JP3368103B2 - Bidirectional optical space transmission equipment - Google Patents

Bidirectional optical space transmission equipment

Info

Publication number
JP3368103B2
JP3368103B2 JP16151895A JP16151895A JP3368103B2 JP 3368103 B2 JP3368103 B2 JP 3368103B2 JP 16151895 A JP16151895 A JP 16151895A JP 16151895 A JP16151895 A JP 16151895A JP 3368103 B2 JP3368103 B2 JP 3368103B2
Authority
JP
Japan
Prior art keywords
voltage
light
optical axis
optical
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16151895A
Other languages
Japanese (ja)
Other versions
JPH08331056A (en
Inventor
靖三郎 出藏
干城 折野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP16151895A priority Critical patent/JP3368103B2/en
Publication of JPH08331056A publication Critical patent/JPH08331056A/en
Application granted granted Critical
Publication of JP3368103B2 publication Critical patent/JP3368103B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、角度補正機能を備え、
光信号により双方向の情報伝送を行う双方向光空間伝送
装置に関するものである。
BACKGROUND OF THE INVENTION The present invention has an angle correction function,
The present invention relates to a bidirectional optical space transmission device that performs bidirectional information transmission by an optical signal.

【0002】[0002]

【従来の技術】従来から、遠隔地に対し光信号により情
報伝送を行う双方向光空間伝送装置においては、風雨や
日射等の外的作用や人為的作用によって、相手側装置か
ら伝送された受信光の光軸と自装置の受光部との光軸に
ずれが生じ、最悪の場合は通信が断絶するという問題が
発生し易い。従って、予め自装置内において送信光と受
信光の光軸を一致させておき、自装置の受光部の光軸と
相手側装置から伝送される受信光の光軸とのずれ角度
を、運転中に常時検出して補正を行うことによって光軸
のずれを回避するという手段を採用している。
2. Description of the Related Art Conventionally, in a two-way optical space transmission device for transmitting information to a remote place by an optical signal, a reception transmitted from a partner device by an external action such as wind and rain or solar radiation or an artificial action. The optical axis of the light and the optical axis of the light receiving unit of the device itself are deviated from each other, and in the worst case, the problem of disconnection of communication is likely to occur. Therefore, the optical axes of the transmitted light and the received light are matched in advance in the own device, and the deviation angle between the optical axis of the light receiving part of the own device and the optical axis of the received light transmitted from the partner device is measured during operation. The means for avoiding the deviation of the optical axis by constantly detecting and correcting is adopted.

【0003】図8は従来例の双方向光空間伝送装置の構
成図を示し、送信信号は送光部1の電気−光変換素子2
により光信号となり、ビームスプリッタ3、光軸角度調
節駆動機構部4を通ってレンズ5から相手側装置に向け
て投光される。一方、相手側装置から伝送されてきた受
信光は、レンズ5を介して装置内に取り込まれ、光軸角
度調節駆動機構部4、ビームスプリッタ3を通り受光部
6に導かれ、ハーフミラー7により主信号受光素子8と
光軸角度誤差検出系9に分割される。
FIG. 8 is a block diagram of a conventional bidirectional optical space transmission apparatus in which a transmission signal is an electro-optical conversion element 2 of a light transmitting section 1.
Is converted into an optical signal by the beam splitter 3, the optical axis angle adjusting drive mechanism 4, and the light is projected from the lens 5 toward the partner device. On the other hand, the received light transmitted from the partner device is taken into the device through the lens 5, guided through the optical axis angle adjustment drive mechanism unit 4 and the beam splitter 3 to the light receiving unit 6, and is received by the half mirror 7. It is divided into a main signal light receiving element 8 and an optical axis angle error detection system 9.

【0004】図9は光軸角度誤差検出系9の構成図を示
し、受信光の一部は角度誤差検出系9の4要素に分割さ
れた光−電気変換素子10a〜10dに受光され、それ
ぞれ抵抗器などの電流−電圧変換器11a〜11dで電
圧信号となる。そして、これらの信号の加減算が行われ
ることにより、受信光の光軸と受光部6の光軸との角度
ずれが検出され、この角度誤差情報に基づいて、光軸角
度調節制御部12は光軸角度調節駆動機構部4を駆動し
角度ずれの補正を行う。
FIG. 9 is a block diagram of the optical axis angle error detection system 9. A part of the received light is received by the photoelectric conversion elements 10a to 10d which are divided into four elements of the angle error detection system 9, respectively. The current-voltage converters 11a to 11d such as resistors form voltage signals. Then, by performing addition and subtraction of these signals, an angular deviation between the optical axis of the received light and the optical axis of the light receiving unit 6 is detected, and the optical axis angle adjustment control unit 12 determines the optical deviation based on this angle error information. The shaft angle adjustment drive mechanism unit 4 is driven to correct the angle deviation.

【0005】以上のような操作を対向するそれぞれの装
置において行うことにより、予め装置内の送光部1の光
軸と受光部6の光軸は一致するように調節されているの
で、相手側装置から伝送される受信光と同一光軸で送信
光を投光することができ、常に安定した双方向光空間伝
送を行うことができる。
By performing the above-mentioned operations in the respective devices facing each other, the optical axes of the light transmitting section 1 and the light receiving section 6 in the apparatus are adjusted in advance so that they coincide with each other. The transmitted light can be projected on the same optical axis as the received light transmitted from the device, and stable bidirectional optical space transmission can always be performed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上述の従
来例においては、外的又は人為的作用によって伝送路上
で光信号の強度が減衰した場合には、受信光と雑音の信
号比の所謂S/N比が劣化し、これらの信号に基づいて
検出される光軸角度誤差情報が著しく損われてしまい、
送信光と受信光の正確な角度補正を行うことができなく
なるという問題が発生する。また、光信号が部分的に遮
断されたり、光軸がずれて正確な位置で受信できない場
合には、変換素子に生ずる暗電流や付加回路中の雑音レ
ベルのばらつきによって受信電圧にアンバランスが生
じ、誤った方向に角度補正を行ってしまうという問題が
発生する。
However, in the above-mentioned conventional example, when the intensity of the optical signal is attenuated on the transmission line by an external or artificial action, the so-called S / N ratio of the signal ratio between the received light and the noise is called. The ratio deteriorates and the optical axis angle error information detected based on these signals is significantly impaired,
There arises a problem that it becomes impossible to accurately correct the angle between the transmitted light and the received light. In addition, when the optical signal is partially blocked or the optical axis is displaced and it is not possible to receive at the correct position, the imbalance occurs in the reception voltage due to the dark current generated in the conversion element and the noise level variation in the additional circuit. However, there is a problem that the angle is corrected in the wrong direction.

【0007】本発明の目的は、上述の問題点を解消し、
実用上支障がないように正確な光軸角度補正を行うこと
のできる双方向光空間伝送装置を提供することにある。
The object of the present invention is to solve the above problems,
It is an object of the present invention to provide a bidirectional optical space transmission device capable of performing accurate optical axis angle correction without causing any practical problems.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る双方向光空間伝送装置は、所定距離を隔
てて対向配置し光信号により双方向の情報伝送を行う相
手側装置に送信光を発する送光部と、前記相手側装置か
らの信号光を受光する複数個の光−電気変換素子を含む
受光部と、前記複数個の光−電気変換素子の信号光強度
に対応する複数の電圧信号を発生する電圧発生手段と、
該電圧発生手段から得られた複数の電圧信号を基に受信
光の光軸を検出すると共に前記送信光の光軸とのずれを
検出するずれ検出手段と、該ずれ検出手段の出力に基づ
いて前記送信光の光軸を前記受信光の光軸に一致させる
ように角度補正を行う角度補正機構と、前記電圧発生手
段からの各電圧信号を所定の下限値以下にならないよう
にそれぞれ制限する電圧制限手段とを備えたことを特徴
とする。
A bidirectional optical space transmission apparatus according to the present invention for achieving the above object is a counterpart apparatus which is placed opposite to each other with a predetermined distance and which performs bidirectional information transmission by an optical signal. Corresponding to the signal light intensity of the plurality of optical-electrical conversion elements, the light-transmitting section that emits the transmission light, the light-receiving section that includes a plurality of optical-electrical conversion elements that receive the signal light from the other party device. Voltage generating means for generating a plurality of voltage signals,
Based on the output of the deviation detecting means for detecting the deviation of the optical axis of the received light from the optical axis of the received light based on the plurality of voltage signals obtained from the voltage generating means, and the output of the deviation detecting means. An angle correction mechanism that performs an angle correction so that the optical axis of the transmitted light coincides with the optical axis of the received light, and a voltage that limits each voltage signal from the voltage generation means so as not to be below a predetermined lower limit value. And a limiting means.

【0009】[0009]

【作用】上述の構成を有する双方向光空間伝送装置は、
予め送光部と受光部の光軸を一致させるよう送信光の角
度補正を行い、相手側装置からの光信号を複数個に分割
された光−電気変換素子により受光し、これらの複数個
の信号に基づいて電圧発生手段はそれぞれの光強度に対
応した電圧信号を発生し、これら電圧信号が所定下限値
以下にならないように、電圧制限手段により制限して角
度ずれ信号に変換する。
The bidirectional optical space transmission device having the above-mentioned configuration is
The angle of the transmitted light is corrected in advance so that the optical axes of the light-transmitting unit and the light-receiving unit are aligned, and the optical signal from the other party's device is received by the divided optical-electrical conversion element, and these plural The voltage generating means generates voltage signals corresponding to the respective light intensities based on the signals, and limits the voltage signals by the voltage limiting means so as to prevent the voltage signals from falling below a predetermined lower limit value and converts them into angle deviation signals.

【0010】[0010]

【実施例】本発明を図1〜図7に図示の実施例に基づい
て詳細に説明する。図1は従来例の双方向光空間伝送装
置の光軸角度誤差検出系に下限リミッタ回路を設けた本
実施例の構成図を示し、その他は従来例の図8、図9と
同様の構成とされている。光軸角度誤差検出系20にお
いて、相手側装置からの受信光の強度に対応した電流を
発生する4個の光−電気変換素子21a〜21dの出力
は、それぞれ抵抗器などから成る電流−電圧変換器22
a〜22dに接続され、更に図2に示すような比較器、
整流器、抵抗器から成る下限リミッタ回路23a〜23
dに接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail based on the embodiments shown in FIGS. FIG. 1 shows a configuration diagram of the present embodiment in which a lower limit limiter circuit is provided in an optical axis angle error detection system of a bidirectional optical space transmission device of a conventional example, and other configurations are similar to those of FIGS. 8 and 9 of the conventional example. Has been done. In the optical axis angle error detection system 20, the outputs of the four opto-electric conversion elements 21a to 21d, which generate a current corresponding to the intensity of the light received from the other device, are current-voltage conversion elements each including a resistor or the like. Bowl 22
a to 22d, and further a comparator as shown in FIG.
Lower limit limiter circuits 23a to 23 including rectifiers and resistors
It is connected to d.

【0011】図3に示すように光−電気変換素子21a
〜21dの間には、各素子21a〜21dを互いに分離
するためにギャップtが設けられている。そして、下限
リミッタ回路23aと23bの出力は演算回路24a
に、下限リミッタ回路23bと23cの出力は演算回路
24bに、下限リミッタ回路23cと23dの出力は演
算回路24cに、下限リミッタ回路23aと23dの出
力は演算回路24dにそれぞれ接続され、演算回路24
aと24cの出力は演算回路24eに、演算回路24b
と24dの出力は演算回路24fに接続されており、そ
れぞれX方向、Y方向のずれ角度を示す誤差電圧Vx、Vy
を発生するようになっている。
As shown in FIG. 3, a photoelectric conversion element 21a.
Between 21d to 21d, a gap t is provided to separate the elements 21a to 21d from each other. The outputs of the lower limit limiter circuits 23a and 23b are calculated by the arithmetic circuit 24a.
The outputs of the lower limit limiter circuits 23b and 23c are connected to the arithmetic circuit 24b, the outputs of the lower limit limiter circuits 23c and 23d are connected to the arithmetic circuit 24c, and the outputs of the lower limit limiter circuits 23a and 23d are connected to the arithmetic circuit 24d.
The outputs of a and 24c are supplied to the arithmetic circuit 24e and the arithmetic circuit 24b.
The outputs of 24d and 24d are connected to the arithmetic circuit 24f, and the error voltages Vx and Vy indicating the deviation angles in the X and Y directions, respectively.
Is to occur.

【0012】図8の従来例と同様に、送信用信号は送光
部1の電気−光変換素子2から、ビームスプリッタ3、
光軸角度調節駆動機構部4を通ってレンズ5から出射さ
れる。一方、受信光はレンズ5に入射し、光軸角度調節
駆動機構部4、ビームスプリッタ3、ハーフミラー7を
通って主信号受光素子8に受光され受信用信号となる。
As in the conventional example of FIG. 8, the transmission signal is transmitted from the electro-optical conversion element 2 of the light transmitting section 1 to the beam splitter 3,
The light is emitted from the lens 5 through the optical axis angle adjustment drive mechanism section 4. On the other hand, the received light enters the lens 5, passes through the optical axis angle adjusting drive mechanism section 4, the beam splitter 3, and the half mirror 7 and is received by the main signal light receiving element 8 and becomes a reception signal.

【0013】ハーフミラー7で反射された受信光の一部
は、図1に示すように角度誤差検出系20において、4
個の光−電気変換素子21a〜21dに半径rの円状の
スポットとして入射して電流信号に変換される。これら
の電流信号は電流−電圧変換器22a〜22dにおいて
それぞれ電圧信号Va〜Vdに変換される。ここで、光−電
気変換素子21a〜21d間のギャップtを0と仮定し
てギャップtでの受信光の損失を無視すると、電圧信号
Va〜Vdと各素子21a〜21dでの受信光強度とは図4
に示すように比例関係にある。
A part of the received light reflected by the half mirror 7 is 4 in the angle error detection system 20 as shown in FIG.
The light-to-electricity conversion elements 21a to 21d are incident as circular spots having a radius r and converted into current signals. These current signals are converted into voltage signals Va to Vd by the current-voltage converters 22a to 22d, respectively. Here, assuming that the gap t between the photoelectric conversion elements 21a to 21d is 0 and the loss of the received light at the gap t is ignored, the voltage signal is
Va to Vd and the received light intensities at the respective elements 21a to 21d are shown in FIG.
There is a proportional relationship as shown in.

【0014】電圧信号Va〜Vdはそれぞれ下限リミッタ回
路23〜23dに入力され、図2に示すように比較器を
介して予め設定された所定の下限電圧値Voと比較され、
この下限電圧値Vo以下とならないように自動調節されて
電圧信号Va’〜Vd’となる。これら電圧信号Va’〜Vd’
は演算回路24a〜24fにより演算されて、受信光の
光軸と受光部の光軸とのX方向、Y方向の誤差電圧Vx、
Vyに変換されて角度ずれ信号となる。
The voltage signals Va to Vd are input to the lower limit limiter circuits 23 to 23d, respectively, and compared with a predetermined lower limit voltage value Vo which is preset through a comparator as shown in FIG.
The voltage signals Va ′ to Vd ′ are automatically adjusted so as not to be lower than the lower limit voltage value Vo. These voltage signals Va '~ Vd'
Is calculated by the arithmetic circuits 24a to 24f, and the error voltage Vx in the X and Y directions between the optical axis of the received light and the optical axis of the light receiving portion,
It is converted to Vy and becomes an angle deviation signal.

【0015】従来例の図8に示すように、この角度ずれ
信号に基づいて、光軸角度駆動用制御部12は光軸角度
調節駆動機構部4を駆動して角度ずれを補正するように
制御を行う。図5に示すように、ギャップtを0とした
場合の受信光と受光部の光軸角度誤差量を表す受信光ス
ポットSの移動量は、X方向及びY方向の誤差電圧とは
比例関係にある。ただし、実際上のギャップtは0では
ないので、ギャップtに或る数値を考慮すると、図5の
点線のように直線に対し若干のずれが生ずる。
As shown in FIG. 8 of the conventional example, the optical axis angle drive control section 12 drives the optical axis angle adjustment drive mechanism section 4 on the basis of this angle deviation signal to control so as to correct the angular deviation. I do. As shown in FIG. 5, the amount of movement of the received light spot S, which represents the amount of optical axis angle error between the received light and the light receiving section when the gap t is 0, is proportional to the error voltage in the X and Y directions. is there. However, since the actual gap t is not 0, when a certain numerical value is taken into consideration for the gap t, a slight deviation from the straight line occurs as shown by the dotted line in FIG.

【0016】いま、受信光スポットSが光−電気変換素
子21a〜21d上の中心位置にあってその強度分布が
均一であれば、各素子21a〜21dからの電圧信号は
全て同一となり誤差電圧は0となる。ここで、伝送路上
の光強度が減衰することにより、各素子21a〜21d
で受光される受信光強度が低下すると、電圧信号Va〜Vd
のS/N比が劣化して相対的に雑音電圧の影響が大きく
なり、例えば受信光スポットSが図3の点線で示す位置
ΔxだけX方向にずれた位置にある場合も、誤差電圧が
0となることがある。従って、受信光スポットSは斜線
で示すΔxを半径とする円内を中心とした範囲をふらつ
くことになる。
Now, if the received light spot S is at the center position on the opto-electric conversion elements 21a to 21d and its intensity distribution is uniform, the voltage signals from the elements 21a to 21d are all the same and the error voltage is It becomes 0. Here, since the light intensity on the transmission path is attenuated, each of the elements 21a to 21d is
If the intensity of the received light received at
Of the received light spot S is shifted in the X direction by the position Δx shown by the dotted line in FIG. 3, the error voltage is 0. May be. Therefore, the received light spot S fluctuates in a range centered on a circle having a radius of Δx indicated by diagonal lines.

【0017】説明を単純化するために、図6に示すよう
に2分割した光−電気変換素子21a、21bを考える
と、伝送路で減衰された受信光はスポットSの位置で素
子21a、21bに受光され、受信光強度はそれぞれ電
流−電圧変換器22a、22bにより電圧信号VA、VBに
変換される。これらの電圧信号VA、VBには図7(a) 、
(b) に示すように振幅Va、Vbの正弦波の雑音電圧が重畳
されている。
For simplifying the explanation, consider the two-divided opto-electric conversion elements 21a and 21b as shown in FIG. 6. The received light attenuated in the transmission path is at the spot S, and the elements 21a and 21b are located. The received light intensity is converted into voltage signals VA and VB by the current-voltage converters 22a and 22b, respectively. These voltage signals VA and VB are shown in Fig. 7 (a),
As shown in (b), a sinusoidal noise voltage with amplitudes Va and Vb is superimposed.

