JP3374305B2 - Method for producing titania-based catalyst - Google Patents

Method for producing titania-based catalyst

Info

Publication number
JP3374305B2
JP3374305B2 JP17832096A JP17832096A JP3374305B2 JP 3374305 B2 JP3374305 B2 JP 3374305B2 JP 17832096 A JP17832096 A JP 17832096A JP 17832096 A JP17832096 A JP 17832096A JP 3374305 B2 JP3374305 B2 JP 3374305B2
Authority
JP
Japan
Prior art keywords
titania
based catalyst
catalytic activity
producing
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17832096A
Other languages
Japanese (ja)
Other versions
JPH1015387A (en
Inventor
智子 春日
正義 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP17832096A priority Critical patent/JP3374305B2/en
Publication of JPH1015387A publication Critical patent/JPH1015387A/en
Application granted granted Critical
Publication of JP3374305B2 publication Critical patent/JP3374305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、チタニア系触媒の製造
方法に関する。更に詳しくは、市販のチタニア(TiO
2 )から光触媒活性に優れた触媒を、容易に製造する方
法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a titania-based catalyst. More specifically, commercially available titania (TiO
2 ) A method for easily producing a catalyst excellent in photocatalytic activity from 2 ).

【0002】[0002]

【従来の技術】チタニアは、触媒活性に優れた材料とし
て広く知られ、さまざまな光触媒反応が検討されてい
る。
2. Description of the Related Art Titania is widely known as a material having excellent catalytic activity, and various photocatalytic reactions have been studied.

【0003】光触媒反応は、(1) 触媒表面に反応分子が
近接する、(2) 触媒の内部で光照射によって励起された
電子・ホールが触媒表面にある反応分子を還元あるいは
酸化させることによって、化学反応を促進させると考え
られる。
The photocatalytic reaction is carried out by (1) the reaction molecules are brought close to the catalyst surface, and (2) electrons and holes excited by light irradiation inside the catalyst reduce or oxidize the reaction molecules on the catalyst surface. It is thought to accelerate the chemical reaction.

【0004】触媒活性を向上させるための手段として
は、触媒の比表面積の増大(触媒活性点の増大)につな
がる、触媒粉末の微細化、ないしは、多結晶であっても
結晶粒径(単一結晶の)の小径化が、即ち、結晶微細化
が有効な一手段として期待できる。そして、結晶微細化
の方法として、ゾルゲル法、気相法等が公知である。
As means for improving the catalytic activity, the catalyst powder is made finer, which leads to an increase in the specific surface area of the catalyst (increase in the catalytic activity points), or even if it is polycrystalline, the crystal grain size (single It can be expected that reducing the diameter of the crystal), that is, refining the crystal, is an effective means. Then, as a method of refining crystals, a sol-gel method, a vapor phase method, etc. are known.

【0005】さらに、1992年1月発行の「科学と工
業 第66巻」に投稿された研究論文「白金およびルテ
ニウムを担持したTiO2 −SiO2 触媒の調製と光触
媒活性」に、ゾルゲル法でチタニア系触媒粉末を調製す
る際に、シリカ(SiO2 )をドープ(添加)すると結
晶粒径が小さくなることが報告されている。
Further, in the research paper “Preparation and Photocatalytic Activity of TiO 2 —SiO 2 Catalyst Supporting Platinum and Ruthenium” published in “Science and Industry Vol. 66” published in January 1992, titania by sol-gel method It has been reported that the crystal grain size becomes smaller when silica (SiO 2 ) is doped (added) when preparing the system catalyst powder.

【0006】しかし、当該チタニア系触媒においては、
触媒助剤として白金とルテニウムを担持させて光触媒活
性を増大させることを前提とし、TiO2 −SiO2
は、触媒活性をほとんど期待しない担体としての役割を
担っていると推定される。
However, in the titania-based catalyst,
Assuming that platinum and ruthenium are supported as a catalyst aid to increase the photocatalytic activity, TiO 2 —SiO 2
Is presumed to have a role as a carrier that hardly expects catalytic activity.

