlation between a Cu impregnation rate and an emitter impregnation rate.

【図6】焼結後エミッターを含浸したカソード表面付近
の断面図。
FIG. 6 is a cross-sectional view of the vicinity of a cathode surface which is impregnated with an emitter after sintering.

【図7】特異な気孔部の様子を示す断面図。FIG. 7 is a cross-sectional view showing a state of a unique pore portion.

【図8】表面の膨れ部の様子を示す断面図。FIG. 8 is a cross-sectional view showing a state of a swollen portion on the surface.

フロントページの続き (72)発明者 畠 山 淳 二 神奈川県横浜市磯子区新杉田町8番地 株式会社東芝 横浜事業所内 (72)発明者 中 島 俊 明 神奈川県横浜市磯子区新杉田町8番地 株式会社東芝 横浜事業所内 (72)発明者 中 村 晋 也 神奈川県横浜市磯子区新杉田町8番地 株式会社東芝 横浜事業所内 (56)参考文献 特開 平5−114352(JP,A) 特公 昭58−26769(JP,B1) (58)調査した分野(Int.Cl.7,DB名) H01J 1/28 H01J 9/04 Front page continuation (72) Inventor Junji Hatakeyama 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa Toshiba Yokohama Works, Ltd. (72) Inventor Toshiaki Nakajima 8 Shinsita-cho, Isogo-ku, Yokohama, Kanagawa Toshiba Yokohama Works (72) Inventor Shin Nakamura Shinya Sugita-cho, Isogo-ku, Yokohama-shi, Kanagawa 8 Yokohama-shi Works (56) Reference JP-A-5-114352 (JP, A) Japanese Patent Publication 58- 26769 (JP, B1) (58) Fields surveyed (Int.Cl. 7 , DB name) H01J 1/28 H01J 9/04

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】含浸型陰極用の多孔質焼結基体において、
カソード面の表面粗さ(Rmax)を5μm以下とする
と共に、Cuからなる評価用含浸材を多孔質焼結基体に
含浸させ、除去することにより測定された前記評価用含
浸材の含浸率が6〜10重量%であることを特徴とする
多孔質焼結基体。
1. A porous sintered substrate for an impregnated cathode, comprising:
The surface roughness (Rmax) of the cathode surface was set to 5 μm or less, and the impregnation material for evaluation, which was measured by impregnating and removing the impregnation material for evaluation made of Cu into the porous sintered substrate, was 6%. A porous sintered substrate, characterized in that it is 10% by weight .
【請求項2】多孔質焼結基体のカソード面を研磨仕上げ
してなる、請求項1に記載の多孔質焼結基体。
2. The porous sintered substrate according to claim 1, which is obtained by polishing the cathode surface of the porous sintered substrate.
【請求項3】カソード面の表面粗さ(Rmax)を5μ
m以下とすると共に、Cuからなる評価用含浸材を多孔
質焼結基体に含浸させ、除去することにより測定された
前記Cuからなる評価用含浸材の含浸率が6〜10重量
%である含浸型陰極用の多孔質焼結基体の製造方法にお
いて、金属造粒粉末またはあらかじめ分級された金属原
料粉末をプレス成形し焼結することにより多孔質焼結体
を製造した後、得られた多孔質焼結体の表面を研磨する
工程により表面粗さ(Rmax)を5μm以下に制御す
ることを特徴とする多孔質焼結基体の製造方法。
3. The surface roughness (Rmax) of the cathode surface is 5 μm.
The impregnation rate of the evaluation impregnating material made of Cu is 6 to 10% by weight, which is not more than m and is measured by impregnating and removing the evaluation impregnating material made of Cu into the porous sintered substrate. In the method for producing a porous sintered substrate for a die cathode, a porous sintered body is produced by press-molding and sintering metal granulated powder or pre-classified metal raw material powder, A method for producing a porous sintered substrate, wherein the surface roughness (Rmax) is controlled to 5 μm or less in the step of polishing the surface of the sintered body.
【請求項4】研磨する工程は、多孔質焼結基体の気孔部
に封孔材をあらかじめ含浸させたのち研磨することを特
徴とする、請求項3に記載の多孔質焼結基体の製造方
法。
4. The method for producing a porous sintered substrate according to claim 3, wherein in the polishing step, the pores of the porous sintered substrate are impregnated with a sealing material in advance and then polished. .
【請求項5】プレス成形前の金属原料粉末を粉砕する工
程をさらに有することを特徴とする、請求項3に記載の
多孔質焼結基体の製造方法。
5. The method for producing a porous sintered substrate according to claim 3, further comprising the step of pulverizing the metal raw material powder before press molding.
【請求項6】請求項1または請求項2に記載の多孔質焼
結基体を用い、電子放射性物質が含浸されてなることを
特徴とする、含浸型陰極。
6. An impregnated cathode, which comprises the porous sintered substrate according to claim 1 or 2 and is impregnated with an electron emissive substance.
【請求項7】電子管に用いられるものであることを特徴
とする、請求項6に記載の含浸型陰極。
7. The impregnated cathode according to claim 6, which is used for an electron tube.
JP24940492A 1992-09-18 1992-09-18 Porous sintered substrate, method for producing the same, and impregnated cathode using the same Expired - Lifetime JP3378275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24940492A JP3378275B2 (en) 1992-09-18 1992-09-18 Porous sintered substrate, method for producing the same, and impregnated cathode using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24940492A JP3378275B2 (en) 1992-09-18 1992-09-18 Porous sintered substrate, method for producing the same, and impregnated cathode using the same

