JPH0445586B2 - - Google Patents

Info

Publication number
JPH0445586B2
JPH0445586B2 JP57226223A JP22622382A JPH0445586B2 JP H0445586 B2 JPH0445586 B2 JP H0445586B2 JP 57226223 A JP57226223 A JP 57226223A JP 22622382 A JP22622382 A JP 22622382A JP H0445586 B2 JPH0445586 B2 JP H0445586B2
Authority
JP
Japan
Prior art keywords
parts
weight
iron plate
dichromate
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57226223A
Other languages
Japanese (ja)
Other versions
JPS59116382A (en
Inventor
Toshikuni Tanda
Tomoyuki Ichi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP22622382A priority Critical patent/JPS59116382A/en
Publication of JPS59116382A publication Critical patent/JPS59116382A/en
Publication of JPH0445586B2 publication Critical patent/JPH0445586B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • C23C22/33Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、絶縁被膜を有する電気鉄板に関
し、とくに該被膜の有利な改善により、打抜性お
よび歪取焼鈍後の耐食性を向上させようとするも
のである。 モーターやトランスなどの電気機器用鉄心は、
電気鉄板の表面にまず絶縁被膜を被成したのち所
定の形状に打抜き、ついでそれらを積層してその
側面をTIG溶接したり、ピンで固定して組立てら
れる。また、場合によつては打抜き後に加工歪を
除去して磁気特性を向上させるための歪取焼鈍を
施すこともある。 従つて電気鉄板の絶縁被膜に要求される特性は
数多く、たとえば電気絶縁性のほか打抜性、溶接
性、密着性、耐食性、耐熱性および耐薬品性など
が優れていることが必要であるとされ、従来から
これらの要求特性を満足させるために種々の組成
の絶縁被膜が開発され、また改良されてきた。 なかでも打抜性に関しては有機樹脂の利用によ
り著しく向上することが見い出され、最近ではク
ロム酸塩ないしは重クロム酸塩(以下単に重クロ
ム酸塩系という)と有機樹脂を主成分とする混合
被膜が多用されている。 しかしながら、かような重クロム酸塩−有機樹
脂系被膜には、歪取焼鈍後の耐食性が劣るところ
に問題があつた。すなわち、この種被膜を被成し
た鉄心板を、たとえば約750℃,2hで歪取焼鈍し
た場合、雨季など高温多湿下で放置していると直
ちに発錆し、さらに鉄心板同志が強く密着接合し
ていたのである。これは重クロム酸塩−有機樹脂
系被膜においては耐熱性が十分でなく、従つて高
温の歪取焼鈍によつて被膜が多孔質になるためと
考えられる。 なお、耐食性に優れている被膜としては、たと
えば特公昭38−9409号公報に開示されているよう
な重クロム酸塩−りん酸系被膜があるが、かかる
りん酸系被膜は無機質であるため打抜性が極めて
悪いという欠点があり、また上記公報では歪取焼
鈍後の耐食性については何ら考察されていない。 そこで発明者らは、かような重クロム酸塩−有
機樹脂系被膜の歪取焼鈍後の耐食性の改善につい
て種々検討を行つた結果、被膜形成処理液中にり
ん酸塩をある範囲内で配合することにより、他の
特性の劣化を伴わずして歪取焼鈍後の耐食性を著
しく改善できることを突止め、この発明を完成さ
せたのである。 すなわちこの発明の要旨とするところは、有機
還元剤を含む重クロム酸塩−有機樹脂系処理液中
に、りん酸塩を、該処理液中に含まれるCrO3
100重量部に対し30〜90重量部の割合で添加配合
し、この水性処理液を、基地鉄板の表面に、常法
に従つて塗布、ついで焼付けるところにある。 ここに重クロム酸塩−有機樹脂系処理液として
は、少くとも一種の2価金属を含む重クロム酸塩
系水溶液に、該水溶液中に含まれるCrO3:100重
量部に対し、有機樹脂を固形分で5〜120重量部
と有機還元剤を10〜60重量部と、ときにはさらに
ほう酸を20〜45重量部の割合で添加配合したもの
がとりわけ有利に適合する。 以下この発明を具体的に説明する。 この発明において使用する重クロム酸塩系水溶
液とは、Ca,MgおよびZnなどの2価の金属のう
ちから選ばれる何れか1種または2種以上を含む
重クロム酸塩、あるいはこれに少量の無水クロム
酸を加えた水溶液であり、それらは上記した2価
金属の酸化物、水酸化物あるいは炭酸塩を無水ク
ロム酸の水溶液に溶解させることによつて得るこ
とができる。 また打抜性を改善するために配合する有機樹脂
としては、アクリル系、酢酸ビニル系、スチレン
系およびそれらの共重合物のエマルジヨン、なら
びにポリビニルアルコール、ポリアクリル酸、セ
ルロース等の水溶性樹脂などいずれもが使用で
き、その配合量はCrO3:100重量部に対して樹脂
固形分で5〜120重量部とする必要がある。とい
うのは樹脂固形分が5重量部よりも少ないと打抜
性が悪く、一方120重量部よりも多くなると得ら
れる被膜が軟弱になるとともに耐熱性が劣化する
からである。 さらに被膜中に6価クロムが多量に残存する
と、大気中の水分を吸収して被膜が軟弱化し絶縁
被膜としての機能が失われる。そこで、この6価
クロムを還元し不溶性の3価クロムとして被膜を
不溶性化するために、クロムの有機還元剤とし
て、グリセンリン、エチレングリコール、しよ糖
などの多価アルコール類を、CrO3:100重量部に
対して10〜60重量部の割合で配合する。還元剤の
配合量が10重量部未満では被膜の耐水性に劣り、
一方60重量部を超えると処理液中において還元反
応が速やかに進行し、処理液が不安定となる不利
を生じる。 またときにはさらに、被膜の耐熱性改善成分と
してほう酸を配合することもできる。そしてその
配合量はCrO3:100重量部に対し20〜45重量部と
するのが効果的である。 なお層間絶縁性を向上させるために、さらにコ
ロイド状のシリカ、アルミナまたはチタニアなど
を添加配合してもさしつかえない。 さてこの発明では、上記の配合割合に調整した
重クロム酸塩−有機樹脂系処理液中に、さらにり
ん酸塩を、該処理液中に含まれるCrO3:100重量
部に対し30〜90重量部の割合で添加配合するので
ある。 第1図に、重クロム酸塩−有機樹脂系処理液中
にりん酸塩として第1りん酸マグネシウムを種々
の割合で添加配合した水性処理液を、下記の条件
で処理して、電気鉄板の表面に絶縁被膜を形成し
た場合の、歪取焼鈍後の耐食性について調べた結
果を示す。 1 電気鉄板 JIS S50相当 2 処理液 水 2000重量部 重クロム酸マグネシウム(CrO3として)
100重量部 アクリル系樹脂エマルジヨン(固形分で)
30重量部 有機還元剤(エチレングリコール) 20重量部 ほう酸 25重量部 第1りん酸マグネシウム 0〜120重量部 3 塗布方法 ゴムロール法 4 焼付け条件 450℃,70秒 5 被膜付着量 2.0g/m2 6 歪取焼鈍条件 N2雰囲気中 750℃,2時間 7 耐食性試験 恒温恒湿槽、温度50℃ 湿度80% 期間20日、 第1図に示した試験結果から明らかなように、
第1りん酸マグネシウムの添加がない場合には、
発錆率が90%にも達していたが、第1りん酸マグ
ネシウムを添加すると、その添加量につれて発錆
率は激減し、CrO3:100重量部に対し30重量部以
上配合すると、20%以下まで発錆率を低下させる
ことができた。しかしながらCrO3100重量部に対
し90重量部を超えて配合しても耐食性改善効果は
飽和に達し、かえつて密着性が劣化すると共に処
理液の経時安定性も悪化した。 上記した第1りん酸マグネシウムの他、りん酸
塩として、Ca,ZnおよびAlのりん酸金属塩を単
独使用または併用した場合についても、同様の実
験を行つて歪取焼鈍後の耐食性改善効果について
調べたところ、第1図に示した結果とほぼ同等の
結果が得られた。 従つてりん酸塩の配合量は、処理液中に含まれ
るCrO3:100重量部に対し30〜90重量部の範囲に
限定したのである。 被膜の形成に当つては、上述した所定の配合割
合になる処理液を、電気鉄板の基地表面にロール
コーターやスプレーなどによつて均一に塗布した
のち、300〜700℃程度の温度で短時間焼付けるこ
とによつて、所期した良好な絶縁被膜を得ること
ができる。 このとき焼付け後の被膜付着量は、0.4〜
6.0g/m2程度とするのが好ましい。というのは
0.4g/m2未満では層間絶縁性や打抜性が不十分で
あり、一方6.0g/m2を超えると被膜の密着性が劣
化するからである。 かくして得られた絶縁被膜は、打抜性および歪
取焼鈍後の耐食性に優れるだけでなく、密着性、
耐油性および耐薬品性などの面でも十分満足のい
くものであることが確かめられている。 なお、有機樹脂を含有するクロム酸塩系処理液
にりん酸又はりん酸塩を少量添加することについ
てはすでに特公昭51−20018号公報で提案されて
いる。しかし、この場合の添加目的は、クロム酸
塩−有機樹脂系被膜が酸化性雰囲気中でブルーイ
ング処理を行うとステイツキングによる磁性劣化
が大きいという欠点を改善しようとするものであ
つて、この発明とは目指すところが全く異なり、
しかもクロム酸塩−有機樹脂系処理液に添加する
りん酸又はりん酸塩の量は、クロムイオン10部に
対して0.05〜5部と、この発明の下限値を下回る
ものである。 これに対し、この発明は上述したように、重ク
ロム酸塩−有機樹脂系処理液中に比較的多量のり
ん酸塩を添加することによつて歪取焼鈍後の耐食
性の改善を達成したものであり、かような多量の
りん酸塩の添加による歪取焼鈍後の耐食性の改善
は、この発明ではじめて実現されたものである。 次にこの発明の実施例を比較例と共に説明す
る。 実施例 1 板厚0.5mmの電気鉄板の表面に下記の成分から
なる処理液Aをゴムロールで塗布し、45℃で70秒
間焼付けて被膜を形成した。ついで得られた絶縁
被膜付き電気鉄板を所定の形状に打抜いたのち、
複数枚積層して歪取焼鈍を施した。 このときの被膜特性について調べた結果を表1
に示す。 処理液 A 水 2000重量部 重クロム酸マグネシウム(CrO3として)
100重量部 第1りん酸マグネシウム 40重量部 アクリル系樹脂エマルジヨン(固形分として)
30重量部 還元剤(エチレングリコール) 25重量部 ほう酸 25重量部 実施例 2 実施例1と同じ要領で下記の成分からなる処理
液Bを処理して、電気鉄板の表面に絶縁被膜を形
成した。得られた電気鉄板の被膜の特性について
調べた結果を表1に示す。 処理液 B 水 2000重量部 重クロム酸マグネシウム(CrO3として)
100重量部 第1りん酸マグネシウム 55重量部 アクリル−スチレン 樹脂エマルジヨン(固形分として) 40重量部 還元剤(グリセリン) 25重量部 実施例 8 下記の成分になる処理液Cを実施例1と同要領
で処理して、電気鉄板の表面に絶縁被膜を形成し
た。得られた電気鉄板の被膜特性を表1に示す。 処理液 C 水 2000重量部 重クロム酸カルシウム(CrO3として)
100重量部 第1りん酸カルシウム 70重量部 アクリル−酢ビ系 樹脂エマルジヨン(固形分として) 50重量部 還元剤(エチレングリコール) 20重量部 ほう酸 20重量部 比較例 1 りん酸塩の添加がない従来の処理液Dを実施例
1と同じ要領で処理して、電気鉄板の表面に絶縁
被膜を形成した。同じく被膜特性を表1に示す。 処理液 D 水 2000重量部 重クロム酸マグネシウム(CrO3として)
100重量部 アクリル系樹脂 エマルジヨン(固形分として) 30重量部 還元剤(エチレングリコール) 25重量部 ほう酸 25重量部 比較例 2 りん酸塩の配合量が少ない下記の成分になる処
理液Eを実施例1と同じ要領で処理して、電気鉄
板の表面に絶縁被膜を形成した。同じく被膜特性
を表1に示す。 処理液 E 水 2000重量部 重クロム酸マグネシウム(CrO3として)
100重量部 第1りん酸マグネシウム 15重量部 アクリル系樹脂 エマルジヨン(固形分として) 30重量部 還元剤(エチレングリコール) 25重量部 ほう酸 25重量部 比較例 3 有機樹脂を含まない下記の成分になる処理液F
を実施例1と同じ要領で処理して、電気鉄板の表
面に無機質の絶縁被膜を形成した。同じく被膜特
性を表1に示す。 処理液 F 水 7000重量部 CrO3 100重量部 第1りん酸マグネシウム 700重量部 硝酸アルミニウム 80重量部
The present invention relates to an electric iron plate having an insulating coating, and in particular aims to improve punchability and corrosion resistance after strain relief annealing by advantageously improving the coating. Iron cores for electrical equipment such as motors and transformers are