【0007】そして、これらの担持操作は、貴金属を塩
化物水溶液の形にして行うため、面倒であり、かつ、コ
スト高となり易い。
Since these supporting operations are carried out in the form of an aqueous chloride solution of the noble metal, it is troublesome and the cost tends to be high.

【0008】また、TiO2 −SiO2 だけでは、高い
触媒活性が得難いことが、本発明者らが試験検討した結
果、分かった。
Further, as a result of examination and examination by the present inventors, it was found that it is difficult to obtain a high catalytic activity only with TiO 2 —SiO 2 .

【0009】そこで、本発明者らは、特別に貴金属助触
媒等を担持させなくても、TiO2又は、TiO2 −S
iO2 だけで、触媒活性を増大させることができるチタ
ニア系触媒の製造方法を、特願平7−67893号、特
願平7−228966号(共に本願出願時未公開)にお
いて、先に提案した。
Therefore, the inventors of the present invention did not specially support a noble metal co-catalyst or the like on TiO 2 or TiO 2 —S.
iO 2 only, a method of manufacturing a titania-based catalyst capable of increasing the catalytic activity, Japanese Patent Application No. Hei 7-67893, Japanese Patent Application No. Hei 7-228966 in (unpublished at both the Applicant), previously proposed .

【0010】「(1−x)TiO2 ・xSiO2 (x=
0〜0.5)のモル比となるように、チタンアルコキシ
ド及びシリコンアルコキシドを混合した加水分解ゾルを
ゲル化後、該ゲル化物を350〜1200℃で焼成して
チタニア系触媒を製造する方法であって、焼成後のチタ
ニア系触媒を、酸またはアルカリで表面処理(化学処
理)する、更には、200〜1200℃の加熱処理する
ことを特徴とする。」
"(1-x) TiO 2 .xSiO 2 (x =
In the method of producing a titania-based catalyst by gelling a hydrolyzed sol in which titanium alkoxide and silicon alkoxide are mixed so as to have a molar ratio of 0 to 0.5), and then firing the gelled product at 350 to 1200 ° C. It is characterized by subjecting the titania-based catalyst after calcination to a surface treatment (chemical treatment) with an acid or an alkali, and further to a heat treatment at 200 to 1200 ° C. "

【0011】[0011]

【発明が解決しようとする課題】しかし、上記各方法の
場合、溶液濃度、攪拌時間、ゲル化条件、焼成条件等の
製造条件の制御を厳格にする必要があった。
However, in the case of each of the above methods, it was necessary to strictly control the production conditions such as the solution concentration, the stirring time, the gelling condition and the firing condition.

【0012】本発明は、上記にかんがみて、市販の安価
な汎用チタニアから光触媒活性に優れたチタニア系触媒
を容易に製造することができる方法を提供することを目
的とする。
In view of the above, an object of the present invention is to provide a method capable of easily producing a titania-based catalyst excellent in photocatalytic activity from a commercially available inexpensive general-purpose titania.

【0013】[0013]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく、鋭意開発に努力をする過程で、市販の安
価な汎用チタニアをアルカリ等で化学処理、更には、加
熱処理をすれば、触媒活性が増大することを見出し下記
構成の本発明に想到し得た。
In order to solve the above-mentioned problems, the present inventors, in the process of earnestly developing, carry out chemical treatment of commercially available inexpensive general-purpose titania with an alkali or the like, and further heat treatment. Then, it was found that the catalytic activity is increased, and the present invention having the following constitution was conceived.

【0014】 本発明は、アルカリで前記TiO 2 の表
面層にアナターゼ型結晶を成長させるとともに、Ti−
OH又はTi−Oという結合を形成する化学処理(表面
処理)をしたのち、さらに、300〜800℃の温度で
加熱処理してTi−O−Ti結合させることを特徴とす
るチタニア系触媒の製造方法にある。
The present invention is based on the above table of TiO 2 with alkali.
While growing anatase type crystal in the surface layer, Ti-
Chemical treatment to form OH or Ti-O bond (surface
Processing), and then at a temperature of 300 to 800 ° C.
A method for producing a titania-based catalyst is characterized in that a Ti—O—Ti bond is formed by heat treatment .

【0015】 上記製造方法において、化学処理を、水
酸化ナトリウム濃度3%以上、温度20〜150℃の条
件下で行うことが望ましい。
In the above manufacturing method, the chemical treatment is water.
Article having a sodium oxide concentration of 3% or more and a temperature of 20 to 150 ° C
It is desirable to do it under the circumstances.

【0016】[0016]

【手段の詳細な説明】以下、本発明のチタニア系触媒の
製造方法を説明をする。
[Detailed Description of Means] The method for producing the titania-based catalyst of the present invention will be described below.

【0017】(1) 第一グループ発明のチタニア系触媒を
製造する方法は、結晶又は無定形のチタニアを、アルカ
リまたは酸で化学処理することを特徴とする。
(1) The method for producing a titania-based catalyst of the first group invention is characterized in that crystalline or amorphous titania is chemically treated with an alkali or an acid.

【0018】ここで、使用するチタニアは、通常、アナ
ターゼ型、ルチル型等の結晶粉末を使用するが、無定形
であってもよい。
The titania used here is usually anatase-type, rutile-type, or the like, but may be amorphous.

【0019】具体的には、鋭錐石(アナターゼ)、金紅
石(ルチル)、板チタン石(ブルッカイト)等のチタン
鉱石から下記液相法により調製したものや、下記気相法
で合成したものを挙げることができる。更に具体的に
は、「JRC−TI0−1」、「JRC−TI0−
2」、「JRC−TI0−4」(以上「石原産業(株)
製」)、「JIS 特級試薬:アナターゼ型」等のアナター
ゼ型粉末や、「JRC−TI0−3」、「JRC−TI
0−5」(以上「石原産業(株)製」)、「JIS 特級試
薬:ルチル型」等のルチル型粉末を挙げることができ
る。以上は、いずれも粉末状であるが、塊状であっても
よい。
Concretely, those prepared from the titanium ores such as anatase (anatase), gold pearlite (rutile), and titanite (brookite) by the following liquid phase method, or those synthesized by the following gas phase method. Can be mentioned. More specifically, "JRC-TI0-1", "JRC-TI0-"
2 "," JRC-TI0-4 "(above" Ishihara Sangyo Co., Ltd. "
Manufactured)), "JIS special grade reagent: anatase type" and other anatase type powders, "JRC-TI0-3", "JRC-TI"
0-5 "(above" Ishihara Sangyo Co., Ltd. ")," JIS special grade reagent: rutile type "and the like rutile type powders. All of the above are in powder form, but may be in lump form.

【0020】ここで、「液相法」とは、チタン鉱石を、
硫酸等の強酸で、加熱加水分解して得られる含水酸化チ
タンを800〜850℃で焼成してチタニアを製造する
方法のことである。
Here, the "liquid phase method" means titanium ore
It is a method of producing titania by firing hydrous titanium oxide obtained by hydrolysis with a strong acid such as sulfuric acid at 800 to 850 ° C.

【0021】また、「気相法」とは、TiCl4 にO2
及びH2 を接触させて、チタニアを製造する方法のこと
である。
The "gas phase method" means that TiCl 4 and O 2 are added.
And H 2 are brought into contact with each other to produce titania.

【0022】(2) 本発明は、上記方法でチタニア粉末を
アルカリまたは酸で化学処理する。その際の条件は、常
温・常圧(大気圧)下の条件でも良いが、水熱合成的反
応が発生する高温・加圧下の条件で行うことが、反応が
促進される等の見地から望ましい。
(2) In the present invention, the titania powder is chemically treated with an alkali or an acid by the above method. The conditions at that time may be room temperature and atmospheric pressure (atmospheric pressure), but it is preferable to carry out under conditions of high temperature and pressure at which a hydrothermal synthetic reaction occurs in order to accelerate the reaction. .

【0023】ここでアルカリとしては水酸化ナトリウム
・カリウムの水溶液等を、酸としてはフッ酸等を好適に
使用可能である。
Here, an aqueous solution of sodium / potassium hydroxide or the like can be preferably used as the alkali, and hydrofluoric acid or the like can be suitably used as the acid.

【0024】ここで、水熱合成的反応が発生する高温・
加圧下とは、例えば、水酸化ナトリウムで化学処理(表
面処理)をする場合、耐圧密閉容器内で、温度20〜1
50℃×1〜100h、望ましくは、100〜120℃
×2〜120hの条件下で行う。
Here, the high temperature / temperature at which the hydrothermal synthetic reaction occurs
When under pressure, for example, when chemical treatment (surface treatment) is performed with sodium hydroxide, the temperature is 20 to 1 in a pressure-resistant closed container.
50 ° C x 1 to 100h, preferably 100 to 120 ° C
It is performed under the condition of × 2 to 120 hours.

【0025】この化学処理による原料チタニアの触媒活
性向上の理由は、夫々下記の如くであると推定される。
The reasons why the catalytic activity of the raw material titania is improved by this chemical treatment are presumed to be as follows.

【0026】 参照例1の如く、結晶粒径が大きな(触
媒活性が低い。)場合は、触媒活性のチタニアの表面が
凹凸となり、比表面積が増大する。実施例の如く、相対
的に比表面積が大きい(結晶粒径が小さい)ルチル形結
晶の場合、TiO2表面にアナターゼ結晶が成長するた
めに、結晶活性がさらに増大する。
When the crystal grain size is large (the catalytic activity is low) as in Reference Example 1 , the surface of the catalytically active titania becomes uneven and the specific surface area increases. In the case of the rutile type crystal having a relatively large specific surface area (small crystal grain size) as in the example, the anatase crystal grows on the TiO 2 surface, so that the crystal activity further increases.

【0027】また、各化学処理後は、水洗しておく。そ
して、アルカリで化学処理した場合、水洗後、希塩酸等
の無機酸で中和処理しておくことが望ましい。この、中
和処理方法は、通常、浸漬・噴霧等の方法で行う。
After each chemical treatment, it is washed with water. When chemically treated with an alkali, it is desirable to neutralize with an inorganic acid such as dilute hydrochloric acid after washing with water. This neutralization treatment method is usually performed by a method such as dipping or spraying.

【0028】(3) 上記のようにして調製した化学処理二
酸化チタンは、さらに、200〜1200℃×10〜4
00分、望ましくは、300〜800℃×60〜160
分の温度で加熱処理を行うことが望ましい。この加熱処
理により、TiO2 の結晶性が向上して、触媒活性が向
上する。即ち、化学処理(表面処理)したとき、TiO
2 の表面層に、Ti−OHあるいはTi−Oという結合
が形成されていると考えられ、これを熱処理すると、T
i−O−Tiの結合が形成され、相対的に触媒反応に寄
与するTiO2 量が増えるため、触媒活性が向上するも
のと推定される。
(3) The chemically treated titanium dioxide prepared as above is further added at 200 to 1200 ° C. × 10 to 4
00 minutes, preferably 300-800 ° C x 60-160
It is desirable to perform the heat treatment at a temperature of minutes. This heat treatment improves the crystallinity of TiO 2 and improves the catalytic activity. That is, when chemically treated (surface treatment), TiO
It is considered that a bond of Ti-OH or Ti-O is formed in the surface layer of No. 2 , and when this is heat-treated, T
It is estimated that the i-O-Ti bond is formed and the amount of TiO 2 that contributes to the catalytic reaction relatively increases, so that the catalytic activity is improved.

【0029】加熱処理温度が、200℃未満では、Ti
−O−Ti結合が形成されず、1200℃を越えると、
結晶が成長し、比表面積が減少するため触媒活性が低下
するおそれがある。
When the heat treatment temperature is less than 200 ° C., Ti
If the -O-Ti bond is not formed and the temperature exceeds 1200 ° C,
The crystals grow and the specific surface area decreases, so the catalytic activity may decrease.

【0030】(4) この加熱処理品は、そのまま、触媒
(光活性用)として使用してもよいが、通常、粉砕して
使用する。粉砕方法としては、通常、ボール・ロッドミ
ル、マイクロナイザー等の微粉砕機・超微粉砕機を使用
して行う。
(4) This heat-treated product may be used as it is as a catalyst (for photoactivation), but it is usually crushed before use. As a pulverization method, a fine pulverizer or an ultrafine pulverizer such as a ball / rod mill or a micronizer is usually used.

【0031】[0031]

【発明の作用・効果】本発明のチタニア系触媒の製造方
法は、上記のような構成により、下記のような作用・効
果を奏する。
The operation and effect of the present invention has the following operation and effects due to the above-mentioned constitution.

【0032】(1) チタニア粉末を、アルカリ又は酸で、
化学処理することにより、後述の実施例で支持される如
く、光触媒活性がに増大する。その理論的推定は、前述
の通りである。
(1) Titania powder is treated with an alkali or an acid,
The chemical treatment increases the photocatalytic activity, as will be supported in the examples below. The theoretical estimation is as described above.

【0033】(2) 上記化学処理後のチタニア粉末を、加
熱処理することにより、後述の実施例で支持される如
く、光触媒特性が格段に増大する。
(2) By subjecting the titania powder after the above chemical treatment to a heat treatment, the photocatalytic properties are remarkably increased, as will be supported in Examples described later.

【0034】この加熱処理により、TiO2 表面の各結
晶の触媒活性が増大するように改質されるものと推定さ
れる。
It is estimated that this heat treatment modifies each crystal on the TiO 2 surface so that the catalytic activity of each crystal increases.

【0035】以上の如く、本発明のチタニア系触媒の製
造方法は、安価な市販の汎用チタニアを、アルカリまた
は酸で化学処理するだけ、または、更には加熱処理する
だけで、チタニアの触媒活性を増大(特に、加熱処理し
た場合には格段に)させることができる。即ち、市販の
安価な汎用チタニアから光触媒活性に優れたチタニア系
触媒の容易に製造することができる。
As described above, according to the method for producing a titania-based catalyst of the present invention, the catalytic activity of titania is obtained by chemically treating inexpensive commercially available general-purpose titania with an alkali or an acid, or by further heat treatment. It can be increased (particularly significantly when heat-treated). That is, a titania-based catalyst having excellent photocatalytic activity can be easily produced from commercially available inexpensive general-purpose titania.

【0036】[0036]

【実施例】以下、本発明の効果を確認するために行った
実施例について説明をする。
[Examples] Examples performed to confirm the effects of the present invention will be described below.

【0037】 (1)実施例・参照例1〜3 表1に示す仕様の各チタニア粉末を使用して、表示の条
件で化学処理(耐圧密閉容器内)したもの、及び、加熱
処理したものについて、光触媒活性を、下記方法で測定
をした(図1参照)。化学処理は、アルカリ処理後、水
洗し、HClaq(0.1N)で酸洗浄して完了した。
(1) Examples / Reference Examples 1 to 3 Each of the titania powders having the specifications shown in Table 1 was chemically treated (in a pressure-resistant airtight container) under the indicated conditions, and heat-treated. The photocatalytic activity was measured by the following method (see FIG. 1). The chemical treatment was completed by rinsing with water after alkali treatment and acid washing with HClaq (0.1N).

【0038】 <触媒活性試験> 酢酸水溶液(濃度5mモル/L)を10mLビーカ12
に充満させた後、各実施例・参照例のチタニアを添
し、磁石式スターラ14で攪拌するとともに、酸素をバ
ブリングしながら、キセノンランプ(500W)で光照
射しながら、酢酸水溶液を光分解させた。そのとき、残
存酢酸の濃度をガスクロマトグラフィーで測定して、1
5分ごとに分解率を求めた。
<Catalyst activity test> Aqueous acetic acid solution (concentration 5 mmol / L) was added to 10 mL beaker 12
After filling, the titania in the Examples and Reference Example was added pressure, with stirring with a magnet type stirrer 14, while bubbling oxygen, while irradiation with a xenon lamp (500 W), photolysis aqueous solution of acetic acid Let At that time, the concentration of residual acetic acid was measured by gas chromatography to be 1
The decomposition rate was obtained every 5 minutes.

【0039】 (2)試験結果 各試験結果を図2〜5に示す。当該試験結果から、参照
例・実施例のいずれにおいても、化学処理・加熱処理品
は、格段に触媒活性が増大していることが分かる。化学
処理品においても、参照例2(図4)を除いて、触媒活
性が増大していることが分かる。参照例2は、当初か
ら、比表面積が大きく、かつ、化学処理時間が40hと
長いため、触媒活性を担うアナタ−ゼがアモルファス化
(無定形化)して、触媒活性が低下すると推定される。
(2) Test Results Each test result is shown in FIGS. Reference from the test results
In each of the examples and examples, it can be seen that the chemical treatment / heat treatment product has a markedly increased catalytic activity. It can be seen that also in the chemically treated product, the catalytic activity is increased except for Reference Example 2 (FIG. 4) . Reference Example 2, from the beginning, a large specific surface area, and since chemical treatment time is long and 40h, ANATA responsible for catalytic activity - peptidase is amorphous (amorphization) that the catalytic activity is estimated to decrease .

【0040】[0040]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】 光触媒活性試験に使用する装置のモデル図FIG. 1 Model diagram of an apparatus used for photocatalytic activity test

【図2】 参照例1におけるチタニアの触媒活性試験の
結果を示すグラフ図
FIG. 2 is a graph showing the results of a titania catalytic activity test in Reference Example 1 .

【図3】 実施例におけるチタニアの触媒活性試験の結
果を示すグラフ図
FIG. 3 is a graph showing the results of a titania catalytic activity test in Examples .

【図4】 参照例2におけるチタニアの触媒活性試験の
結果を示すグラフ図
FIG. 4 is a graph showing the results of a titania catalytic activity test in Reference Example 2 .

【図5】 参照例3におけるチタニアの触媒活性試験の
結果を示すグラフ図
FIG. 5 is a graph showing the results of a titania catalytic activity test in Reference Example 3 .

【符号の説明】[Explanation of symbols]

12 ビーカ 14 スターラ 12 beakers 14 Stirrer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−117556(JP,A) 特開 平7−303835(JP,A) 特開 平7−819(JP,A) 特開 昭51−64498(JP,A) 特開 平4−90825(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 C01G 23/00 - 23/08 ─────────────────────────────────────────────────── --Continued from the front page (56) References JP-A-8-117556 (JP, A) JP-A-7-303835 (JP, A) JP-A-7-819 (JP, A) JP-A-51- 64498 (JP, A) JP-A-4-90825 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B01J 21/00-38/74 C01G 23/00-23/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 液相法又は気相法で合成されたチタニア
(TiO 2 )のルチル型結晶粉末を、アルカリで前記T
iO 2 の表面層にアナターゼ型結晶を成長させるととも
に、Ti−OH又はTi−Oという結合を形成する化学
処理(表面処理)をしたのち、さらに、300〜800
℃の温度で加熱処理してTi−O−Ti結合させること
を特徴とするチタニア系触媒の製造方法。
1. A titania synthesized by a liquid phase method or a gas phase method.
The rutile type crystal powder of (TiO 2 ) is treated with the above-mentioned T with an alkali.
The growth of anatase type crystals on the surface layer of iO 2
To form Ti-OH or Ti-O bond
After treatment (surface treatment), 300-800
A method for producing a titania-based catalyst, which comprises heat-treating at a temperature of ° C to bond Ti-O-Ti .
【請求項2】 請求項1において、前記化学処理を、水
酸化ナトリウム濃度3%以上、温度20〜150℃の条
件下で行うことを特徴とするチタニア系触媒の製造方
法。
2. The chemical treatment according to claim 1, wherein the chemical treatment is water.
Article having a sodium oxide concentration of 3% or more and a temperature of 20 to 150 ° C
A method for producing a titania-based catalyst, which is performed under conditions .
JP17832096A 1996-07-08 1996-07-08 Method for producing titania-based catalyst Expired - Fee Related JP3374305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17832096A JP3374305B2 (en) 1996-07-08 1996-07-08 Method for producing titania-based catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17832096A JP3374305B2 (en) 1996-07-08 1996-07-08 Method for producing titania-based catalyst

Publications (2)

Publication Number Publication Date
JPH1015387A JPH1015387A (en) 1998-01-20
JP3374305B2 true JP3374305B2 (en) 2003-02-04

Family

ID=16046430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17832096A Expired - Fee Related JP3374305B2 (en) 1996-07-08 1996-07-08 Method for producing titania-based catalyst

Country Status (1)

Country Link
JP (1) JP3374305B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200116243A (en) * 2019-04-01 2020-10-12 한국과학기술연구원 Platinum-titanium dioxide catalyst, its production method, and its production apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6414213B2 (en) * 1999-01-07 2002-07-02 Showa Denko K.K. Titanium oxide particle-coated interior member or indoor equipment
KR100430405B1 (en) * 1999-04-23 2004-05-03 주식회사 나노 manufacturing method of titanium dioxide powder for photocatalyst
JP4628011B2 (en) * 2004-04-14 2011-02-09 ダイセル化学工業株式会社 Titanium oxide crystal, photocatalyst, and organic compound oxidation method
JP4628010B2 (en) * 2004-04-14 2011-02-09 ダイセル化学工業株式会社 Purification method of titanium oxide
KR101993236B1 (en) * 2017-06-29 2019-06-26 허경삼 Method for manufacturing visible-light active titanium dioxide photocatalyst by using chemicasurface modification

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200116243A (en) * 2019-04-01 2020-10-12 한국과학기술연구원 Platinum-titanium dioxide catalyst, its production method, and its production apparatus
KR102212649B1 (en) 2019-04-01 2021-02-08 한국과학기술연구원 Platinum-titanium dioxide catalyst, its production method, and its production apparatus

Also Published As

Publication number Publication date
JPH1015387A (en) 1998-01-20

Similar Documents

Publication Publication Date Title
US6537517B1 (en) Crystalline titania having nanotube crystal shape and process for producing the same
CN1128106C (en) Method for prodn. of mono-dispersed and crystalline TiO2 ultrafine powders from aqueous TiOCl2 solution using homogeneous precipitation
US8802159B2 (en) Production method of titanium oxide sol
Zhang et al. Effect of peptization on phase transformation of TiO2 nanoparticles
CN101391811B (en) Method for preparing high specific surface area titanic oxide
JP2009521392A5 (en)
CN107935039B (en) Preparation method of titanium dioxide water-based sol
EP0186149A2 (en) Non-aged inorganic oxide-containing aerogels and their preparation
CN101525152A (en) Mumm-shaped 3D TiO nanometer material and preparation method thereof
EP1719737A1 (en) Process for the preparation of a temperature-stable TiO2/SiO2 mixed-oxide and its use as a catalyst carrier
Xiong et al. Preparation and photodegradation activity of high aspect ratio rutile TiO2 single crystal nanorods
CN107096519A (en) A kind of platinum dopant nano titanium dioxide photocatalyst
EP2454197B1 (en) Process for the preparation of titanium dioxide having nanometric dimensions and controlled shape
JP3374305B2 (en) Method for producing titania-based catalyst
CN105523583A (en) Synthetic method of nano titanium dioxide powder
SU1083897A3 (en) Catalyst of fluorodeposition of water
CN101481137A (en) TiO2 nano materials of multiple regular geometric shapes and preparation thereof
JP3674009B2 (en) Method for producing amorphous titanium oxide sol
TWI272250B (en) Visible light-activated photocatalyst and method for producing the same
JPH08257399A (en) Production of titania catalyst
JP3482461B2 (en) Potassium titanate photocatalyst and method for producing the same
CN100369818C (en) Process for preparing rutile-type nano TiO2 by meta titanic acid
JP4408349B2 (en) Method for producing photocatalyst-supported porous gel
JP3797573B2 (en) Method for producing anatase type fine particle titanium oxide
JP4184451B2 (en) Method for producing titania-based catalyst

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131129

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees