JP3370235B2 - Method of forming an insulating coating excellent in corrosion resistance and free of chromium compound capable of strain relief annealing on the surface of an electrical steel sheet - Google Patents

Method of forming an insulating coating excellent in corrosion resistance and free of chromium compound capable of strain relief annealing on the surface of an electrical steel sheet

Info

Publication number
JP3370235B2
JP3370235B2 JP20037396A JP20037396A JP3370235B2 JP 3370235 B2 JP3370235 B2 JP 3370235B2 JP 20037396 A JP20037396 A JP 20037396A JP 20037396 A JP20037396 A JP 20037396A JP 3370235 B2 JP3370235 B2 JP 3370235B2
Authority
JP
Japan
Prior art keywords
baking
weight
parts
steel sheet
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20037396A
Other languages
Japanese (ja)
Other versions
JPH1046350A (en
Inventor
田 広 朗 戸
口 勝 郎 山
森 ゆ か 小
藤 圭 司 佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP20037396A priority Critical patent/JP3370235B2/en
Publication of JPH1046350A publication Critical patent/JPH1046350A/en
Application granted granted Critical
Publication of JP3370235B2 publication Critical patent/JP3370235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、無方向性電磁鋼板
の製造方法において、耐食性に優れ、歪取り焼鈍が可能
な、クロム化合物を含まない絶縁被膜の形成方法に関す
るものである。さらには、従来より低温での焼付けが可
能な絶縁被膜の形成方法を提供するものである。 【0002】 【従来の技術】無方向性電磁鋼板は主にモーターやトラ
ンス等の鉄心として用いられる。その使用時には、所定
の形状に連続的に打ち抜きを行った後、積層して歪取り
焼鈍をするか、あるいは歪取り焼鈍を行ってから所定枚
数を積み重ねた後、溶接、かしめ、または接着等により
積鉄心とされている。通常、無方向性電磁鋼板の表面に
は、絶縁被膜が形成されている。この絶縁被膜として、
電気的絶縁性はもちろんのこと、歪取り焼鈍前の耐食
性、打抜性、密着性、溶接性、耐溶剤性、歪取り焼鈍時
の耐焼付き性、歪取り焼鈍後の耐食性、密着性、滑り
性、さらには高占積率であることなど多岐にわたる特性
が良好な鉄心特性と加工作業性を得るために要求され
る。 【0003】無方向性電磁鋼板の絶縁被膜形成方法とし
ては、1)無機系、2)有機系、3)有機−無機混合系
の処理液を塗布する方法が知られている。しかし、1)
の無機系絶縁被膜は有機系や有機−無機混合系に比較し
て、耐熱性や歪取り焼鈍後の滑り性は優れているが、打
抜性が劣っている。一方、2)の有機系絶縁被膜では、
打抜性、密着性は優れているが、歪取り焼鈍によって被
膜が分解・破壊され、歪取り焼鈍時の耐焼付き性、焼鈍
後の密着性が劣悪で使用に耐えない。3)の有機−無機
混合系絶縁被膜としては、特公昭50−15013号公
報に、重クロム酸塩と酢酸ビニル、ブタジエン−スチレ
ン共重合物、アクリル樹脂等の有機樹脂エマルジョンを
主成分とする処理液を、また、特公昭60−36476
号公報では、処理液中の無水クロム酸100重量部に対
して酢酸ビニル/ベオバ比が90/10〜40/60の
比率になる樹脂エマルジョンを樹脂固形分として5〜1
20重量部と有機還元剤を10〜60重量部配合した処
理液を用いて絶縁被膜を形成することによって、高占積
率、優れた耐食性、密着性、打抜性等の被膜特性を保
ち、かつ歪取り焼鈍を行ってもかなり良好な被膜特性が
得られる絶縁被膜形成法が提案されている。この3)の
方法は、クロム酸による優れた耐食性、密着性および有
機樹脂添加による優れた打抜性のために絶縁被膜処理法
の主流を占めている。 【0004】しかしながら、クロム化合物を主成分とし
て含有するものは、焼付け後の被膜中のクロムは6価か
ら3価に還元されて無害化されるものの安全衛生上のそ
れなりの対応が必要である。すなわち、絶縁被膜の形成
工程では液調合、塗装作業等において人体に影響を与え
ないように保護具など安全衛生上の厳しい対応が必要で
ある。また、塗装作業等で生じる廃液、廃水等について
公害規制上定められた水質基準に見合った無害化処理を
実施する必要があり、処理費用等の経済的な問題も大き
い。また、電磁鋼板の需要家における環境問題の厳しい
現在、ヨーロッパなどと同様にクロム化合物の使用制限
が強化される方向である。従って、クロム化合物を含ま
ないで、従来と同等の特性が得られる絶縁被膜処理技術
の開発が望まれていた。さらには、生産性向上、エネル
ギーコスト低減の観点から、従来の被膜焼付け温度(約
300〜500℃)より低い焼付け温度で被膜形成が可
能な技術の開発も待たれていた。クロム化合物を含まな
い歪取り焼鈍が可能な絶縁被膜形成法としては次に挙げ
る技術が開示されている。 【0005】特開昭50−103438号公報では、り
ん酸塩の1種または2種以上を含む溶液にりん酸イオン
10重量部に対して0.1〜50重量部の酸可溶性の有
機樹脂の1種または2種以上を添加した処理液を鋼板表
面に塗布し、300〜800℃で加熱・焼付けして絶縁
被膜を形成する技術が開示されている。しかしながら、
この技術では、300℃以下では焼付けに長時間を有
し、生産性に劣るという問題点があった。 【0006】特開昭54−31598号公報では、有機
物質を含有し、3次元的シロキサン結合の編目構造を形
成したシリカゲルを主成分として、板温が100〜35
0℃の温度で短時間加熱して絶縁被膜を形成する方法が
開示されている。しかしながら、この技術では、まだク
ロム酸を含む絶縁被膜に比べて耐食性が劣っていた。 【0007】また、特公昭59−21927号公報で
は、コロイド状シリカ、アルミナゾル、コロイド状チタ
ン、リチウムシリケート、人工雲母の1種または2種以
上よりなる無機コロイド状物質を主成分とする水溶液ま
たはこの無機コロイド状物質100部に対して水溶性ま
たはエマルジョンタイプの樹脂の1種または2種よりな
る有機物を0.5〜50部加えた水溶液を塗布し、乾燥
後0.02〜0.8g/m2 の被膜を有する鋼板をその
まま調質圧延して被膜形成する技術が開示されている。
しかしながら、これは簡易コート形成の技術であり、歪
取り焼鈍時の耐焼き付き性は良好なものの、焼鈍前の耐
食性など他の特性は従来のクロム化合物を利用した有機
−無機混合系絶縁被膜の特性よりは劣るものであった。 【0008】特開平5−78855号公報では、りん酸
2水素アルミニウムをP2 5 換算良で100〜350
g/l含有する無機質性水溶液と、pH1〜3の合成樹
脂水性エマルジョン、さらには架橋体樹脂粒子を添加し
て絶縁被膜を形成する技術が開示されている。しかしな
がら、この技術では被膜の焼付け温度は250〜500
℃の比較的高温である必要があった。 【0009】次に、特開平6−330338号公報で
は、アルミニウムの第1りん酸塩溶液100重量部に対
し、粒子径0.2〜3.0μmの有機樹脂エマルジョン
1〜300重量部を主成分とする処理液、あるいはアル
ミニウムの第1りん酸塩溶液100重量部に対し、粒子
径0.2〜3.0μmの有機樹脂エマルジョン1〜30
0重量部、かつ、ほう酸1〜20重量部およびコロイダ
ルシリカ1〜5重量部のいずれかまたは両方を有する処
理液を用いて絶縁被膜を形成する技術が開示されてい
る。しかしながら、この技術においても、実施例をみる
と被膜の焼付け温度は250℃以上であることが必要で
あった。 【0010】さらには、特開平7−166365号公報
では、固形分換算で、モル比(Al 2 3 /H3
4 )0.15〜0.20のりん酸アルミニウム、モル
比(CaO/H3 PO4 あるいはZnO/H3 PO4
0.4〜0.6のりん酸カルシウム、りん酸亜鉛の1種
または2種以上と有機物質としてpH4〜10で粒子径
0.3〜3.0μmの合成樹脂エマルジョンを配合した
処理液、あるいは固形分換算で、モル比(Al2 3
3 PO4 )0.15〜0.20のりん酸アルミニウ
ム、モル比(CaO/H3 PO4 あるいはZnO/H3
PO4 )0.4〜0.6のりん酸カルシウム、りん酸亜
鉛の1種または2種以上とりん酸、ほう酸、ほう酸塩の
1種または2種以上と有機物質としてpH4〜10で粒
子径0.3〜3.0μmの合成樹脂エマルジョンを配合
した処理液を用いて絶縁被膜を形成する技術が開示され
ている。しかしながら、この技術においても、実施例で
の被膜焼付き温度は板温250℃以上であり、焼付け温
度は従来並の温度が必要であった。 【0011】以上、開示されているクロム化合物を含ま
ない絶縁被膜形成技術は次の2つに大別される。 a)無機コロイド状物質と有機樹脂を配合した処理液を
基本として用いるもので、低温での焼付けは可能である
が、主に耐食性が従来のクロム化合物を含む有機−無機
混合系被膜より劣っていた。従って、技術的位置付け
は、従来より被膜特性は劣るが生産性は高い安価な簡易
コート相当であった。 b)りん酸塩と有機樹脂を配合した処理液を基本として
用いるもので、被膜特性はほぼ従来のクロム化合物を含
む有機−無機混合系被膜並の性能が得られるものの、り
ん酸塩を基本組成として含むので、耐食性確保のために