An insulating film is first coated on the surface of an electric iron plate, then punched into a predetermined shape, and then assembled by stacking them and TIG welding the sides or fixing them with pins. In some cases, strain relief annealing may be performed after punching to remove processing strain and improve magnetic properties. Therefore, the insulating coating for electrical iron plates has many properties, including excellent electrical insulation, punchability, weldability, adhesion, corrosion resistance, heat resistance, and chemical resistance. Insulating coatings of various compositions have been developed and improved in order to satisfy these required characteristics. In particular, it has been found that punching properties can be significantly improved by using organic resins, and recently, mixed coatings mainly composed of chromate or dichromate (hereinafter simply referred to as dichromate type) and organic resin have been developed. is frequently used. However, such dichromate-organic resin coatings have a problem in that they have poor corrosion resistance after strain relief annealing. In other words, if a core plate coated with this type of coating is strain-relief annealed at approximately 750°C for 2 hours, if it is left in a high temperature and high humidity environment such as during the rainy season, it will immediately rust, and the core plates will bond tightly together. That's what I was doing. This is thought to be because the dichromate-organic resin coating does not have sufficient heat resistance, and therefore the coating becomes porous due to high-temperature stress relief annealing. As a coating with excellent corrosion resistance, for example, there is a dichromate-phosphate coating as disclosed in Japanese Patent Publication No. 38-9409, but since such a phosphate coating is inorganic, it cannot be hammered. It has the disadvantage of extremely poor extractability, and the above-mentioned publication does not give any consideration to corrosion resistance after stress relief annealing. Therefore, the inventors conducted various studies on improving the corrosion resistance of such a dichromate-organic resin coating after strain relief annealing, and as a result, they decided to incorporate phosphate within a certain range into the coating forming treatment solution. This led to the discovery that the corrosion resistance after strain relief annealing could be significantly improved without deterioration of other properties, and the present invention was completed. That is, the gist of the present invention is that phosphate is added to a dichromate-organic resin treatment solution containing an organic reducing agent, and CrO 3 contained in the treatment solution:
The aqueous treatment liquid is added at a ratio of 30 to 90 parts by weight to 100 parts by weight, and this aqueous treatment liquid is applied to the surface of the base iron plate according to a conventional method, and then baked. Here, as the dichromate-organic resin treatment liquid, an organic resin is added to a dichromate-based aqueous solution containing at least one type of divalent metal, based on 100 parts by weight of CrO 3 contained in the aqueous solution. Particularly advantageous are those containing 5 to 120 parts by weight of solids, 10 to 60 parts by weight of an organic reducing agent, and sometimes 20 to 45 parts by weight of boric acid. This invention will be explained in detail below. The dichromate-based aqueous solution used in this invention is a dichromate containing one or more divalent metals such as Ca, Mg, and Zn, or a small amount of dichromate containing this. These are aqueous solutions containing chromic anhydride, which can be obtained by dissolving the above divalent metal oxides, hydroxides or carbonates in an aqueous solution of chromic anhydride. Examples of organic resins to be blended to improve punching properties include emulsions of acrylic, vinyl acetate, styrene, and copolymers thereof, and water-soluble resins such as polyvinyl alcohol, polyacrylic acid, and cellulose. The amount of resin solid content should be 5 to 120 parts by weight per 100 parts by weight of CrO 3 . This is because if the resin solid content is less than 5 parts by weight, punching properties will be poor, while if it is more than 120 parts by weight, the resulting coating will become weak and its heat resistance will deteriorate. Furthermore, if a large amount of hexavalent chromium remains in the coating, it absorbs moisture from the atmosphere, weakening the coating and losing its function as an insulating coating. Therefore, in order to reduce this hexavalent chromium and make the coating insoluble as insoluble trivalent chromium, polyhydric alcohols such as glycenphosphorus, ethylene glycol, and sucrose were used as an organic reducing agent for chromium in a CrO 3 :100 ratio. It is blended at a ratio of 10 to 60 parts by weight. If the amount of the reducing agent is less than 10 parts by weight, the water resistance of the film will be poor.
On the other hand, if the amount exceeds 60 parts by weight, the reduction reaction proceeds rapidly in the processing solution, resulting in a disadvantage that the processing solution becomes unstable. In some cases, boric acid may also be added as a component for improving the heat resistance of the coating. It is effective that the blending amount is 20 to 45 parts by weight per 100 parts by weight of CrO3 . In order to improve interlayer insulation, colloidal silica, alumina, titania, etc. may be further added and blended. Now, in this invention, phosphate is further added to the dichromate-organic resin treatment liquid adjusted to the above blending ratio in an amount of 30 to 90 parts by weight per 100 parts by weight of CrO 3 contained in the treatment liquid. It is added and blended in the ratio of 1 part. Figure 1 shows that an aqueous treatment solution in which dichromate-organic resin treatment solution is mixed with monobasic magnesium phosphate as a phosphate in various proportions is treated under the following conditions to produce electric iron plates. The results of investigating the corrosion resistance after strain relief annealing when an insulating film is formed on the surface are shown. 1 Electric iron plate JIS S50 equivalent 2 Treatment liquid Water 2000 parts by weight Magnesium dichromate (as CrO 3 )
100 parts by weight acrylic resin emulsion (solid content)
30 parts by weight Organic reducing agent (ethylene glycol) 20 parts by weight Boric acid 25 parts Magnesium monophosphate 0-120 parts by weight 3 Coating method Rubber roll method 4 Baking conditions 450°C, 70 seconds 5 Amount of film deposited 2.0 g/m 2 6 Strain relief annealing conditions N2 atmosphere 750℃, 2 hours 7 Corrosion resistance test Constant temperature and humidity chamber, temperature 50℃, humidity 80% Duration 20 days As is clear from the test results shown in Figure 1,
If monobasic magnesium phosphate is not added,
The rusting rate had reached 90%, but when monomagnesium phosphate was added, the rusting rate drastically decreased as the amount added increased, and when 30 parts by weight or more of CrO 3 was added to 100 parts by weight, the rusting rate increased to 20%. We were able to reduce the rusting rate to below. However, even when more than 90 parts by weight is added to 100 parts by weight of CrO 3 , the corrosion resistance improvement effect reaches saturation, and the adhesion deteriorates and the stability of the treatment liquid over time also deteriorates. In addition to the monomagnesium phosphate mentioned above, similar experiments were conducted to investigate the corrosion resistance improvement effect after strain relief annealing when Ca, Zn, and Al phosphate metal salts were used alone or in combination as phosphates. Upon investigation, results almost identical to those shown in FIG. 1 were obtained. Therefore, the amount of phosphate salt added was limited to 30 to 90 parts by weight per 100 parts by weight of CrO 3 contained in the treatment liquid. To form the film, the treatment liquid with the prescribed mixing ratio described above is uniformly applied to the base surface of the electric iron plate using a roll coater or spray, and then heated at a temperature of about 300 to 700°C for a short time. By baking, it is possible to obtain the desired good insulation coating. At this time, the amount of film attached after baking is 0.4~
It is preferable to set it to about 6.0g/m2. I mean
If it is less than 0.4 g/m 2 , interlayer insulation and punchability will be insufficient, while if it exceeds 6.0 g/m 2 , the adhesion of the coating will deteriorate. The insulating coating thus obtained not only has excellent punchability and corrosion resistance after strain relief annealing, but also has excellent adhesion and
It has been confirmed that it is fully satisfactory in terms of oil resistance and chemical resistance. Note that Japanese Patent Publication No. 51-20018 has already proposed adding a small amount of phosphoric acid or phosphate to a chromate-based treatment solution containing an organic resin. However, the purpose of the addition in this case is to improve the drawback that magnetic deterioration due to statesking is large when a chromate-organic resin coating is subjected to bluing treatment in an oxidizing atmosphere. The aim is completely different from
Moreover, the amount of phosphoric acid or phosphate added to the chromate-organic resin treatment solution is 0.05 to 5 parts per 10 parts of chromium ion, which is below the lower limit of the present invention. In contrast, as described above, this invention achieves improvement in corrosion resistance after strain relief annealing by adding a relatively large amount of phosphate to the dichromate-organic resin treatment solution. This invention is the first to realize improvement in corrosion resistance after stress relief annealing by adding such a large amount of phosphate. Next, examples of the present invention will be described together with comparative examples. Example 1 A treatment solution A consisting of the following components was applied to the surface of an electric steel plate with a thickness of 0.5 mm using a rubber roll, and baked at 45° C. for 70 seconds to form a film. Then, after punching the obtained electrical steel plate with insulation coating into a predetermined shape,
Multiple sheets were laminated and subjected to strain relief annealing. Table 1 shows the results of investigating the film properties at this time.
Shown below. Treatment liquid A Water 2000 parts by weight Magnesium dichromate (as CrO 3 )
100 parts by weight Monomagnesium phosphate 40 parts by weight Acrylic resin emulsion (as solid content)
30 parts by weight Reducing agent (ethylene glycol) 25 parts by weight Boric acid 25 parts by weight Example 2 Treatment liquid B consisting of the following components was treated in the same manner as in Example 1 to form an insulating coating on the surface of an electric iron plate. Table 1 shows the results of investigating the properties of the coating on the obtained electric iron plate. Treatment liquid B Water 2000 parts by weight Magnesium dichromate (as CrO 3 )
100 parts by weight Monomagnesium phosphate 55 parts by weight Acrylic-styrene resin emulsion (as solid content) 40 parts by weight Reducing agent (glycerin) 25 parts by weight Example 8 Processing liquid C having the following components was prepared in the same manner as in Example 1. An insulating film was formed on the surface of the electric iron plate. Table 1 shows the coating properties of the obtained electric iron plate. Treatment liquid C Water 2000 parts by weight Calcium dichromate (as CrO 3 )
100 parts by weight Monobasic calcium phosphate 70 parts by weight Acrylic-vinyl acetate resin emulsion (as solid content) 50 parts by weight Reducing agent (ethylene glycol) 20 parts by weight Boric acid 20 parts by weight Comparative example 1 Conventional without addition of phosphate The treatment solution D was treated in the same manner as in Example 1 to form an insulating film on the surface of an electric iron plate. Similarly, the film properties are shown in Table 1. Treatment liquid D Water 2000 parts by weight Magnesium dichromate (as CrO 3 )
100 parts by weight Acrylic resin emulsion (as solid content) 30 parts by weight Reducing agent (ethylene glycol) 25 parts by weight Boric acid 25 parts by weight Comparative example 2 An example of treatment liquid E with the following components containing a small amount of phosphate An insulating film was formed on the surface of the electric iron plate by processing in the same manner as in 1. Similarly, the film properties are shown in Table 1. Treatment liquid E Water 2000 parts by weight Magnesium dichromate (as CrO 3 )
100 parts by weight Monomagnesium phosphate 15 parts by weight Acrylic resin Emulsion (as solid content) 30 parts by weight Reducing agent (ethylene glycol) 25 parts by weight Boric acid 25 parts by weight Comparative example 3 Treatment to produce the following components that do not contain organic resin Liquid F
was treated in the same manner as in Example 1 to form an inorganic insulating film on the surface of the electric iron plate. Similarly, the film properties are shown in Table 1. Treatment liquid F Water 7000 parts by weight CrO 3 100 parts by weight Monomagnesium phosphate 700 parts by weight Aluminum nitrate 80 parts by weight

【表】【table】

【表】 比較例1および2のりん酸塩を含まない処理液
Dおよびりん酸塩の含有量が少ない処理液Eを用
いた場合には、歪取焼鈍後の耐食性が悪く、一方
有機樹脂を含まない処理液Fを用いた場合(比較
例3)には耐食性は良好であつたものの、打抜性
は著しく劣化した。 これに対しこの発明に従う絶縁被膜付き電気鉄
板(実施例1〜3)はいずれも、打抜性および歪
取焼鈍後の耐食性とも極めて良好であつた。
[Table] When using treatment liquid D that does not contain phosphate and treatment liquid E that contains a small amount of phosphate in Comparative Examples 1 and 2, the corrosion resistance after strain relief annealing was poor; In the case of using treatment liquid F that did not contain it (Comparative Example 3), although the corrosion resistance was good, the punchability was significantly deteriorated. On the other hand, all of the electrical iron plates with insulating coatings according to the present invention (Examples 1 to 3) had extremely good punchability and corrosion resistance after strain relief annealing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、重クロム酸塩−有機樹脂系処理液中
への第1りん酸マグネシウムの配合量と歪取焼鈍
後の耐食性(発錆率)との関係を示したグラフで
ある。
FIG. 1 is a graph showing the relationship between the amount of monobasic magnesium phosphate blended into the dichromate-organic resin treatment solution and the corrosion resistance (rusting rate) after strain relief annealing.

Claims (1)

【特許請求の範囲】 1 表面に電気絶縁性の被膜を有する電気鉄板で
あつて、該被膜は、有機還元剤を含む重クロム酸
塩−有機樹脂系処理液に、該処理液中に含まれる
CrO3:100重量部に対しりん酸塩を30〜90重量部
の割合で添加配合した水性処理液を、基地鉄板の
表面に塗布し、常法による焼付け工程を経て得た
ものであることを特徴とする打抜性および歪取焼
鈍後の耐食性に優れた絶縁被膜を有する電気鉄
板。 2 重クロム酸塩−有機樹脂系処理液が、少くと
も一種の2価金属を含む重クロム酸塩系水溶液
に、該水溶液中に含まれるCrO3:100重量部に対
し、有機樹脂を固形分で5〜120重量部と有機還
元剤を10〜60重量部と、ときにはさらにほう酸を
20〜45重量部の割合で添加配合したものである特
許請求の範囲第1項記載の電気鉄板。 3 焼付け後の絶縁被膜の付着量が、基地鉄板の
単位面積1mm2当り0.4〜6.0gである特許請求の範
囲第1項または第2項記載の電気鉄板。
[Scope of Claims] 1. An electric iron plate having an electrically insulating coating on its surface, the coating being contained in a dichromate-organic resin treatment solution containing an organic reducing agent.
An aqueous treatment solution containing 30 to 90 parts by weight of phosphate per 100 parts by weight of CrO 3 is applied to the surface of the base iron plate, and a baking process is performed using a conventional method. An electric iron plate with an insulating coating that has excellent punchability and corrosion resistance after stress relief annealing. 2. The dichromate-organic resin treatment liquid is a dichromate-based aqueous solution containing at least one type of divalent metal, and a solid content of the organic resin is added to 100 parts by weight of CrO 3 contained in the aqueous solution. and 10 to 60 parts by weight of an organic reducing agent, and sometimes additional boric acid.
The electric iron plate according to claim 1, which is added in a proportion of 20 to 45 parts by weight. 3. The electric iron plate according to claim 1 or 2, wherein the amount of the insulating coating deposited after baking is 0.4 to 6.0 g per 1 mm 2 of unit area of the base iron plate.
JP22622382A 1982-12-24 1982-12-24 Electrical sheet formed with insulating film having excellent punchability and corrosion resistance after stress relief annealing Granted JPS59116382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22622382A JPS59116382A (en) 1982-12-24 1982-12-24 Electrical sheet formed with insulating film having excellent punchability and corrosion resistance after stress relief annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22622382A JPS59116382A (en) 1982-12-24 1982-12-24 Electrical sheet formed with insulating film having excellent punchability and corrosion resistance after stress relief annealing

Publications (2)

Publication Number Publication Date
JPS59116382A JPS59116382A (en) 1984-07-05
JPH0445586B2 true JPH0445586B2 (en) 1992-07-27

Family

ID=16841820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22622382A Granted JPS59116382A (en) 1982-12-24 1982-12-24 Electrical sheet formed with insulating film having excellent punchability and corrosion resistance after stress relief annealing

Country Status (1)

Country Link
JP (1) JPS59116382A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2637071B2 (en) * 1985-11-21 1997-08-06 株式会社東芝 Manufacturing method of thin sheet core
JPS6384671A (en) * 1986-09-29 1988-04-15 Kawasaki Steel Corp Insulating film of electrical steel sheet and formation thereof
US4976558A (en) * 1987-11-19 1990-12-11 Brother Kogyo Kabushiki Kaisha Device for feeding recording medium in the longitudinal recording direction
JP2005317683A (en) * 2004-04-27 2005-11-10 Nippon Steel Corp Grain-oriented electromagnetic steel plate for three-phase laminated iron core

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379296A (en) * 1976-12-23 1978-07-13 Kawasaki Steel Co Method of forming insulating film on electrical sheet * wherein nasty smell occurs little upon welding and workability for punching is excellent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379296A (en) * 1976-12-23 1978-07-13 Kawasaki Steel Co Method of forming insulating film on electrical sheet * wherein nasty smell occurs little upon welding and workability for punching is excellent

Also Published As

Publication number Publication date
JPS59116382A (en) 1984-07-05

Similar Documents

Publication Publication Date Title
JP2009041074A (en) Insulation-film treatment liquid free from chromium for grain-oriented electromagnetic steel sheet and method for manufacturing grain-oriented electromagnetic steel sheet provided with insulation film
JP5978009B2 (en) INSULATION COATING FORMING LIQUID AND METHOD FOR PRODUCING ELECTRIC STEEL STEEL WITH INSULATING COATING
JP3408410B2 (en) Surface treatment agent for non-oriented electrical steel sheet and method of forming film using the same
JP3385192B2 (en) Surface treatment agent for non-oriented electrical steel sheet with excellent coating properties and coating formation method using the same
WO2014188679A1 (en) Electromagnetic steel sheet having insulating coating film attached thereto
JPH1046350A (en) Method for forming insulating film containing no chromium compound, capable of stress relieving annealing and excellent in corrosion resistance on surface of silicon steel sheet
JP2001220683A (en) Silicon steel sheet coated with insulated film
JPH0445586B2 (en)
JP4380120B2 (en) Electrical steel sheet with insulation film
US3477881A (en) Process for the formation of electric insulating coating on electric iron sheet
JP2004068031A (en) Electromagnetic steel sheet with insulation coating
JP3335921B2 (en) Electrical steel sheet with insulating coating excellent in anti-nitridation property, adhesion and corrosion resistance and method for producing the same
JPS5985872A (en) Electrical sheet having electrically insulating film generating no malodor during welding
JPH04235287A (en) Method for forming insulating film on magnetic steel sheet
JP3572938B2 (en) Electrical steel sheet with excellent sticking and corrosion resistance
JP2621267B2 (en) Method of forming insulating film with excellent heat resistance of electrical steel sheet
JP2727553B2 (en) Method of forming a green coating with excellent heat resistance on the surface of electrical steel sheet
JP3386318B2 (en) Electromagnetic steel sheet with insulating coating that can be manufactured by low-temperature baking, can perform strain relief annealing, and has good solvent resistance
JPH07316833A (en) Coating agent for insulating coating film excellent in heat resistance for nonoriented silicon steel sheet and formation of insulating coating film
JPH04110476A (en) Production of electrical steel sheet with insulating coating film having superior adhesion and insulating property even after strain relief annealing
JPH04358079A (en) Electric steel sheet with electric insulating coating film having satisfactory additional coatability
JPH03240970A (en) Production of nonoriented silicon steel sheet excellent in film characteristic after stress relief annealing and surface treating agent therefor
JP3370261B2 (en) Electrical steel sheet with insulating coating that can be manufactured by high-speed coating and low-temperature baking and has excellent TIG weldability and post-annealing performance
KR910002724B1 (en) Process for forming insulated coating of non oriented electrical steel sheets
JPS6384671A (en) Insulating film of electrical steel sheet and formation thereof