【0018】いま、受信光スポットSは光−電気変換素
子21a、21bの中心に位置しているのでVA=VBとな
り、或る時点で変換器22a側が図7(a) の点A、変換
部22b側が図7(b) の点Bの位置にあるとすると、こ
のときの誤差電圧は(VA+Va)−(VB−Vb)=Va+Vbと
なり、受信光スポットSを図6の点線位置にシフトする
ように角度補正を行う必要が生ずる。従って、このよう
な動作を各時点ごとに繰り返すことによって、受信光ス
ポットSは図3の斜線で示したΔxを半径とする円内を
中心とした範囲をふらつくことになる。
Now, since the received light spot S is located at the center of the opto-electric conversion elements 21a and 21b, VA = VB, and at some point the converter 22a side is point A in FIG. If the 22b side is at the position of point B in FIG. 7 (b), the error voltage at this time is (VA + Va) − (VB−Vb) = Va + Vb, and the received light spot S is shifted to the position indicated by the dotted line in FIG. Then, it becomes necessary to perform angle correction. Therefore, by repeating such an operation at each time point, the received light spot S fluctuates in a range centered on a circle having a radius of Δx indicated by the diagonal line in FIG.

【0019】ここで、下限リミッタ電圧を予めVA(=V
B)に設定しておくと、変換部22b側は図7(b) の点
B’の位置でVB=0となり、誤差電圧はVaとなる。従っ
て、各素子21a、21bで受光される受信光強度が減
少し、電圧信号のS/N比が低下して相対的に雑音電圧
の影響が大きくなった場合でも、下限リミッタ電圧を設
けることにより受信光スポットSがふらつく範囲を狭く
することができる。
Here, the lower limit limiter voltage is previously set to VA (= V
If it is set to B), VB = 0 on the conversion unit 22b side at the position of point B ′ in FIG. 7B, and the error voltage becomes Va. Therefore, even if the intensity of the received light received by each of the elements 21a and 21b is reduced and the S / N ratio of the voltage signal is reduced and the influence of the noise voltage becomes relatively large, the lower limit limiter voltage is provided. The range where the received light spot S fluctuates can be narrowed.

【0020】また、伝送路上での受信光強度の減衰が非
常に大きく、光−電気変換素子21a〜21dの感度が
なくなるような場合や、光信号が部分的に遮断され、全
ての素子21a〜21dにおいて受光できない場合に
は、各素子21a〜21dに生ずる暗電流や付加回路中
の雑音レベルのばらつきにより、各電流−電圧変換器2
2a〜22dで出力される雑音電圧にばらつきが発生
し、光軸角度を調節する可動ミラーがX軸、Y軸共に或
る一方向に貼り付いてしまうことがある。この状態で光
信号が復帰しても、受信光スポットSは光−電気変換素
子21a〜21dの視野外にあって、正常な通信状態に
戻らなくなるが、このような問題も下限リミッタ電圧を
設定しておくことにより解決することができる。
Further, when the attenuation of the received light intensity on the transmission line is very large and the sensitivities of the opto-electric conversion elements 21a to 21d are lost, or when the optical signal is partially blocked, all the elements 21a to 21d. When the light cannot be received at 21d, each current-voltage converter 2 is caused by the dark current generated in each element 21a to 21d or the noise level variation in the additional circuit.
The noise voltage output from 2a to 22d may vary, and the movable mirror for adjusting the optical axis angle may stick to one direction in both the X axis and the Y axis. Even if the optical signal is restored in this state, the received light spot S is out of the field of view of the optical-electrical conversion elements 21a to 21d, and the normal communication state cannot be restored. However, such a problem also sets the lower limiter voltage. It can be solved by keeping it.

【0021】なお、光−電気変換素子21a〜21dに
対応する電流−電圧変換器22a〜22dからの電圧信
号をアナログ−デジタル変換した上で、それぞれの下限
リミッタ回路23〜23dをソフトウエアにより制御す
るようにすることも可能である。
The voltage signals from the current-voltage converters 22a-22d corresponding to the opto-electric conversion elements 21a-21d are converted from analog to digital, and the respective lower limit limiter circuits 23-23d are controlled by software. It is also possible to do so.

【0022】[0022]

【発明の効果】以上説明したように本発明に係る双方向
光空間伝送装置は、角度誤差検出のための複数個の光−
電気変換素子それぞれに対応した電流−電圧変換器から
の出力レベルを、所定の下限値以下とならないよう電圧
制限手段を設けることにより、伝送路上で光強度が減衰
して光−電気変換素子で出力される電圧信号のS/N比
が劣化した場合にも、雑音電圧の影響によって生ずる受
信光スポットのふらつき範囲を狭めることができるの
で、実用上支障のない送信光の角度補正を行うことがで
き、伝送路上で光信号が遮断されて光−電気変換素子が
光信号を全く受光しないような場合にも、光軸角度を調
節する可動ミラーが或る方向に貼り付いて通信不能とな
ることを防止することができる。
As described above, the bidirectional optical space transmission apparatus according to the present invention includes a plurality of optical fibers for detecting an angle error.
By providing voltage limiting means so that the output level from the current-voltage converter corresponding to each electric conversion element does not fall below a predetermined lower limit value, the light intensity is attenuated on the transmission line and output by the optical-electric conversion element. Even when the S / N ratio of the generated voltage signal is deteriorated, the fluctuation range of the received light spot caused by the influence of the noise voltage can be narrowed, so that the angle of the transmitted light can be corrected without any practical problems. , Even when the optical signal is blocked on the transmission line and the optical-electrical conversion element does not receive the optical signal at all, the movable mirror for adjusting the optical axis angle is stuck in a certain direction and communication becomes impossible. Can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例の光軸角度誤差検出部の構成図であ
る。
FIG. 1 is a configuration diagram of an optical axis angle error detection unit of the present embodiment.

【図2】下限リミッタ回路の構成図である。FIG. 2 is a configuration diagram of a lower limit limiter circuit.

【図3】光−電気変換素子の説明図である。FIG. 3 is an explanatory diagram of a photoelectric conversion element.

【図4】受信光強度と電圧信号のグラフ図である。FIG. 4 is a graph of received light intensity and voltage signal.

【図5】受信光スポットの移動量と誤差電圧のグラフ図
である。
FIG. 5 is a graph showing the amount of movement of the received light spot and the error voltage.

【図6】2分割に光−電気変換素子の接続回路図であ
る。
FIG. 6 is a connection circuit diagram of a photoelectric conversion element divided into two parts.

【図7】電圧信号のS/N比劣化の説明図である。FIG. 7 is an explanatory diagram of S / N ratio deterioration of a voltage signal.

【図8】従来例の双方向光空間伝送装置の構成図であ
る。
FIG. 8 is a block diagram of a conventional bidirectional optical space transmission apparatus.

【図9】光軸角度誤差検出部の構成図である。FIG. 9 is a configuration diagram of an optical axis angle error detection unit.

【符号の説明】[Explanation of symbols]

20 光軸角度誤差検出系 21a〜21d 光−電気変換素子 22a〜22d 電流−電圧変換器 23a〜23d 下限リミッタ回路 24a〜24d 演算回路 20 Optical axis angle error detection system 21a-21d photoelectric conversion element 22a-22d current-voltage converter 23a-23d lower limit limiter circuit 24a to 24d arithmetic circuit

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H04B 10/00 - 10/28 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H04B 10/00-10/28

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 所定距離を隔てて対向配置し光信号によ
り双方向の情報伝送を行う相手側装置に送信光を発する
送光部と、前記相手側装置からの信号光を受光する複数
個の光−電気変換素子を含む受光部と、前記複数個の光
−電気変換素子の信号光強度に対応する複数の電圧信号
を発生する電圧発生手段と、該電圧発生手段から得られ
た複数の電圧信号を基に受信光の光軸を検出すると共に
前記送信光の光軸とのずれを検出するずれ検出手段と、
該ずれ検出手段の出力に基づいて前記送信光の光軸を前
記受信光の光軸に一致させるように角度補正を行う角度
補正機構と、前記電圧発生手段からの各電圧信号を所定
の下限値以下にならないようにそれぞれ制限する電圧制
限手段とを備えたことを特徴とする双方向光空間伝送装
置。
1. An optical signal which is arranged to face each other at a predetermined distance.
Emits transmission light to the other device that performs bidirectional information transmission
A light transmitting unit, a light receiving unit including a plurality of photoelectric conversion elements for receiving signal light from the other device, and a plurality of voltage signals corresponding to signal light intensities of the plurality of photoelectric conversion elements. a voltage generating means for generating a, obtained from the voltage generating unit
The optical axis of the received light is detected based on the multiple voltage signals
A deviation detecting means for detecting a deviation of the transmitted light from the optical axis,
The optical axis of the transmitted light is moved forward based on the output of the deviation detecting means.
Angle to perform angle correction to match the optical axis of the received light
A bidirectional optical space transmission device comprising: a correction mechanism; and a voltage limiting unit that limits each voltage signal from the voltage generating unit so as not to become a predetermined lower limit value or less .
【請求項2】 前記複数の電圧信号の下限値は全て同一
とした請求項1に記載の双方向光空間伝送装置。
2. The bidirectional optical space transmission device according to claim 1, wherein the lower limit values of the plurality of voltage signals are all the same.
【請求項3】 前記電圧制限手段は入力された電圧を予
め設定した値に制限して出力する電気回路とした請求項
1に記載の双方向光空間伝送装置。
3. The bidirectional optical space transmission device according to claim 1, wherein the voltage limiting means is an electric circuit that limits an input voltage to a preset value and outputs the limited voltage.
【請求項4】 前記電圧制限手段をアナログ−デジタル
変換後にソフトウエアにより制御する請求項1に記載の
双方向光空間伝送装置。
4. The bidirectional optical space transmission device according to claim 1, wherein the voltage limiting means is controlled by software after analog-digital conversion.
JP16151895A 1995-06-05 1995-06-05 Bidirectional optical space transmission equipment Expired - Fee Related JP3368103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16151895A JP3368103B2 (en) 1995-06-05 1995-06-05 Bidirectional optical space transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16151895A JP3368103B2 (en) 1995-06-05 1995-06-05 Bidirectional optical space transmission equipment

Publications (2)

Publication Number Publication Date
JPH08331056A JPH08331056A (en) 1996-12-13
JP3368103B2 true JP3368103B2 (en) 2003-01-20

Family

ID=15736603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16151895A Expired - Fee Related JP3368103B2 (en) 1995-06-05 1995-06-05 Bidirectional optical space transmission equipment

Country Status (1)

Country Link
JP (1) JP3368103B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122179A (en) * 1997-10-09 1999-04-30 Seiko Epson Corp Space light transmitter and space light transmission method

Also Published As

Publication number Publication date
JPH08331056A (en) 1996-12-13

Similar Documents

Publication Publication Date Title
US6456751B1 (en) Feedback stabilization of a loss optimized switch
EP0724340B1 (en) Free space optical communication apparatus and angle adjusting method
US7276681B2 (en) On-board light source based gain correction for semi-active laser seekers
US6288775B1 (en) Lightwave distance measuring apparatus and method
JP3311197B2 (en) Bidirectional optical space transmission equipment
JPH0726806B2 (en) Distance measuring device
EP0911996B1 (en) Optical space communication apparatus
US4571047A (en) TTL Focus detecting device for single-lens reflex camera
JPH085686A (en) Field sensor
JP2731565B2 (en) Distance sensor
JP3368103B2 (en) Bidirectional optical space transmission equipment
US4938588A (en) Distance detecting apparatus
JP3206993B2 (en) Bidirectional optical space transmission equipment
JPS6348294B2 (en)
JP2815463B2 (en) Optical measuring device
JPS61150522A (en) Photoelectric switch
JP2950654B2 (en) camera
JPH0829119A (en) Position detector for rotating center of rotor
JPH0832520A (en) Two-way optical space transmitter
JPS62238509A (en) Automatic focusing device
JPH033417B2 (en)
JP2001111491A (en) Two-way optical special transmitter
JPS61245012A (en) Automatic focusing device
JPH0576605B2 (en)
JPS6344118A (en) Displacement switch

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees