JP2685232B2 - Method for manufacturing scandium-based cathode - Google Patents

Method for manufacturing scandium-based cathode

Info

Publication number
JP2685232B2
JP2685232B2 JP63165191A JP16519188A JP2685232B2 JP 2685232 B2 JP2685232 B2 JP 2685232B2 JP 63165191 A JP63165191 A JP 63165191A JP 16519188 A JP16519188 A JP 16519188A JP 2685232 B2 JP2685232 B2 JP 2685232B2
Authority
JP
Japan
Prior art keywords
scandium
cathode
producing
approximately
cathode body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63165191A
Other languages
Japanese (ja)
Other versions
JPH01163941A (en
Inventor
ヨハネス・ファン・エスドンク
ヤン・ハスケル
ヨセフ・ヨハネス・ファン・リス
Original Assignee
フィリップス エレクトロニクス ネムローゼ フェンノートシャップ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フィリップス エレクトロニクス ネムローゼ フェンノートシャップ filed Critical フィリップス エレクトロニクス ネムローゼ フェンノートシャップ
Publication of JPH01163941A publication Critical patent/JPH01163941A/en
Application granted granted Critical
Publication of JP2685232B2 publication Critical patent/JP2685232B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/04Manufacture of electrodes or electrode systems of thermionic cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/04Manufacture of electrodes or electrode systems of thermionic cathodes
    • H01J9/042Manufacture, activation of the emissive part
    • H01J9/047Cathodes having impregnated bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J1/28Dispenser-type cathodes, e.g. L-cathode

Description

【発明の詳細な説明】 本発明は、高温で溶融する金属より成る多孔性陰極体
の放出面にバリウムを補給するためのバリウム化合物を
有するディスペンサ型陰極の製造方法に関するものであ
る。
The present invention relates to a method of manufacturing a dispenser-type cathode having a barium compound for replenishing barium on the emission surface of a porous cathode body made of a metal that melts at a high temperature.

このようにしてつくられたディスペンサ型陰極は電子
管に用いるのに適している。
The dispenser-type cathode thus produced is suitable for use in electron tubes.

ディスペンサ型陰極の特徴は、一方において電子放出
面と他方においてこの放出面の十分に低い仕事関数を実
現するためのエミッタ材料の蓄えとの間に機能上の分離
があることである。エミッタ材料は多孔性陰極体の細孔
内にある。
A feature of the dispenser type cathode is the functional separation between the electron emitting surface on the one hand and the reservoir of emitter material on the other hand to achieve a sufficiently low work function of this emitting surface. The emitter material is within the pores of the porous cathode body.

冒頭に記載したタイプの方法は米国特許第4077393号
に記載されている。この米国特許には、タングステン粉
末より圧縮され次いで焼結された略々20%の多孔度を有
する陰極体を、酸化バリウムに加えて酸化カルシウム、
酸化アルミニウムおよび酸化スカンジウムを有する混合
物で含浸する方法が記載されている。
A method of the type described at the outset is described in US Pat. No. 4,073,393. In this U.S. Patent, a cathode body having a porosity of approximately 20%, which was compressed from tungsten powder and then sintered, was added to barium oxide plus calcium oxide,
A method of impregnating with a mixture having aluminum oxide and scandium oxide is described.

欧州特許明細書第0091161号には、陰極体(特に頂
層)をタングステン粉末と酸化スカンジウムの混合物よ
り圧縮し次いでこれを焼結することによって、このよう
な陰極のイオン衝撃に対する感度およびイオン衝撃後の
回復を改良することができる旨記載されている。できる
だけ均質な薄い頂層(略々0.1mm)を得るために圧縮操
作は2段階に行われるのが普通である。先づ、陰極体の
タングステン部分が僅かに予圧縮される。次いで、頂層
粉末がタングステン部分の表面上に平等に分布され、し
かる後最終的な圧縮操作が行われる。
European patent specification No. 0091161 describes the sensitivity of a cathode body (in particular the top layer) from a mixture of tungsten powder and scandium oxide and then sintering this, to the sensitivity of such a cathode to ion bombardment and after ion bombardment. It states that recovery can be improved. The compression operation is usually carried out in two steps in order to obtain a thin top layer (approximately 0.1 mm) which is as homogeneous as possible. First, the tungsten portion of the cathode body is slightly precompressed. The top layer powder is then evenly distributed over the surface of the tungsten portion, after which a final compaction operation is performed.