Publications (2)

Publication Number Publication Date
JPH06103885A JPH06103885A (en) 1994-04-15
JP3378275B2 true JP3378275B2 (en) 2003-02-17

Family

ID=17192481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24940492A Expired - Lifetime JP3378275B2 (en) 1992-09-18 1992-09-18 Porous sintered substrate, method for producing the same, and impregnated cathode using the same

Country Status (1)

Country Link
JP (1) JP3378275B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3696720B2 (en) 1997-07-09 2005-09-21 松下電器産業株式会社 Impregnated cathode and manufacturing method thereof
JPH11102636A (en) 1997-09-26 1999-04-13 Matsushita Electron Corp Cathode, manufacture of cathode and image receiving tube
FR2840450A1 (en) * 2002-05-31 2003-12-05 Thomson Licensing Sa CATHODO-EMISSIVE BODY FOR CATHODE IMPREGNATED WITH ELECTRONIC TUBE
CN104766774A (en) * 2015-04-16 2015-07-08 成都国光电气股份有限公司 Cathode emitter
EP3984727A4 (en) * 2019-06-17 2022-07-27 LG Chem, Ltd. Method for manufacturing composite material, and composite material

Also Published As

Publication number Publication date
JPH06103885A (en) 1994-04-15

Similar Documents

Publication Publication Date Title
US4625142A (en) Methods of manufacturing a dispenser cathode and dispenser cathode manufactured according to the method
US4518890A (en) Impregnated cathode
US4400648A (en) Impregnated cathode
JPS6191821A (en) Manufacture of scandium dispensor cathode and dispensor cathode manufactured thereby
US2389060A (en) Refractory body of high electronic emission
JP3378275B2 (en) Porous sintered substrate, method for producing the same, and impregnated cathode using the same
US4675570A (en) Tungsten-iridium impregnated cathode
US4982133A (en) Dispenser cathode and manufacturing method therefor
EP0390269B1 (en) Scandate cathode
US5314364A (en) Scandate cathode and methods of making it
US5890941A (en) Method of manufacturing a dispenser cathode
JP2685232B2 (en) Method for manufacturing scandium-based cathode
US2913812A (en) Manufacture of sintered cathodes
JPH04308048A (en) Production of porous tungsten material
KR100382060B1 (en) Cathode using cermet pellet and method for manufacturing the same
JP2001006521A (en) Cathode body structure and color picture tube
US5261845A (en) Scandate cathode
EP0157634A2 (en) Tungsten-iridium impregnated cathode
JPS612226A (en) Impregnated cathode
JPH06176684A (en) Cathode bae and manufacture thereof
JP3147387B2 (en) Method for manufacturing anode body for solid electrolytic capacitor
JP3034883B2 (en) Solid electrolyte for sodium-sulfur battery and method for producing the same
JPS6032232A (en) Impregnated cathode
KR920004898B1 (en) Impregnated ype cathode
JPS60212938A (en) Impregnated cathode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121206

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121206

Year of fee payment: 10