は焼付け温度として、りん酸塩の脱水反応が生じる温度
(約250℃以上)は必要であるため、従来より低温で
焼付けることはできていない。 【0012】また、絶縁被膜の形成に大きな影響を与え
ると思われる温度以外の被膜の焼付け条件(昇温速度、
冷却速度、焼鈍雰囲気の露点等)は、上述したクロム化
合物を含まない絶縁被膜形成技術においては検討されて
いなかった。クロム化合物を含む絶縁被膜形成法では、
焼付け条件として次に挙げる技術が開示されている。 【0013】特開昭54−24233号公報では、打抜
性の良好な被膜を得るために、処理液組成と共に、炉温
X(250≦X≦500[℃])と加熱時間Y(30≦
Y≦150[秒])の関係に着目し、処理液中の添加剤
(エチレングリコール)の配合量によってXとYの満た
す関係を規定し、さらに、鋼板表面温度80〜100℃
の範囲の昇温速度を0.5〜10℃/秒とする技術が開
示されている。 【0014】特開昭60−190572号公報では、打
抜性と溶接性に優れた被膜を得るために、処理液組成と
共に、鋼板の板温が110℃から150℃までの間は昇
温速度:2〜10℃/秒の条件下に昇温し、引続き25
0〜350℃の温度範囲で焼付けを完了する技術が開示
されている。また、特開平2−38581号公報では、
ブリスター等の欠陥のない端面塗膜を確保するために、
処理液を塗布後、昇温速度2〜5℃/秒の範囲で加熱
し、鋼板温度が350℃〜450℃に到達した後冷却し
て被膜の含水率を2重量%以下にする技術が開示されて
いる。 【0015】特開平3−53077号公報では、塗膜欠
陥のない被膜を得るために、昇温過程で130℃以上で
焼付け温度未満の温度域に規制温度を設定し、この規制
温度に達するまでは昇温速度を15℃/秒以下に規制し
て昇温する技術が開示されている。次に、特開平3−5
6679号公報でも、やはり塗膜欠陥のない被膜を得る
ために、昇温過程では20℃/秒以下の昇温速度で加熱
昇温する技術が開示されている。 【0016】特開平3−232977号公報では、打抜
性、溶接性、耐熱性に優れた被膜を得るために、処理液
組成と共に、150℃の温度までは3〜20℃/秒の加
熱速度で昇温し、ついで250〜450℃の温度範囲ま
で加熱して焼付け処理する技術が開示されている。ま
た、特開平4−99878号公報では、歪取り焼鈍後の
耐食性および密着性に優れた被膜を形成するために、処
理液組成と共に、20℃/秒以下の加熱速度で300〜
600℃の到達板温の範囲で焼付ける技術が開示されて
いる。 【0017】さらには、特開平5−287545号公報
では、溶接性に優れた被膜を得るために、鋼板の温度が
60℃に達するまでに該鋼板の温度以下の露点を有する
気体を塗布面に吹き付けた後、焼付け処理する技術が開
示されている。すなわち、絶縁被膜の焼付け処理条件に
おいては、クロム化合物を含む処理液の場合は、昇温速
度等に関する技術がある程度開示されているものの、ク
ロム化合物を含まない処理液を用いた場合については、
従来全く検討されていなかった。まして、昇温速度や冷
却速度、焼付け雰囲気の露点等を組み合わせた条件につ
いては、クロム化合物を含む含まないを問わず、被膜形
成に関する技術は開示されていない。 【0018】 【発明が解決しようとする課題】クロム化合物を含まな
いで、従来のクロム化合物を含む有機−無機混合系被膜
並の被膜特性、特に歪取り焼鈍前の耐食性に優れた歪取
り焼鈍が可能な性能を有し、かつ従来より低温焼付けが
できるエネルギーコストが低くて生産性が高い絶縁被膜
形成方法を提供するものである。 【0019】 【課題を解決するための手段】本発明者らは、上述した
課題を解決すべく鋭意研究した結果、無機コロイド状物
質と有機樹脂を配合した処理液を基本に用いて、被膜の
塗布量と被膜焼付け条件、すなわち焼付け時の温度、昇
温速度、冷却速度、焼付け雰囲気の露点、鋼板と焼付け
雰囲気ガスの相対速度を制御することによって、従来の
クロム化合物を含む有機−無機混合系被膜並の被膜特
性、特に歪取り焼鈍前の耐食性に優れた歪取り焼鈍が可
能な性能を有し、かつ従来より低温焼付けができ、クロ
ム化合物を含まない絶縁被膜形成が可能なことをみいだ
した。 【0020】クロム化合物を含まない有機−無機混合系
被膜においては、歪取り焼鈍前の耐食性が良好な水準で
ある被膜を形成するためには、被膜の焼付け・乾燥工程
における脱水過程、造膜過程挙動の制御がより重要にな
り、焼付け時の昇温速度や冷却速度の他に、従来着目さ
れていなかった雰囲気ガスの露点及び鋼板と雰囲気ガス
の相対速度を同時に制御することによって初めて、良好
な耐食性を有する被膜を得ることができた。 【0021】すなわち、本発明は、連続焼鈍ラインで焼
鈍を行った後、鋼板表面に絶縁被膜を形成する無方向性
電磁鋼板の製造方法において、前記絶縁被膜形成のため
の表面処理剤として、コロイド状シリカ、アルミナゾ
ル、ジルコニアゾルの1種または2種以上よりなる無機
コロイド状物質100重量部(無機物質換算)に対し
て、水溶性またはエマルジョンタイプの樹脂の1種また
は2種以上からなる有機物を15〜400重量部(有機
物質換算)加えた水溶液を用いて、塗布量を乾燥後の重
量で片面当たり0.2〜1.5g/m2 として鋼板に塗
布した後、昇温速度10℃/秒以上、冷却速度50℃/
秒以下、焼付け雰囲気の露点20℃以下で板温100〜
250℃の温度範囲で、かつ鋼板と焼付け雰囲気ガスと
の相対速度が3m/秒以上10m/秒以下で焼付け処理
することを特徴とする耐食性に優れた歪取り焼鈍が可能
なクロム化合物を含まない絶縁被膜の形成方法である。 【0022】焼付け時雰囲気ガスの露点を20℃以下と
低くして、かつ鋼板と雰囲気ガスとの相対速度を3m/
秒以上と速くすることで、焼付け昇温時に鋼板表面に塗
布した処理液から発生する水分が速やかに雰囲気中に拡
散し、かつ、すぐに露点の低い(水分量の少ない)雰囲
気ガスにさらされるので、脱水および造膜が速やかに進
行して、緻密でかつ残留水分の少ない膜が形成されるた
めに、耐食性が優れた被膜が得られると思われる。但
し、鋼板と雰囲気ガスとの相対速度が10m/秒を超え
ると外観が劣化するので好ましくない。 【0023】以下、本発明について、実験結果をまじえ
て説明する。本発明の絶縁被膜形成用処理液としては、
コロイド状シリカ、アルミナゾル、ジルコニアゾルの1
種または2種以上よりなる無機コロイド状物質100重
量部(無機物質換算)に対して、水溶性またはエマルジ
ョンタイプの樹脂の1種または2種以上からなる有機物
を15〜400重量部(有機物換算)加えた水溶液を用
いる。 【0024】本発明に用いる無機コロイド状物質は、コ
ロイド状シリカ、アルミナゾル、ジルコニアゾルの1種
または2種以上よりなるものである。また、コロイド状
シリカは、そのシリカ表面がアルミナなどで表面処理さ
れたものであってもよい。無機コロイド状物質として好
ましいのはコロイド状シリカである。該無機コロイド状
物質は、歪取り焼鈍時の耐焼付き性および歪取り焼鈍後
の耐食性、密着性、滑り性を確保するために必要であ
る。また、本発明に用いる有機物は、水溶性またはエマ
ルジョンタイプの樹脂の1種または2種以上からなるも
のである。該水溶性またはエマルジョンタイプの樹脂
は、打抜性、耐食性を確保するために必要である。水溶
性またはエマルジョンタイプの樹脂としては、アクリ
ル、ポリスチレン、エポキシ、酢酸ビニル、ポリエチレ
ン、ポリエステル、ポリオレフィン、フェノール、ポリ
ビニルアルコール、ポリプロピレン、ポリウレタン等の
1種または2種以上からなる混合物を用いることができ
る。ただし、これ以外にも本発明の主旨に一致するもの
を用いたり含有することは当然、本発明の範囲である。
有機樹脂として好ましいものは、アクリル、エポキシ、
ポリエチレンである。本発明の絶縁被膜形成用処理液中
に、無機コロイド状物質と有機物の結合に関与するシラ
ンカップリング剤等の添加物を配合することが可能であ
る。シランカップリング剤等を配合することは、密着性
や耐溶剤性のさらなる向上に有効な手段となる。さら
に、アミン類等の防錆効果を有する有機物、NaN
2 、NaMoO4 等の不動態化剤を添加すると、耐食
性の向上に役立つ。 【0025】水溶性またはエマルジョンタイプの樹脂の
添加量については、無機コロイド状物質100重量部に
対して、15〜400重量部、好ましくは30〜250
重量部である。15重量部未満では、歪取り焼鈍前の打
抜性および耐食性に劣り好ましくない。また、400重
量部を超えると歪取り焼鈍時の耐焼付き性、歪取り焼鈍
後の耐食性と密着性が劣り好ましくない。 【0026】次に、上記処理液組成配合物を鋼板表面に
塗布・焼付け処理した後の塗布量は、乾燥後の重量で片
面当たり0.2〜1.5g/m2 、好ましくは0.4〜
1.2g/m2 とする。塗布量が0.2g/m2 未満で
は充分な打抜性や耐食性等が確保できず、1.5g/m
2 を超えると塗布量の増加に見合った打抜性等の被膜特
性の向上効果が得られなくなるばかりか、溶接性が劣化
する。 【0027】被膜焼付け温度は100〜250℃、好ま
しくは150〜200℃とする。本発明のクロム化合物
を含まない無機コロイド状物質と水溶性またはエマルジ
ョンタイプの樹脂を主体にした配合の処理液では、従来
より低温焼付けが可能であり、かつ板温が250℃を超
えると添加した有機物が分解飛散してしまい良好な被膜
特性が得られなくなるので、焼付け温度の上限は250
℃とした。一方板温が100℃未満の加熱では、水分の
飛散に長時間を要し、焼付け後の残留水分量も多くなっ
て耐食性が劣化するので、焼付け温度の下限は100℃
とした。 【0028】被膜焼付け条件のうち、昇温速度は10℃
/秒以上、好ましくは、20〜100℃/秒である。1
0℃/秒未満の遅い昇温速度では、このクロム化合物を
含まない無機コロイド状物質と水溶性またはエマルジョ
ンタイプの樹脂を主体にした配合の処理液を用いた場
合、耐食性が劣る被膜となってしまうことがわかった。
詳しい機構は不明であるが、上述のような構成である処
理液では、脱水反応を速やかに進行させることで焼付け
後の被膜中の残留水分量が少なくなり、従って耐食性が
向上するものと思われる。 【0029】また、焼付け時の冷却速度は50℃/秒以
下である。50℃/秒を超える速い冷却速度では、冷却
時に絶縁被膜表面に割れ等の欠陥が生じ、耐食性が劣化
するので、冷却速度は前記のように限定した。被膜焼付
けは、大気、窒素、アルゴン等の通常使用される雰囲気
ガスを用いて行う。 【0030】しかしながら、上述した処理液配合物を用
い、被膜焼付け温度100〜250℃、焼付け時昇温速
度10℃/秒以上、焼付け時冷却速度50℃/秒以下の
条件で絶縁被膜を生成しても、その耐食性は、クロム化
合物を含む絶縁被膜より劣る場合がしばしばあった。そ
こで、焼付け時の条件をさらに検討した結果、焼付け雰
囲気の露点および鋼板と焼付け雰囲気ガスとの相対速度
が歪取り焼鈍前の耐食性に大きく影響することがわかっ
た。以下、その実験結果について説明する。 【0031】雰囲気ガスの露点および鋼板と雰囲気ガス
との相対速度の検討 下記の条件下で、焼付け雰囲気の露点を0℃未満から5
0℃、鋼板と焼付け雰囲気ガスの相対速度を0m/秒か
ら11m/秒まで変化させて焼付けを行った。なお、鋼
板と焼付け雰囲気ガスの相対速度は、鋼板の通板速度あ
るいは焼付け雰囲気ガスの流速を変えて変更した。焼付
け後の耐食性の結果を図1に示す。耐食性(湿潤試験)
は、焼付け後、歪取り焼鈍前に、温度50℃、相対湿度
100%の条件で、48時間暴露後の発錆面積率(%)
を測定した。図1において、評価は以下のように行っ
た。発錆面積率5%未満は、評価ランク○、同じく5〜
20%は△、20%超は×とした。但し、外観が劣化し
たものには、*を記した。 【0032】処理液組成 コロイダルシリカ(濃度20%のシリカゾル):50重
量部(SiO2 換算10重量部) エマルジョンタイプ樹脂;アクリル酸/スチレン系(固
形分40%の樹脂エマルジョン):25重量部 シランカップリング剤(アクリル基を有する):0.3
重量部(樹脂固形分に対して3%) 防錆剤:0.2重量部(シリカ+樹脂固形分に対して2
%) 水:325重量部 被膜目付け量:0.5g/m2 (片面当たり) 【0033】これから、焼付け雰囲気の露点は20℃以
下で、かつ鋼板と焼付け雰囲気ガスとの相対速度は3m
/秒以上とすることで、クロム化合物を含む被膜と同等
な良好な耐食性(湿潤試験48Hrで発錆率5%未満)
が得られることがわかった。但し、相対速度が10m/
秒を超えると被膜の筋模様やムラが目だつようになり、
外観が劣化したので上限は10m/秒とした。 【0034】耐食性が優れた被膜が得られる理由として
は、雰囲気ガスの露点を20℃以下と低くして、かつ鋼
板と雰囲気ガスとの相対速度を3m/秒以上と速くする
ことで、焼付け昇温時に鋼板表面に塗布した処理液から
発生する水分が速やかに雰囲気中に拡散し、かつ、すぐ
に露点の低い(水分量の少ない)雰囲気ガスにさらされ
るので、脱水および造膜が速やかに進行して、緻密でか
つ残留水分の少ない膜が形成するためと思われる。な
お、焼付け雰囲気ガスの種類は大気、窒素、アルゴン等
通常使用されるものでよい。 【0035】 【実施例】次に本発明の実施例を比較例とともに説明す
る。 (実施例1)最終仕上焼鈍後の無方向性電磁鋼板(板厚
0.5mm)の表面に、下記に示す配合の処理液Xをゴ
ムロールで乾燥後の目付量が片面当たり0.5g/m2
であるように均一に塗布し、表1の条件で焼付け処理を
行った。その後、下記に示す被膜の各種品質試験を行っ
た。結果を表1に併記する。また、従来のクロム化合物
を含む有機−無機混合系被膜の代表例として、特公昭6
0−36476号公報記載の処理液組成および焼付け条
件で得られる被膜の特性を調査した結果も試料No.1
1として表1に示した。その処理液組成(Y)及び焼付
け条件も下記に示す。 【0036】処理液Xの組成 コロイダルシリカ(濃度20%のシリカゾル):50重
量部 エマルジョンタイプ樹脂;ポリエチレン/アクリル酸系
(固形分25%の樹脂エマルジョン):40重量部 シランカップリング剤(アクリル基を有する):0.3
重量部(樹脂固形分に対して3%) 防錆剤:0.2重量部(シリカ+樹脂固形分に対して2
%) 水:310重量部 【0037】処理液Yの組成 30%重クロム酸マグネシウム溶液:130重量部(C
rO3 換算32.5重量部) 酢酸ビニル−ベオバ樹脂エマルジョン(樹脂固形分50
%):20重量部 エチレングリコール:10重量部 被膜目付け量:0.5g/m2 (片面当たり) 被膜焼付け条件:450℃の熱風炉にて80秒間焼付け 【0038】〔品質試験条件〕製品板(歪取り焼鈍前) 1)層間抵抗:JIS第2法による。 2)密着性:屈曲して被膜の剥離しない直径(mmφ) 3)耐食性(湿潤試験):温度50℃、相対湿度100
%の条件で48時間暴露後の発錆面積率(%)を測定 4)耐溶剤性:キシレンを脱脂綿にしみこませ、10往
復こすりつけた後の外観を評価 評価ランク ○(良)→△→×(劣) 5)打抜性:15mmφスチールダイスにおいて、かえ
り高さが50μmに達するまでの打ち抜き数(万枚/5
0μm) 6)溶接性:TIG溶接、ブローホール発生無しの溶接
速度限界(cm/min) 【0039】歪取り焼鈍時の耐熱性 7)耐熱性:試験片を多数枚積層した状態で、750℃
×2Hr、乾燥N2 雰囲気の条件で焼鈍を実施。その
後、焼付きの有無を判断。歪取り焼鈍後 8)層間抵抗:JIS第2法による。 9)耐食性(湿潤試験):温度50℃、相対湿度100
%の条件で5時間暴露後の発錆面積率(%)を測定 10)密着性:屈曲して被膜の剥離しない直径(mm
φ) 【0040】 【表1】 【0041】本発明の条件により、クロム化合物を含ま
ないで従来と同等の被膜特性が得られる、すなわち、歪
取り焼鈍前の耐食性に優れ、他の被膜特性も良好で、か
つ従来より低い焼付け温度で被膜が得られたことがわか
る。 【0042】(実施例2)最終仕上焼鈍後の無方向性電
磁鋼板(板厚0.5mm)の表面に、下記に示す主剤と
添加剤をベースにした表2に示す組成の処理液を、ゴム
ロールで乾燥後の目付量が片面当たり1g/m2 である
ように均一に塗布した後、昇温速度30℃/秒、到達板
温150℃、保持時間5秒、冷却速度25℃/秒、焼付
け雰囲気の露点0℃、鋼板と焼付け雰囲気ガスの相対速
度6m/秒の条件で焼付け処理を行った。その後、実施
例1と同様に被膜の各種品質試験を行った。結果を表2
に併記する。 【0043】処理液の主剤および添加剤 コロイダルシリカ(濃度20%のシリカゾル) エマルジョンタイプ樹脂;エポキシ/アクリル酸系(固
形分25%の樹脂エマルジョン) シランカップリング剤(アクリル基を有する):樹脂固
形分に対して5% 防錆剤:シリカ+樹脂固形分に対して3% 【0044】 【表2】【0045】本発明の条件により、歪取り焼鈍前の耐食
性に優れ、他の被膜特性も良好な被膜が得られたことが
わかる。 【0046】(実施例3)最終仕上焼鈍後の無方向性電
磁鋼板(板厚0.5mm)の表面に、下記に示す配合の
処理液A〜Dをゴムロールで乾燥後の目付量が片面当た
り0.7g/m2であるように均一に塗布した後、昇温
速度50℃/秒、到達板温200℃、保持時間3秒、冷
却速度30℃/秒、焼付け雰囲気の露点0℃未満、鋼板
と焼付け雰囲気ガスの相対速度7m/秒の条件で焼付け
処理を行った。その後、実施例1と同様に被膜の各種品
質試験を行った。結果を表3に示す。また、従来のクロ
ム化合物を含む有機−無機混合系被膜の代表例として、
特開平4−308094号公報記載の処理液組成および
焼付け条件を下記に処理液Eの組成および焼付け条件と
して記載し、該組成および焼付け条件で得られる被膜の
特性の評価も表3に併記した。 【0047】処理液Aの組成 コロイダルシリカ(濃度20%のシリカゾル):50重
量部(SiO2 換算10重量部) エマルジョンタイプ樹脂;エポキシ/エステル系(固形
分25%の樹脂エマルジョン):40重量部 シランカップリング剤(アクリル基を有する):0.3
重量部(樹脂固形分に対して3%) 防錆剤:0.2重量部(シリカ+樹脂固形分に対して2
%) 水:310重量部 【0048】処理液Bの組成 コロイダルシリカ(濃度20%のシリカゾル):50重
量部 エマルジョンタイプ樹脂;ポリエチレン/メタクリル酸
系(固形分25%の樹脂エマルジョン):40重量部 シランカップリング剤(ビニル基を有する):0.1重
量部(樹脂固形分に対して1%) 防錆剤:0.3重量部(シリカ+樹脂固形分に対して3
%) 水:310重量部 【0049】処理液Cの組成 アルミナゾル(濃度20%のアルミナゾル):50重量
部 水溶性樹脂;カチオン型エポキシ樹脂(固形分20%の
水溶性樹脂):50重量部 防錆剤:0.2重量部(シリカ+樹脂固形分に対して2
%) 不動態化剤;NaMoO4 :1重量部 水:300重量部 【0050】処理液Dの組成 ジルコニアゾル(濃度20%のジルコニアゾル):50
重量部 エマルジョンタイプ樹脂;ポリエステル/ウレタン系樹
脂(固形分20%の水溶性樹脂):50重量部 防錆剤:0.3重量部(シリカ+樹脂固形分に対して3
%) 不動態化剤;NaNO2 :1重量部 【0051】処理液Eの組成および焼付け条件 30%重クロム酸マグネシウム溶液:100重量部(C
rO3 換算量) 酢酸ビニル−エチレン共重合体エマルジョン(樹脂固形
分50%):60重量部 グリセリン:30重量部 被膜目付け量:0.7g/m2 (片面当たり) 被膜焼付け条件:450℃の熱風炉にて70秒間焼付け 【0052】 【表3】 【0053】本発明の条件により、クロム化合物を含ま
ないで従来と同等の被膜特性が得られる、すなわち、歪
取り焼鈍前の耐食性に優れて他の被膜特性も良好で、か
つ従来より低い焼付け温度で被膜が得られたことがわか
る。 【0054】 【発明の効果】本発明に従う絶縁被膜形成用処理液組成
と被膜焼付け条件により、クロム化合物を含まないで従
来のクロム化合物を含む有機−無機混合系被膜と同等の
被膜特性が得られる、すなわち、歪取り焼鈍前の耐食性
に優れて他の被膜特性も良好な絶縁被膜が得られること
がわかった。本発明の絶縁被膜はクロム化合物を含まな
いので、完全衛生上の問題点がほとんどなく、最近の環
境問題にも対応できる。また、従来より低温での焼付け
ができるので、生産性向上およびエネルギーコスト低減
の点でも有利である。
DETAILED DESCRIPTION OF THE INVENTION [0001] [0001] The present invention relates to a non-oriented electrical steel sheet.
Excellent corrosion resistance and strain relief annealing
Chromium compound-free insulating coatings