本発明の目的は、より簡単でしかも電流密度と寿命に
関しては同じ結果となるこのようなディスペンサ型陰極
の異なる製造方法を得ることにある。
The object of the invention is to obtain a different manufacturing method of such a dispenser-type cathode, which is simpler and gives the same result in terms of current density and lifetime.

この目的のため、本発明は、陰極体をスカンジウムま
たは水素化スカンジウムと混合された或る量の金属粉末
から圧縮し、しかる後陰極体を焼結し、陰極にエミッタ
材料を与えることを特徴とするスカンジウム系(scanda
te)陰極の製造方法にあるものである。金属粉末量中の
スカンジウムまたは水素化スカンジウムの量は重量で0.
3−0.7%であるのが好ましい。
To this end, the invention is characterized in that the cathode body is compressed from a quantity of metal powder mixed with scandium or scandium hydride, after which the cathode body is sintered to give the cathode the emitter material. Scandium (scanda
te) The cathode manufacturing method. The amount of scandium or scandium hydride in the amount of metal powder is 0 by weight.
It is preferably 3-0.7%.

圧縮は一回の操作だけで行われまた頂層粉末の分布は
最早や必要ないので、このような方法は製造技術の観点
からより有利である。このような方法でつくられた陰極
体は、含浸剤の導入後に、何等悪影響を受けることなし
に丸削りまたはその他のタイプの成形のような機械処理
を受けることができる。
Such a method is more advantageous from the point of view of manufacturing technology, since the compaction takes place in only one operation and the distribution of the top layer powder is no longer necessary. Cathode bodies made in this way can be subjected to mechanical treatments, such as rounding or other types of shaping, without any adverse effects after the introduction of the impregnating agent.

水素ふん囲気内で行われるのが好ましい焼結中にスカ
ンジウムが失われるのをできる限り防ぐために、この焼
結操作はスカンジウムの溶融点(1539℃)より低い温度
で行われることが好ましい。けれども他面においては、
この焼結温度は、強い陰極体を得るためにできるだけ高
く選ばねばならない。
In order to prevent as much as possible the loss of scandium during sintering, which is preferably carried out in a hydrogen atmosphere, this sintering operation is preferably carried out below the melting point of scandium (1539 ° C.). But on the other side,
This sintering temperature must be chosen as high as possible in order to obtain a strong cathode body.

したがって本発明の方法の好ましい実施態様では、焼
結温度は1430℃と1500℃の間にある。
Therefore, in a preferred embodiment of the method of the present invention, the sintering temperature is between 1430 ° C and 1500 ° C.

以下に本発明を添付の図面を参照して実施例により詳
しく説明する。
Hereinafter, the present invention will be described in detail by way of examples with reference to the accompanying drawings.

第1図は本発明の方法によって得られた陰極の縦断面
図である。陰極体1は、タングステン粉末と重量で略々
0.5%のスカンジウムまたは水素化スカンジウムの混合
物より圧縮される。略々3.5気圧の圧力での圧縮、水素
中で1450℃での略々1時間の焼結の後、スカンジウムと
タングステンの陰極体は略々20%の多孔度を有する。陰
極体1はこの時例えば0.5mmの厚さと略々1.8mmの直径を
有する。
FIG. 1 is a vertical sectional view of a cathode obtained by the method of the present invention. The cathode body 1 is approximately the same as tungsten powder in weight.
Compressed from a mixture of 0.5% scandium or scandium hydride. After compression at a pressure of approximately 3.5 atmospheres and sintering in hydrogen at 1450 ° C. for approximately 1 hour, the scandium and tungsten cathode bodies have a porosity of approximately 20%. The cathode body 1 then has a thickness of, for example, 0.5 mm and a diameter of approximately 1.8 mm.

次いで、陰極体1は水素ふん囲気中でバリウム・カル
シウム・アルミニウム(例えば5BaO;2Al2O3;3CaOまたは
4BaO;1Al2O3;1CaO)で含浸され、ホールダ2内に圧縮さ
れ、脚部3上に溶接される。この脚部3は、らせん状に
巻回された金属芯5と酸化アルミニウム絶縁層6を有す
るコイル状陰極フィラメント4を収容する。このような
放出面7の放出は、0.3mmの陰極−陽極間隔を有するダ
イオードで1000Vのパルス負荷において950℃で略々100A
/cm2であった。このような放出は、製造がより面倒な欧
州特許出願第0178716号に記載されたタングステンと酸
化スカンジウムの頂層を有する陰極の放出に匹敵する。
イオン衝撃後の回復は、略1900℃で焼結された陰極体を
有する前記の特許出願に記載された陰極の回復に匹敵す
るものであった(略65%)。1500℃で焼結された本発明
による陰極では、この回復は少なく、略々58%であっ
た。回復率の意味およびその測定方法においては、前記
の欧州特許出願または「アプライド・サーフィス・サイ
アンス(Applied Surface Seience)」26(1986年)、
第173−195頁の記事「プロパティズ・アンド・マニュフ
ァクチァー・オブ・トップ・レーヤー・スカンデート・
カソーヅ(Properties and manufacture of top layer
scandate eathodes)」が参考になる。
Next, the cathode body 1 is barium-calcium-aluminum (for example, 5BaO; 2Al 2 O 3 ; 3CaO or
4BaO; 1Al 2 O 3 ; 1CaO), compressed into the holder 2 and welded onto the leg 3. The leg 3 contains a coiled cathode filament 4 having a spirally wound metal core 5 and an aluminum oxide insulating layer 6. Such emission of the emission surface 7 is about 100 A at 950 ° C. in a pulse load of 1000 V with a diode having a cathode-anode spacing of 0.3 mm.
/ cm 2 . Such emission is comparable to that of a cathode with a tungsten and scandium oxide top layer as described in the more cumbersome European patent application 0178716.
Recovery after ion bombardment was comparable (approximately 65%) to the recovery of the cathode described in the aforementioned patent application with the cathode body sintered at approximately 1900 ° C. With the cathode according to the invention sintered at 1500 ° C., this recovery was low, approximately 58%. Regarding the meaning of the recovery rate and its measuring method, the above-mentioned European patent application or “Applied Surface Seience” 26 (1986),
Articles 173-195, "Properties and Manufacturers of Top Layer Scandates"
Cases (Properties and manufacture of top layer
scandate eathodes) ”will be helpful.

前述の例では、含浸剤吸収は略々4.5%であった。圧
縮さるべき混合物内のスカンジウム(水素化)の量を重
量で1%に上げると、この吸収は略々2%に減少し、陰
極の寿命が短かくなる。重量で0.3−0.7%のスカンジウ
ム(水素化)の量に対して、吸収される含浸剤の量は十
分である。
In the above example, the impregnant absorption was approximately 4.5%. Increasing the amount of scandium (hydrogenation) in the mixture to be compressed to 1% by weight reduces this absorption to approximately 2% and shortens the life of the cathode. For an amount of scandium (hydrogenation) of 0.3-0.7% by weight, the amount of impregnant absorbed is sufficient.

中に加熱素子が設けられた第2図に斜視図で示した放
出面21を有する円筒20を、前述の方法で圧縮されたタン
グステン体より丸削りすることもできる。
The cylinder 20 having the emitting surface 21 shown in perspective view in FIG. 2 with the heating element provided therein can also be rounded from a tungsten body compressed by the method described above.

本発明の方法によってつくられた陰極は、例えばマグ
ネトロン、送信管等のような電子管に用いることができ
るが、例えばテレビジョン関係や電子顕微鏡の陰極線管
にも用いることもできる。
The cathode produced by the method of the present invention can be used in electron tubes such as magnetrons and transmitter tubes, but can also be used in cathode ray tubes of televisions and electron microscopes.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の方法によりつくられた陰極の一実施例
の縦断面図、 第2図は本発明の方法によりつくられた陰極の別の実施
例の斜視図である。 1……陰極体、2……ホールダ 3……脚部 4……コイル状陰極フィラメント 5……金属芯 6……酸化アルミニウム絶縁層 7,21……放出面、20……円筒
FIG. 1 is a longitudinal sectional view of an embodiment of a cathode made by the method of the present invention, and FIG. 2 is a perspective view of another embodiment of a cathode made by the method of the present invention. 1 ... Cathode body, 2 ... Holder 3 ... Legs 4 ... Coil-shaped cathode filament 5 ... Metal core 6 ... Aluminum oxide insulating layer 7,21 ... Emission surface, 20 ... Cylinder

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−154131(JP,A) 特開 昭63−254636(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-58-154131 (JP, A) JP-A-63-254636 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高温で溶融する金属より成る多孔性陰極体
の放出面にバリウムを補給するためのバリウム化合物を
有するディスペンサ型陰極の製造方法において、陰極体
をスカンジウムまたは水素化スカンジウムと混合された
或る量の金属粉末から圧縮し、しかる後陰極体を焼結
し、陰極にエミッタ材料を与えることを特徴とするスカ
ンジウム系陰極の製造方法。
1. A method for producing a dispenser type cathode having a barium compound for replenishing barium on the emission surface of a porous cathode body made of a metal that melts at high temperature, wherein the cathode body is mixed with scandium or scandium hydride. A method for producing a scandium-based cathode, which comprises compressing a certain amount of metal powder, and then sintering the cathode body to provide an emitter material for the cathode.
【請求項2】金属粉末とスカンジウムまたは水素化スカ
ンジウムの混合物のスカンジウムまたは水素化スカンジ
ウムの量は、重量で略々0.3%と0.7%の間にある請求項
1記載のスカンジウム系陰極の製造方法。
2. The method for producing a scandium-based cathode according to claim 1, wherein the amount of scandium or scandium hydride in the mixture of metal powder and scandium or scandium hydride is between approximately 0.3% and 0.7% by weight.
【請求項3】焼結温度はスカンジウムの溶融点よりも低
い請求項1または2記載のスカンジウム系陰極の製造方
法。
3. The method for producing a scandium-based cathode according to claim 1, wherein the sintering temperature is lower than the melting point of scandium.
【請求項4】焼結温度は1430℃と1500℃の間にある請求
項3記載のスカンジウム系陰極の製造方法。
4. The method for producing a scandium-based cathode according to claim 3, wherein the sintering temperature is between 1430 ° C. and 1500 ° C.
【請求項5】陰極体を、該陰極体にエミッタ材料を与え
た後に一定の形に形成する請求項1乃至4の何れか1項
記載のスカンジウム系陰極の製造方法。
5. The method for producing a scandium-based cathode according to claim 1, wherein the cathode body is formed in a fixed shape after the emitter material is applied to the cathode body.
JP63165191A 1987-07-06 1988-07-04 Method for manufacturing scandium-based cathode Expired - Lifetime JP2685232B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL8701583A NL8701583A (en) 1987-07-06 1987-07-06 SCANDAT CATHOD.
NL8701583 1987-07-06

Publications (2)

Publication Number Publication Date
JPH01163941A JPH01163941A (en) 1989-06-28
JP2685232B2 true JP2685232B2 (en) 1997-12-03

Family

ID=19850259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63165191A Expired - Lifetime JP2685232B2 (en) 1987-07-06 1988-07-04 Method for manufacturing scandium-based cathode

Country Status (5)

Country Link
EP (1) EP0298558B1 (en)
JP (1) JP2685232B2 (en)
KR (1) KR890002949A (en)
DE (1) DE3889696T2 (en)
NL (1) NL8701583A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8902793A (en) * 1989-11-13 1991-06-03 Philips Nv SCANDAT CATHOD.
ATE167755T1 (en) * 1993-10-28 1998-07-15 Philips Electronics Nv STORAGE CATHODE AND PRODUCTION PROCESS
BE1007677A3 (en) * 1993-10-28 1995-09-12 Philips Electronics Nv Method for manufacturing a dispenser cathode
BE1007676A3 (en) * 1993-10-28 1995-09-12 Philips Electronics Nv Method for manufacturing a dispenser cathode
US5407633A (en) * 1994-03-15 1995-04-18 U.S. Philips Corporation Method of manufacturing a dispenser cathode
US6281626B1 (en) * 1998-03-24 2001-08-28 Casio Computer Co., Ltd. Cold emission electrode method of manufacturing the same and display device using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL165880C (en) * 1975-02-21 1981-05-15 Philips Nv DELIVERY CATHOD.
JPS58154131A (en) * 1982-03-10 1983-09-13 Hitachi Ltd Impregnation type cathode
NL8201371A (en) * 1982-04-01 1983-11-01 Philips Nv METHODS FOR MANUFACTURING A SUPPLY CATHOD AND SUPPLY CATHOD MANUFACTURED BY THESE METHODS
NL8403031A (en) * 1984-10-05 1986-05-01 Philips Nv METHOD FOR MANUFACTURING A SCANDAL FOLLOW-UP CATHOD AND SCANDAL FOLLOW-UP CATHOD Manufactured By This Method
NL8403032A (en) * 1984-10-05 1986-05-01 Philips Nv METHOD FOR MANUFACTURING A SCANDAL FOLLOW-UP CATHOD, FOLLOW-UP CATHOD MADE WITH THIS METHOD
JPS63254636A (en) * 1987-04-10 1988-10-21 Hitachi Ltd Impregnated cathode

Also Published As

Publication number Publication date
EP0298558B1 (en) 1994-05-25
DE3889696T2 (en) 1994-12-08
KR890002949A (en) 1989-04-12
JPH01163941A (en) 1989-06-28
DE3889696D1 (en) 1994-06-30
EP0298558A1 (en) 1989-01-11
NL8701583A (en) 1989-02-01

Similar Documents

Publication Publication Date Title
US4625142A (en) Methods of manufacturing a dispenser cathode and dispenser cathode manufactured according to the method
CA1042061A (en) Dispenser cathode with oxide of barium, scandium and aluminium
EP0179513B1 (en) Method of manufacturing a scandate dispenser cathode and dispenser cathode manufactured by means of the method
JP2661992B2 (en) Scandat cathode and electron beam tube provided with the cathode
US4671777A (en) Method of manufacturing a dispenser cathode and the use of the method
US4873052A (en) Method of manufacturing a scandate dispenser cathode and scandate dispenser cathode manufactured according to the method
US4675570A (en) Tungsten-iridium impregnated cathode
JP2685232B2 (en) Method for manufacturing scandium-based cathode
KR100189035B1 (en) Scandate cathode and method of making it
US4982133A (en) Dispenser cathode and manufacturing method therefor
US5064397A (en) Method of manufacturing scandate cathode with scandium oxide film
US3922428A (en) Thermionic cathode comprising mixture of barium oxide, calcium oxide and samarium oxide
US5261845A (en) Scandate cathode
EP0298557A1 (en) Method of manufacturing a dispenser cathode
US3971110A (en) Method for fabricating an electron-emission cathode
JP3378275B2 (en) Porous sintered substrate, method for producing the same, and impregnated cathode using the same
US2995674A (en) Impregnated cathodes
EP0157634A2 (en) Tungsten-iridium impregnated cathode
KR920004552B1 (en) Dispenser cathode
JP2004241249A (en) Impregnation type cathode and its manufacturing method
JPH05234502A (en) Manufacture of electric discharge lamp electrode
JPS63116330A (en) Impregnated cathode