Things. Furthermore, baking at a lower temperature than before is possible.
The present invention provides a method for forming a functional insulating film. [0002] 2. Description of the Related Art Non-oriented electrical steel sheets are mainly used for motors and trucks.
It is used as an iron core such as a ball. At the time of its use,
After continuous punching in the shape of
Anneal or perform strain relief annealing before
After stacking the numbers, welding, caulking, or bonding
It is assumed to be a steel core. Usually on the surface of non-oriented electrical steel sheet
Has an insulating film formed thereon. As this insulating film,
Not only electrical insulation but also corrosion resistance before strain relief annealing
Properties, punching properties, adhesion, weldability, solvent resistance, during strain relief annealing
Resistance, corrosion resistance after strain relief annealing, adhesion, slippage
Versatile characteristics such as high occupancy
Is required to obtain good core properties and workability.
You. A method for forming an insulating film on a non-oriented electrical steel sheet is described below.
1) inorganic type, 2) organic type, 3) organic-inorganic mixed type
Is known. However, 1)
Inorganic insulation coatings of
Although heat resistance and slipperiness after strain relief annealing are excellent,
Poor pullability. On the other hand, in the organic insulating film of 2),
Although it has excellent punching properties and adhesion,
The film is decomposed and destroyed, and seizure resistance and annealing during strain relief annealing
Adhesion afterwards is poor and cannot be used. 3) Organic-inorganic
As a mixed insulating film, Japanese Patent Publication No. 50-15013
In the report, dichromate and vinyl acetate, butadiene-styrene
Organic resin emulsions such as copolymers and acrylic resins
The processing solution as a main component is also described in JP-B-60-36476.
In Japanese Patent Application Laid-Open Publication No. H10-163, 100 parts by weight of chromic anhydride
And the vinyl acetate / veova ratio is 90/10 to 40/60
The resin emulsion corresponding to the ratio is 5 to 1 as a resin solid content.
20 parts by weight and 10 to 60 parts by weight of an organic reducing agent
High space occupation by forming insulating film using physical fluid
Rate, excellent corrosion resistance, adhesion, and punching properties.
In addition, even when performing strain relief annealing, fairly good coating characteristics
The resulting method for forming an insulating film has been proposed. This 3)
The method uses chromic acid for excellent corrosion resistance, adhesion and
Coating treatment method for excellent punchability by adding resin
Occupy the mainstream. [0004] However, the main component is a chromium compound.
Chromium in the coating after baking is hexavalent
Although it is reduced to trivalent and detoxified, its safety and health
A certain response is required. That is, the formation of an insulating film
In the process, it affects the human body in liquid preparation, painting work, etc.
Strict safety and health measures such as protective equipment
is there. In addition, wastewater, wastewater, etc. generated in painting work, etc.
Detoxification treatment that meets the water quality standards set forth in pollution regulations
Must be implemented, and economic problems such as processing costs are also significant.
No. In addition, there are severe environmental issues among consumers of electrical steel sheets.
Currently, the use of chromium compounds is restricted as in Europe
Is to be strengthened. Therefore, it contains chromium compounds
Insulation coating treatment technology that achieves the same characteristics as conventional without
The development of was desired. Furthermore, productivity improvement, energy
From the viewpoint of energy cost reduction, the conventional coating baking temperature (approx.
(300-500 ℃) Baking temperature lower than possible
The development of efficient technologies was also awaited. Contains no chromium compounds
The following are examples of insulating film formation methods that can perform
Techniques are disclosed. Japanese Patent Laid-Open Publication No. Sho 50-103438 discloses that
Phosphate ions in solutions containing one or more phosphates
0.1 to 50 parts by weight of acid soluble per 10 parts by weight
Treatment liquid to which one or more kinds of resin has been added
Apply to the surface and heat and bake at 300-800 ° C to insulate
A technique for forming a coating is disclosed. However,
With this technology, there is a long time to bake below 300 ° C.
However, there is a problem that productivity is poor. Japanese Patent Application Laid-Open No. 54-31598 discloses an organic
Contains a substance and forms a three-dimensional siloxane bond stitch structure
Mainly composed silica gel, plate temperature is 100-35
A method of forming an insulating film by heating at a temperature of 0 ° C. for a short time
It has been disclosed. However, this technology still has
The corrosion resistance was inferior to that of the insulating film containing romic acid. In Japanese Patent Publication No. Sho 59-21927,
Are colloidal silica, alumina sol, colloidal titanium
One or more of lithium, lithium silicate, artificial mica
Aqueous solution mainly composed of an inorganic colloidal substance consisting of
Or 100 parts of this inorganic colloidal substance
Or one or more of the emulsion type resins.
Aqueous solution containing 0.5 to 50 parts of an organic substance
After 0.02-0.8g / mTwoSteel sheet with a coating of
A technique for forming a film by temper rolling as it is disclosed.
However, this is a simple coat formation technique,
Although the seizure resistance during strip annealing is good,
Other characteristics such as food quality are organic using conventional chromium compounds
-Inferior to the characteristics of the inorganic mixed insulating coating. [0008] JP-A-5-78855 discloses phosphoric acid
Aluminum dihydrogen to PTwoOFive100-350 in good conversion
g / l-containing inorganic aqueous solution and synthetic tree having a pH of 1 to 3
Add a fat-based aqueous emulsion, and even crosslinked resin particles
There is disclosed a technique for forming an insulating film by using the method. But
However, in this technique, the baking temperature of the coating is 250 to 500.
It was necessary to be relatively high in ° C. Next, Japanese Patent Application Laid-Open No. 6-330338 discloses
Is based on 100 parts by weight of the first phosphate solution of aluminum.
And an organic resin emulsion having a particle size of 0.2 to 3.0 μm
A processing solution containing 1 to 300 parts by weight as a main component, or
Particles per 100 parts by weight of the first phosphate solution of minium
Organic resin emulsion 1 to 30 having a diameter of 0.2 to 3.0 μm
0 parts by weight, and 1 to 20 parts by weight of boric acid and colloida
Having 1 to 5 parts by weight of silica
A technique for forming an insulating film using a physical solution is disclosed.
You. However, also in this technology, see the embodiment
And the baking temperature of the coating must be 250 ° C or higher
there were. [0010] Further, Japanese Patent Application Laid-Open No. 7-166365 has been disclosed.
Then, in terms of solid content, the molar ratio (Al TwoOThree/ HThreeP
OFour) 0.15-0.20 aluminum phosphate, mole
Ratio (CaO / HThreePOFourOr ZnO / HThreePOFour)
One of 0.4-0.6 calcium phosphate and zinc phosphate
Or particle size at pH 4-10 as an organic substance with two or more kinds
A synthetic resin emulsion of 0.3 to 3.0 μm was compounded.
The molar ratio (AlTwoOThree/
HThreePOFour) 0.15 to 0.20 aluminum phosphate
System, molar ratio (CaO / HThreePOFourOr ZnO / HThree
POFour) 0.4-0.6 calcium phosphate, phosphorous acid
One or more of lead and phosphoric acid, boric acid, borate
One or more kinds and organic substances are pH 4-10 particles
Contains synthetic resin emulsion with a diameter of 0.3-3.0 μm
Technology for forming an insulating film using a treated processing solution is disclosed.
ing. However, even in this technology, in the embodiment,
The film baking temperature is 250 ° C or higher.
The temperature required the same temperature as before. The chromium compounds disclosed above are included.
Insulating film forming techniques are roughly divided into the following two. a) A treatment solution containing an inorganic colloidal substance and an organic resin
It is used as a base, and baking at low temperatures is possible
However, the corrosion resistance is mainly organic-inorganic containing conventional chromium compounds
It was inferior to the mixed coating. Therefore, technical positioning
Is inexpensive and simple, with lower film properties than before but high productivity.
It was equivalent to a coat. b) Based on a treatment solution containing phosphate and an organic resin
The properties of the film are almost the same as those of conventional chromium compounds.
Performance similar to that of mixed organic-inorganic coatings
Since it contains phosphate as a basic composition, to ensure corrosion resistance
Is the temperature at which the phosphate dehydration reaction occurs, as the baking temperature
(About 250 ° C or higher)
It cannot be burned. Also, it has a great influence on the formation of the insulating film.
Baking conditions (temperature rise rate,
Cooling rate, annealing atmosphere dew point, etc.)
Insulation film formation technology that does not contain compounds has been studied
did not exist. In the method of forming an insulating film containing a chromium compound,
The following techniques are disclosed as baking conditions. In Japanese Patent Application Laid-Open No. 54-24233, punching
In order to obtain a coating film with good performance,
X (250 ≦ X ≦ 500 [° C.]) and heating time Y (30 ≦
Focusing on the relationship of Y ≦ 150 [sec], the additive in the processing solution
X and Y are satisfied by the blending amount of (ethylene glycol)
And the steel sheet surface temperature is 80 to 100 ° C.
Technology to increase the heating rate in the range of 0.5 to 10 ° C / sec.
It is shown. In Japanese Patent Application Laid-Open No. Sho 60-190572,
In order to obtain a film with excellent pullability and weldability,
In both cases, the temperature rises between 110 ° C and 150 ° C.
Temperature rate: The temperature was raised under the conditions of 2 to 10 ° C./sec, and subsequently 25
Disclosure of technology to complete baking in a temperature range of 0 to 350 ° C
Have been. Also, in JP-A-2-38581,
In order to secure an end coating film without defects such as blisters,
After applying the treatment liquid, heat it at a temperature rise rate of 2 to 5 ° C / sec.
After the steel plate temperature reaches 350-450 ° C,
To reduce the water content of the coating to 2% by weight or less.
I have. In Japanese Patent Application Laid-Open No. 3-53077, the coating
In order to obtain a coating without falling, at 130 ° C or more during the heating process
Set the regulated temperature in the temperature range below the baking temperature,
Until the temperature is reached, regulate the heating rate to 15 ° C / sec or less
There is disclosed a technique for increasing the temperature. Next, Japanese Patent Laid-Open No. 3-5
No. 6679 also obtains a coating free from coating defects.
Therefore, in the heating process, heat at a heating rate of 20 ° C / sec or less.
A technique for increasing the temperature is disclosed. In Japanese Patent Application Laid-Open No. Hei 3-232977, punching
Treatment liquid to obtain a film with excellent heat resistance, weldability and heat resistance.
Along with the composition, a rate of 3-20 ° C / sec up to a temperature of 150 ° C
The temperature rises at the heat rate and then to the temperature range of 250-450 ° C.
And a baking process is disclosed. Ma
Also, in Japanese Patent Application Laid-Open No. 4-99878, after the strain relief annealing,
In order to form a coating with excellent corrosion resistance and adhesion,
Along with the composition of the physical solution, 300-
A technique for baking in the range of a plate temperature of 600 ° C. is disclosed.
I have. Furthermore, Japanese Patent Application Laid-Open No. Hei 5-287545
In order to obtain a film with excellent weldability,
Have a dew point below the temperature of the steel sheet before reaching 60 ° C
Technology for baking after spraying gas onto the coating surface has been developed.
It is shown. In other words, the baking conditions
In the case of a processing solution containing a chromium compound,
Despite some disclosure of technology related to
For the case where a processing solution containing no ROM compound is used,
Conventionally, it has not been considered at all. Furthermore, the heating rate and the cooling
Reject speed, baking atmosphere dew point, etc.
, Regardless of whether it contains chromium compounds or not
No technology relating to formation is disclosed. [0018] SUMMARY OF THE INVENTION A chromium compound is not contained.
In addition, conventional organic-inorganic mixed coating containing chromium compound
Strain removal with excellent film properties, especially excellent corrosion resistance before annealing
Has the ability to perform annealing and has lower temperature baking than before.
Insulation coating with low energy cost and high productivity
The present invention provides a forming method. [0019] Means for Solving the Problems The present inventors have made the above-mentioned description.
As a result of earnest research to solve the problem, inorganic colloidal substances
Of the coating film using a treatment solution containing
Coating amount and baking conditions, i.e., baking temperature,
Temperature rate, cooling rate, dew point of baking atmosphere, steel plate and baking
By controlling the relative velocity of the atmosphere gas,
Coating characteristics similar to organic-inorganic mixed coatings containing chromium compounds
Strain relief annealing, especially excellent in corrosion resistance before strain relief annealing is possible
It has excellent performance and can be baked at a lower temperature than before.
Found that it is possible to form an insulating film that does not contain
did. Organic-inorganic mixed system containing no chromium compound
In the coating, the corrosion resistance before strain relief annealing is at a good level.
In order to form a certain coating, the baking and drying process of the coating
Dehydration process and film formation process behavior control become more important in
In addition to the heating rate and cooling rate during baking,
Dew point of atmosphere gas and steel plate and atmosphere gas
Only by controlling the relative speed of
A film having excellent corrosion resistance was obtained. That is, according to the present invention, annealing is performed in a continuous annealing line.
Non-directional that forms an insulating coating on the steel sheet surface after performing the dulling
In the method for producing an electromagnetic steel sheet, the insulating film is formed
Colloidal silica, alumina
Or one or more inorganic zirconia sols
For 100 parts by weight of colloidal substance (inorganic substance conversion)
One or more water-soluble or emulsion-type resins
Is 15 to 400 parts by weight of an organic substance composed of two or more
Using the added aqueous solution, determine the amount of
0.2-1.5 g / m per side in quantityTwoPainted on steel sheet as
After the cloth, the heating rate is 10 ° C / sec or more,
Seconds, baking atmosphere dew point 20 ℃ or less, plate temperature 100 ~
In the temperature range of 250 ° C, with steel plate and baking atmosphere gas
Baking at a relative speed of 3m / sec to 10m / sec
Capable of performing strain relief annealing with excellent corrosion resistance
This is a method for forming an insulating film containing no chromium compound. At the time of baking, the dew point of the atmosphere gas should be 20 ° C. or less.
Low and the relative speed between the steel sheet and the atmosphere gas is 3 m /
Seconds or more so that the surface of the steel
Moisture generated from the treated solution spreads quickly into the atmosphere.
Dispersed and immediately low dew point (low moisture) atmosphere
Exposure to gaseous gases accelerates dehydration and film formation.
To form a dense, low-moisture film.
For this reason, it is considered that a film having excellent corrosion resistance is obtained. However
And the relative speed between the steel sheet and the atmosphere gas exceeds 10 m / sec.
If so, the appearance deteriorates, which is not preferable. Hereinafter, the experimental results of the present invention will be described.
Will be explained. As the treatment liquid for forming an insulating film of the present invention,
Colloidal silica, alumina sol, zirconia sol 1
100 or more inorganic colloidal substances consisting of two or more species
Water-soluble or emulsion based on parts (in terms of inorganic substances)
Organic materials consisting of one or more of these resin types
Aqueous solution to which 15 to 400 parts by weight (in terms of organic matter) is added
I have. The inorganic colloidal substance used in the present invention is
One type of Lloyd-like silica, alumina sol, zirconia sol
Or, it is composed of two or more types. Also colloidal
Silica has a surface treated with alumina or the like.
May be used. Good as an inorganic colloidal substance
Preferred is colloidal silica. The inorganic colloid
The material has seizure resistance during strain relief annealing and after strain relief annealing.
Necessary to ensure the corrosion resistance, adhesion, and slipperiness of
You. The organic substance used in the present invention may be water-soluble or emulsified.
It is also composed of one or more of the lugion type resins.
It is. The water-soluble or emulsion type resin
Is necessary to ensure punching and corrosion resistance. Water soluble
Acrylic or emulsion type resins
, Polystyrene, epoxy, vinyl acetate, polyethylene
, Polyester, polyolefin, phenol, poly
Vinyl alcohol, polypropylene, polyurethane, etc.
A mixture of one or more kinds can be used.
You. However, other than the above, those which are consistent with the gist of the present invention
Of course, is within the scope of the present invention.
Preferred organic resins are acrylic, epoxy,
It is polyethylene. In the treatment liquid for forming an insulating film of the present invention
In addition, sila involved in the binding of inorganic colloidal substances and organic substances
Additives such as coupling agents.
You. Mixing a silane coupling agent etc. can improve adhesion
And an effective means for further improving solvent resistance. Further
Organic substances having a rust-preventing effect, such as amines, NaN
OTwo, NaMoOFourCorrosion resistance when a passivating agent such as
Helps improve sex. Water-soluble or emulsion type resins
About the addition amount, 100 parts by weight of the inorganic colloidal substance
15 to 400 parts by weight, preferably 30 to 250 parts by weight
Parts by weight. If the amount is less than 15 parts by weight, the
It is not preferable because of poor pull-out and corrosion resistance. 400 weight
If the amount exceeds the limit, seizure resistance during strain relief annealing, strain relief annealing
The subsequent corrosion resistance and adhesion are inferior and are not preferred. Next, the above treatment liquid composition composition is applied to the steel sheet surface.
The amount of coating after coating and baking is calculated by the weight after drying.
0.2-1.5 g / m per surfaceTwo, Preferably 0.4 to
1.2g / mTwoAnd 0.2 g / m coating amountTwoLess than
Cannot provide sufficient punching properties and corrosion resistance, etc.
TwoIf it exceeds the limit, the coating characteristics such as punching properties will be commensurate with the increase in coating amount.
Not only no improvement in weldability, but also poor weldability
I do. The baking temperature is preferably 100 to 250 ° C.
Or 150-200 ° C. Chromium compound of the present invention
-Free inorganic colloidal substance and water-soluble or emulsion
In the case of treatment liquids mainly composed of
Lower temperature baking is possible and the plate temperature exceeds 250 ℃
The organic matter added will be decomposed and scattered, resulting in a good coating
Since the characteristics cannot be obtained, the upper limit of the baking temperature is 250
° C. On the other hand, when the plate temperature is less than 100 ° C.,
It takes a long time to scatter and the residual moisture after baking increases.
The lower limit of the baking temperature is 100 ° C.
And [0028] Among the baking conditions, the temperature rise rate is 10 ° C.
/ Sec or more, preferably 20 to 100 ° C / sec. 1
At a slow heating rate of less than 0 ° C / sec, this chromium compound
Free from water-soluble or emuljo
Using a treatment liquid with a composition mainly composed of
In this case, it was found that the resulting coating had poor corrosion resistance.
Although the detailed mechanism is unknown, the processing with the above configuration
In the physical solution, baking is performed by allowing the dehydration reaction to proceed promptly.
The residual moisture content in the subsequent coating is reduced, and
It seems to improve. The cooling rate during baking is 50 ° C./sec or less.
Below. At high cooling rates of over 50 ° C / sec,
Occasionally, defects such as cracks occur on the surface of the insulating film, resulting in deterioration of corrosion resistance
Therefore, the cooling rate was limited as described above. Coating baking
Normally used atmosphere such as air, nitrogen, argon, etc.
This is performed using gas. However, the above-mentioned treatment liquid formulation is used
Baking temperature 100-250 ° C, heating rate during baking
At a temperature of 10 ° C / sec or more, and a baking cooling rate of 50 ° C / sec or less
Even if an insulating film is formed under the conditions, its corrosion resistance is
Often it was inferior to the insulating coating containing the compound. So
Here, as a result of further studying the conditions for baking,
Dew point of ambient air and relative velocity between steel plate and baking atmosphere gas
Has a significant effect on corrosion resistance before strain relief annealing
Was. Hereinafter, the experimental results will be described. [0031]Dew point of atmosphere gas and steel plate and atmosphere gas
Examination of relative speed with Under the following conditions, the dew point of the baking atmosphere should be less than 0 ° C to 5
0 ° C, whether the relative speed between the steel sheet and the baking atmosphere gas is 0 m / sec
And baking was performed by changing the temperature to 11 m / sec. In addition, steel
The relative speed between the plate and the baking atmosphere gas depends on the passing speed of the steel plate.
Or, it was changed by changing the flow rate of the baking atmosphere gas. Burning
FIG. 1 shows the results of the corrosion resistance after the indentation. Corrosion resistance (wet test)
Is a temperature of 50 ° C and a relative humidity after baking and before strain relief annealing.
Rusted area ratio after exposure for 48 hours under 100% condition (%)
Was measured. In FIG. 1, the evaluation was performed as follows.
Was. If the rusting area ratio is less than 5%, the evaluation rank is ○.
20% was rated as Δ, and more than 20% was rated as x. However, the appearance deteriorates
Are marked with *. Treatment liquid composition Colloidal silica (silica sol with a concentration of 20%): 50 layers
Parts (SiOTwo10 parts by weight) Emulsion type resin; acrylic acid / styrene (solid
40% resin emulsion): 25 parts by weight Silane coupling agent (having acrylic group): 0.3
Parts by weight (3% based on resin solids) Rust inhibitor: 0.2 parts by weight (2 based on silica + resin solids)
%) Water: 325 parts by weight Coating weight: 0.5 g / mTwo(Per side) From the above, the dew point of the baking atmosphere should be 20 ° C. or less.
Below, and the relative speed between the steel sheet and the baking atmosphere gas is 3 m
/ Sec or more, equivalent to a coating containing a chromium compound
Good corrosion resistance (Rust rate less than 5% in 48Hr wet test)
Was obtained. However, the relative speed is 10 m /
After more than a second, streaks and unevenness of the film become noticeable,
Since the appearance deteriorated, the upper limit was set to 10 m / sec. The reason why a film having excellent corrosion resistance can be obtained is as follows.
Reduces the dew point of the ambient gas to 20 ° C or less,
Increase the relative speed between the plate and the atmosphere gas to 3 m / sec or more
In this way, the processing liquid applied to the steel sheet surface during
The generated water quickly diffuses into the atmosphere, and
Exposed to low dew point (low moisture) atmosphere gas
Therefore, dehydration and film formation proceed quickly, and
This is probably because a film with little residual moisture is formed. What
The baking atmosphere gas type is air, nitrogen, argon, etc.
Normally used ones may be used. [0035] Next, examples of the present invention will be described together with comparative examples.
You. (Example 1) Non-oriented electrical steel sheet (final thickness after final finish annealing)
0.5 mm) on the surface is treated with a treatment liquid X having the following composition.
The basis weight after drying with mulol is 0.5 g / m per sideTwo
And apply a baking treatment under the conditions shown in Table 1.
went. After that, various quality tests of the coating shown below were performed.
Was. The results are also shown in Table 1. In addition, conventional chromium compounds
As a typical example of an organic-inorganic mixed film containing
Composition and baking strip described in JP-A-36476
As a result of investigating the characteristics of the coating obtained from the sample No. 1
1 is shown in Table 1. The treatment liquid composition (Y) and baking
The conditions for the application are also shown below. Composition of treatment liquid X Colloidal silica (silica sol with a concentration of 20%): 50 layers
Quantity Emulsion type resin; polyethylene / acrylic acid type
(Resin emulsion with a solid content of 25%): 40 parts by weight Silane coupling agent (having acrylic group): 0.3
Parts by weight (3% based on resin solids) Rust inhibitor: 0.2 parts by weight (2 based on silica + resin solids)
%) Water: 310 parts by weight Composition of treatment liquid Y 30% magnesium dichromate solution: 130 parts by weight (C
rOThree32.5 parts by weight) Vinyl acetate-veova resin emulsion (resin solid content 50
%): 20 parts by weight Ethylene glycol: 10 parts by weight Coating weight: 0.5 g / mTwo(Per side) Film baking conditions: baking for 80 seconds in a hot air oven at 450 ° C [Quality test conditions]Product plate (before annealing) 1) Interlayer resistance: According to JIS second method. 2) Adhesion: diameter (mmφ) that bends and does not peel off the coating 3) Corrosion resistance (wet test): temperature 50 ° C, relative humidity 100
Measure rusting area ratio (%) after 48 hours exposure under% condition 4) Solvent resistance: Soak xylene into absorbent cotton, 10 rounds
Evaluate the appearance after re-rubbing Evaluation rank ○ (good) → △ → × (poor) 5) Punching performance: In the case of a 15mmφ steel die
Punching number until the height reaches 50 μm (10,000 sheets / 5
0 μm) 6) Weldability: TIG welding, welding without blowholes
Speed limit (cm / min) [0039]Heat resistance during strain relief annealing 7) Heat resistance: 750 ° C. with many test pieces laminated
× 2Hr, dry NTwoAnnealed under atmospheric conditions. That
Later, the presence or absence of seizure is determined.After strain relief annealing 8) Interlayer resistance: According to JIS second method. 9) Corrosion resistance (wet test): temperature 50 ° C, relative humidity 100
Measure rusting area ratio (%) after 5 hours exposure under% condition 10) Adhesion: diameter (mm
φ) [0040] [Table 1] According to the conditions of the present invention, a chromium compound is contained.
The same film properties as before can be obtained without strain.
Excellent corrosion resistance before removal annealing and good other coating properties.
That the coating was obtained at a lower baking temperature than before
You. Example 2 Nondirectional Electricity after Final Finish Annealing
On the surface of magnetic steel sheet (sheet thickness 0.5mm),
A processing solution having the composition shown in Table 2 based on the additive was added to a rubber
The basis weight after drying with a roll is 1 g / m per sideTwoIs
After uniform application, the temperature rise rate is 30 ° C / sec.
Temperature 150 ° C, holding time 5 seconds, cooling rate 25 ° C / second, baking
Dew point of the baking atmosphere 0 ° C, relative speed of steel sheet and baking atmosphere gas
The baking treatment was performed under the condition of 6 m / sec. Then implemented
Various coating quality tests were performed as in Example 1. Table 2 shows the results
It is described together. [0043]Main agent and additive of processing solution Colloidal silica (silica sol with a concentration of 20%) Emulsion type resin; epoxy / acrylic acid type (solid
25% form resin emulsion) Silane coupling agent (having acrylic group): resin solid
5% for form Rust inhibitor: 3% based on silica + resin solids [0044] [Table 2]Under the conditions of the present invention, corrosion resistance before strain relief annealing
That a film with excellent properties and good other film properties was obtained.
Understand. Example 3 Nondirectional Electricity after Final Finish Annealing
On the surface of a magnetic steel sheet (sheet thickness 0.5 mm),
The basis weight after drying the treatment liquids A to D with a rubber roll hit one side.
0.7 g / mTwoAfter applying evenly so that
Speed 50 ° C / sec, reached plate temperature 200 ° C, holding time 3sec, cold
Cooling speed 30 ° C / sec, dew point of baking atmosphere less than 0 ° C, steel plate
Baking under conditions of relative speed of baking atmosphere gas and 7m / s
Processing was performed. After that, various products of the coating were formed as in Example 1.
A quality test was performed. Table 3 shows the results. In addition, conventional cross
As a typical example of an organic-inorganic mixed coating containing a rubber compound,
Japanese Patent Application Laid-Open No. Hei 4-308094
The baking conditions are shown below with the composition of the processing solution E and the baking conditions.
Of the coating obtained under the composition and baking conditions
The evaluation of the characteristics is also shown in Table 3. [0047]Composition of treatment liquid A Colloidal silica (silica sol with a concentration of 20%): 50 layers
Parts (SiOTwo10 parts by weight) Emulsion type resin; epoxy / ester type (solid
25% resin emulsion): 40 parts by weight Silane coupling agent (having acrylic group): 0.3
Parts by weight (3% based on resin solids) Rust inhibitor: 0.2 parts by weight (2 based on silica + resin solids)
%) Water: 310 parts by weight [0048]Composition of treatment liquid B Colloidal silica (silica sol with a concentration of 20%): 50 layers
Quantity Emulsion type resin; polyethylene / methacrylic acid
System (solid content 25% resin emulsion): 40 parts by weight Silane coupling agent (with vinyl group): 0.1 weight
Amount (1% based on resin solids) Rust inhibitor: 0.3 parts by weight (3 parts per silica + resin solids)
%) Water: 310 parts by weight [0049]Composition of treatment liquid C Alumina sol (20% alumina sol): 50 weight
Department Water-soluble resin; cationic epoxy resin (20% solid content)
(Water-soluble resin): 50 parts by weight Rust inhibitor: 0.2 parts by weight (2 based on silica + resin solids)
%) Passivating agent; NaMoOFour: 1 parts by weight Water: 300 parts by weight [0050]Composition of treatment liquid D Zirconia sol (concentration of 20% zirconia sol): 50
Parts by weight Emulsion type resin; polyester / urethane tree
Fat (water-soluble resin having a solid content of 20%): 50 parts by weight Rust inhibitor: 0.3 parts by weight (3 parts per silica + resin solids)
%) Passivator; NaNOTwo: 1 parts by weight [0051]Composition and baking conditions of treatment liquid E 30% magnesium dichromate solution: 100 parts by weight (C
rOThreeConversion amount) Vinyl acetate-ethylene copolymer emulsion (solid resin)
50%): 60 parts by weight Glycerin: 30 parts by weight Coating weight: 0.7 g / mTwo(Per side) Film baking conditions: baking for 70 seconds in a hot air oven at 450 ° C [0052] [Table 3] According to the conditions of the present invention, a chromium compound is contained.
The same film properties as before can be obtained without strain.
Excellent corrosion resistance before removal annealing and other coating properties.
That the coating was obtained at a lower baking temperature than before
You. [0054] EFFECTS OF THE INVENTION The composition of the processing solution for forming an insulating film according to the present invention
And chrome baking conditions.
Equivalent to the conventional organic-inorganic mixed coating containing chromium compound
Coating properties are obtained, that is, corrosion resistance before strain relief annealing
Insulation film with excellent properties and other film characteristics
I understood. The insulating coating of the present invention does not contain a chromium compound.
There are few problems with complete hygiene,
It can respond to environmental problems. In addition, baking at lower temperature than before
To improve productivity and reduce energy costs
This is also advantageous.

【図面の簡単な説明】 【図1】 絶縁被膜焼付け時の焼付け雰囲気の露点と
鋼板と雰囲気ガスの相対速度が、焼付け後、歪取り焼
鈍前の耐食性に及ぼす影響を示したグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the influence of the dew point of the baking atmosphere and the relative speed between the steel sheet and the atmosphere gas on the corrosion resistance after baking and before the strain relief annealing at the time of baking the insulating film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐 藤 圭 司 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (56)参考文献 特開 平5−287545(JP,A) 特開 昭63−35746(JP,A) 特公 昭59−21927(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C23C 22/00 - 22/86 B05D 7/14 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Keiji Sato 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. JP-A-63-35746 (JP, A) JP-B-59-21927 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) C23C 22/00-22/86 B05D 7/14

Claims (1)

(57)【特許請求の範囲】 【請求項1】連続焼鈍ラインで焼鈍を行った後、鋼板表
面に絶縁被膜を形成する無方向性電磁鋼板の製造方法に
おいて、前記絶縁被膜形成のための表面処理剤として、
コロイド状シリカ、アルミナゾル、ジルコニアゾルの1
種または2種以上よりなる無機コロイド状物質100重
量部(無機物質換算)に対して、水溶性またはエマルジ
ョンタイプの樹脂の1種または2種以上からなる有機物
を15〜400重量部(有機物質換算)加えた水溶液を
用いて、塗布量を乾燥後の重量で片面当たり0.2〜
1.5g/m2 として鋼板に塗布した後、昇温速度10
℃/秒以上、冷却速度50℃/秒以下、焼付け雰囲気の
露点20℃以下で板温100〜250℃の温度範囲で、
かつ鋼板と焼付け雰囲気ガスとの相対速度が3m/秒以
上10m/秒以下で焼付け処理することを特徴とする耐
食性に優れた歪取り焼鈍が可能なクロム化合物を含まな
い絶縁被膜の形成方法。
(57) [Claim 1] In a method for manufacturing a non-oriented electrical steel sheet in which an insulating film is formed on a steel sheet surface after annealing in a continuous annealing line, a surface for forming the insulating film is provided. As a treatment agent,
Colloidal silica, alumina sol, zirconia sol 1
100 parts by weight (in terms of inorganic substance) of an inorganic colloidal substance composed of one or more kinds, and 15 to 400 parts by weight (in terms of organic substance) of an organic substance composed of one or more of water-soluble or emulsion type resins. ) Using the added aqueous solution, the applied amount is 0.2 to
After applying to a steel sheet at 1.5 g / m 2 , the heating rate was 10
At a cooling rate of 50 ° C./sec or more, a baking atmosphere dew point of 20 ° C. or less, and a sheet temperature of 100 to 250 ° C.
A method for forming an insulating coating not containing a chromium compound and capable of performing strain relief annealing excellent in corrosion resistance, wherein the baking is performed at a relative speed between the steel sheet and the baking atmosphere gas of 3 m / sec or more and 10 m / sec or less.
JP20037396A 1996-07-30 1996-07-30 Method of forming an insulating coating excellent in corrosion resistance and free of chromium compound capable of strain relief annealing on the surface of an electrical steel sheet Expired - Fee Related JP3370235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20037396A JP3370235B2 (en) 1996-07-30 1996-07-30 Method of forming an insulating coating excellent in corrosion resistance and free of chromium compound capable of strain relief annealing on the surface of an electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20037396A JP3370235B2 (en) 1996-07-30 1996-07-30 Method of forming an insulating coating excellent in corrosion resistance and free of chromium compound capable of strain relief annealing on the surface of an electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH1046350A JPH1046350A (en) 1998-02-17
JP3370235B2 true JP3370235B2 (en) 2003-01-27

Family

ID=16423242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20037396A Expired - Fee Related JP3370235B2 (en) 1996-07-30 1996-07-30 Method of forming an insulating coating excellent in corrosion resistance and free of chromium compound capable of strain relief annealing on the surface of an electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3370235B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012041052A1 (en) 2010-09-29 2012-04-05 宝山钢铁股份有限公司 Non-chromic insulating coating for non-oriented silicon steel

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368254B1 (en) * 1998-10-12 2003-03-17 주식회사 포스코 Coating composition for forming insulating coating with excellent roll coating workability and method for forming insulating coating of non-oriented electrical steel sheet using same
KR20010100204A (en) * 2000-03-16 2001-11-14 이구택 A coating composition for insulation film and a method for manufacturing insulation film of non-grain oriented electric steel sheet by using it
JP4635347B2 (en) * 2001-02-05 2011-02-23 Jfeスチール株式会社 Magnetic steel sheet manufacturing method with excellent magnetic properties and film adhesion after strain relief annealing
JP3718638B2 (en) * 2001-02-23 2005-11-24 住友金属工業株式会社 Electrical steel sheet with insulating film and method for producing the same.
CA2474009C (en) * 2002-01-28 2009-03-03 Jfe Steel Corporation Method for producing coated steel sheet
JP4096595B2 (en) * 2002-03-29 2008-06-04 住友金属工業株式会社 Surface-treated stainless steel sheet and manufacturing method thereof
JP4134775B2 (en) * 2003-03-20 2008-08-20 Jfeスチール株式会社 Baking method of coating film by high frequency induction heating
JP5001708B2 (en) * 2007-04-27 2012-08-15 株式会社神戸製鋼所 Coating composition and painted titanium or titanium alloy
JP5471849B2 (en) * 2010-06-01 2014-04-16 新日鐵住金株式会社 Electrical steel sheet and manufacturing method thereof
JP5589639B2 (en) 2010-07-22 2014-09-17 Jfeスチール株式会社 Electrical steel sheet with semi-organic insulation coating
KR101324260B1 (en) 2011-12-28 2013-11-01 주식회사 포스코 Insulation coating material for non-oriented electrical steel sheet and method for manufacturing the same
EP3000915B1 (en) 2013-05-23 2017-09-13 JFE Steel Corporation Electromagnetic steel sheet having insulating coating film attached thereto
JP5780379B1 (en) 2013-11-28 2015-09-16 Jfeスチール株式会社 Electrical steel sheet with insulation coating
JP6222363B2 (en) 2015-04-07 2017-11-01 Jfeスチール株式会社 Electrical steel sheet with insulation coating
JP6477742B2 (en) * 2016-03-02 2019-03-06 Jfeスチール株式会社 Electrical steel sheet with insulation coating
US20220316022A1 (en) * 2020-04-17 2022-10-06 Nippon Steel Corporation Non-oriented electrical steel sheet and method for producing same
EP4317485A1 (en) * 2021-03-31 2024-02-07 Nippon Steel Corporation Non-oriented electromagnetic steel sheet and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012041052A1 (en) 2010-09-29 2012-04-05 宝山钢铁股份有限公司 Non-chromic insulating coating for non-oriented silicon steel

Also Published As

Publication number Publication date
JPH1046350A (en) 1998-02-17

Similar Documents

Publication Publication Date Title
JP3370235B2 (en) Method of forming an insulating coating excellent in corrosion resistance and free of chromium compound capable of strain relief annealing on the surface of an electrical steel sheet
EP0926249B1 (en) Inorganic/organic insulating coating for non-oriented electrical steel
KR101608572B1 (en) Electromagnetic steel sheet having insulating coating
EP0923088B1 (en) Electrical steel sheet coating
JP3408410B2 (en) Surface treatment agent for non-oriented electrical steel sheet and method of forming film using the same
JP2005240125A (en) Non-oriented electromagnetic steel sheet with insulating layer having adequate properties
JPH09323066A (en) Silicon steel sheet capable of stress relief annealing and provided with insulating coating film excellent in resistance to corrosion and solvent and formation of the insulating coating film
JP3564079B2 (en) Insulating coating agent and method for producing non-oriented electrical steel sheet with excellent weldability using the same
JP2004068031A (en) Electromagnetic steel sheet with insulation coating
JPH1112756A (en) Nonoriented silicon steel sheet with insulating film excellent in seizure resistance and sliding characteristic after stress relief annealing
JP3299452B2 (en) Electromagnetic steel sheet with insulating coating that can be manufactured by low-temperature baking, is capable of strain relief annealing, has good exposure to boiling water vapor, and has excellent solvent resistance.
JP3375824B2 (en) Electrical steel sheet with insulating coating capable of strain relief annealing and excellent in corrosion resistance and solvent resistance, and method of forming the insulating coating
JP3299459B2 (en) Non-oriented electrical steel sheet excellent in punching property and seizure resistance after annealing and method for forming insulating film thereof
JPH1015485A (en) Silicon steel sheet having insulating coating film capable of stress relief annealing, excellent in corrosion resistance and containing no chromium compound and formation of coating film thereof
JP2762147B2 (en) Method for producing non-oriented electrical steel sheet with excellent film properties after strain relief annealing and surface treating agent
JP3386318B2 (en) Electromagnetic steel sheet with insulating coating that can be manufactured by low-temperature baking, can perform strain relief annealing, and has good solvent resistance
JPH1015484A (en) Silicon steel sheet having insulating coating film capable of stress relief annealing, excellent in corrosion resistance and containing no chromium compound, and formation of coating film thereof
JP3364384B2 (en) Electromagnetic steel sheet with insulation coating that can be manufactured by low-temperature baking, can perform strain relief annealing, and has good solvent resistance and salt water corrosion resistance
JP3395820B2 (en) Electromagnetic steel sheet with insulation coating that can be manufactured by low-temperature baking, can perform strain relief annealing, and has good solvent resistance and salt water corrosion resistance
KR100554559B1 (en) Solvent - resistant electrical steel sheet capable of stress relief annealing and process
JPH04358079A (en) Electric steel sheet with electric insulating coating film having satisfactory additional coatability
JP3555285B2 (en) Electromagnetic steel sheet with insulating coating that can be manufactured by low-temperature baking, enables strain relief annealing, and has good weldability.
JP3364393B2 (en) Electromagnetic steel sheet with insulating coating that can be manufactured by low-temperature baking, can perform strain relief annealing, and has good boiling water vapor exposure and solvent resistance
JPH0445586B2 (en)
JPH10147889A (en) Resin-chromate bath suitable for forming insulation coating film excellent in various performance on magnetic steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131115

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees