JP3367392B2 - Manufacturing method of titanium slab - Google Patents

Manufacturing method of titanium slab

Info

Publication number
JP3367392B2
JP3367392B2 JP23268397A JP23268397A JP3367392B2 JP 3367392 B2 JP3367392 B2 JP 3367392B2 JP 23268397 A JP23268397 A JP 23268397A JP 23268397 A JP23268397 A JP 23268397A JP 3367392 B2 JP3367392 B2 JP 3367392B2
Authority
JP
Japan
Prior art keywords
forging
ingot
transformation point
temperature
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23268397A
Other languages
Japanese (ja)
Other versions
JPH1177212A (en
Inventor
孝志 柴田
篤彦 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP23268397A priority Critical patent/JP3367392B2/en
Publication of JPH1177212A publication Critical patent/JPH1177212A/en
Application granted granted Critical
Publication of JP3367392B2 publication Critical patent/JP3367392B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、工業用チタン鋳塊
をプレスで鍛造することにより、微細で均一な組織とし
た熱間圧延に供するチタンスラブを製造する方法に関す
る。 【0002】 【従来の技術】工業用純チタンおよびそれに少量のパラ
ジウム等を含むチタン(以下、本発明では単にチタンと
記す)の熱延板や冷延板の製造には、一般にスポンジチ
タンを真空アーク溶解等で溶解して得られた断面が円形
状の鋳塊が用いられる。通常この鋳塊の直径は600〜
1000mm程度で、熱間でプレスや大径のロールによ
り分塊されてスラブに成形され、熱間圧延に供される。 【0003】チタンの分塊方法には、大型の分塊ロール
を用いる場合が多いが、鍛造によりスラブ形状に成形さ
れる場合もある。しかしながら、いずれの場合も組織の
形態は分塊工程の最終の加工温度に依存する。 【0004】分塊工程の最終の加工温度が、チタンの変
態点以下の温度であれば等軸晶のα相となり、変態点以
上であればβ相の影響を受け針状のα相になることは従
来から知られている。 【0005】一般的な金属学的知見から、スラブの結晶
粒の大きさは、後工程の熱間加工の変形能に影響する。
すなわち、スラブの結晶粒が小さいほど結晶粒単位の変
形が容易になり、結果として全体の変形能は増加する。
変形能が大きいほどその後の熱間圧延で熱圧板の表面に
疵が発生しにくい。そのためスラブの結晶粒は細かい方
がよい。 【0006】先に述べたように、チタンの熱延に供され
るスラブの製造は大型の分塊ロールを用いて製造される
場合が多い。結晶粒の大きさは、分塊前の鋳塊の加熱温
度と分塊終了時の温度管理によってある程度の結晶粒制
御が可能であるが、大型の設備であるため結晶粒の制御
は制約される。鍛造でスラブを製造する場合、温度管理
は比較的容易であるが、ロールによる分塊とは異なり、
スラブ板厚方向で分塊加工が不均一になり易い。特にス
ラブの表面近傍で結晶粒が大きくなる傾向にあり、厚さ
方向の中央部では結晶粒が小さくなり、結晶粒が不均一
に分布したスラブとなる。その原因は、鍛造金型の直下
の部分(以下、デッドメタルと呼ぶ)では鍛錬されにく
いからである。 【0007】図1は、デッドメタルを説明するための断
面図である。この図は、チタン鋳塊1が、プレスの上金
型3により鍛造された状態を示し、2は鍛造後の鍛伸材
を示す。上金型3により圧下されると金型の直下の図1
の斜線で示す三角状の部分の加工率が小さくなり、この
部分がデッドメタルと呼ばれている。 【0008】特開平8−232061号公報には、高純
度チタン材の鍛造プロセスにおいて、変態点以上の温度
では、鍛錬成形比が5以上となるように鍛伸と据え込み
を組み合わせた1次鍛造加工を1回以上おこなった後、
変態点以下の温度での鍛錬成形比が5以上となるように
鍛伸と据え込みを組み合わせた2次鍛造加工を1回以上
おこない、結晶粒を微細化する鍛造方法が開示されてい
る。 【0009】しかし、工業的規模での生産をする範囲に
おいて、鋳塊からスラブを成形するには寸法上の制約が
あるので、簡単に鍛錬比を上げることは困難な場合が多
い。また、加熱回数が多くなり生産効率もよくない。 【0010】 【発明が解決しようとする課題】本発明は、微細でかつ
均一な結晶粒を有する熱間変形能に優れた熱間圧延用チ
タンスラブを、プレス鍛造で製造する方法を提供するこ
とを課題とする。 【0011】 【課題を解決するための手段】本発明者は、プレス鍛造
により鍛造比をそれほど大きくしないで、チタンの結晶
粒を微細かつ均一にする方法を開発すべく実験検討重ね
た結果、以下のような知見を得るに至った。 【0012】a)鍛造後のチタンスラブの組織を微細化
するには、変態点以下の低温で比較的軽度の鍛造を行
い、予め鋳塊に歪を与えておき、その後変態点以上の温
度に加熱して、変態点以上の温度で鍛造を開始し、変態
点以下で終了するのがよい。 【0013】b)鍛造時に避け難いデッドメタルによる
結晶粒の不均一化の防止は、変態点以下の鍛造において
鋳塊移送方向における金型と鋳塊表面との接触長さを制
限することにより達成できる。 【0014】c)予め鋳塊に歪を与えるための変態点以
下の温度での鍛造における加工率の大きさおよび温度の
高低は、結晶粒の微細化にはほとんど影響しない。本発
明は、このような知見に基づきなされたもので、その要
旨は以下の通りである。 【0015】「チタン鋳塊をプレスで鍛造してスラブを
製造する方法であって、変態点以下の温度で、鋳塊移送
方向における金型と鋳塊表面との接触長さを300mm
以下にして鍛造し、次いで変態点以上に加熱して変態点
以上の温度で鍛造を開始し、変態点以下の温度で鍛造を
終了することを特徴とするチタンスラブの製造方法」 ここで、チタンとは、工業用純チタンに加え、微量のP
d、Co、Ta等の耐食性向上元素を含んでいるチタン
も含むものとする。例えば、Pdは0.04〜0.25
%含む場合は、耐食性が向上する。 【0016】また、鋳塊表面とは鍛造されていない鋳造
されたままの状態の表面をいう。 【0017】 【発明の実施の形態】図2は、本発明の製造方法におけ
るチタン鋳塊のヒートパターンを示す図である。同図に
示すように、本発明の製造方法は、変態点(880〜9
00℃)以下の稠密六方晶のα相温度域で鍛造(図2の
ジグザグ部)を加え、次いで変態点以上の体心立方晶の
β相温度域に加熱して、β相温度域で鍛造を開始し、変
態点以下の温度域で鍛造を終了する方法で、最初の変態
点以下のα相温度域での鍛造では、鋳塊移送方向におけ
る金型と鋳塊表面との接触長さを300mm以下にす
る。 【0018】図3は、鋳塊移送方向における金型と鋳塊
表面との接触長さを説明するための鍛造部近傍の縦断面
図である。この図は、鍛造前のチタン鋳塊1が上金型3
および図示しない下金型で鍛造されて鍛伸材2となる状
態を示している。鋳塊1のD部分の鍛造を開始するとこ
ろを示している。この鋳塊の移送方向における金型3と
鋳塊表面1Sとの接触する長さDが接触長さである。な
お、幅方向(Dと直交する方向)の接触長さは、細粒化
に及ぼす影響は小さいので特に規定しないが、通常鋳塊
は断面が円形なので、必然的に300mm程度となる。
以下、本発明の製造条件を限定した理由を説明する。 【0019】チタン鋳塊は、通常使用されている断面が
円形で直径が600〜1000mm程度のインゴットで
ある。この鋳塊を、変態点以下の温度で、鋳塊移送方向
における金型と鋳塊表面との接触長さを300mm以下
にして鍛造し、次いで変態点以上に加熱するのは、以下
の理由による。 【0020】変態点以下の温度で鍛造するのは、鋳塊に
歪を与えるためである。また、歪を与えた後変態点以上
の温度に加熱するのは、加工歪を内在させたα相を変態
点を超える温度に加熱することで、β相に再結晶する際
により細かいβ粒とするためである。 【0021】変態点以下の鍛造温度は、変態点以下の温
度であれば何度でもよいが、880〜700℃に加熱
し、700〜600℃の範囲で鍛造するのが鍛造し易く
好ましい。 【0022】また、変態点以下の鍛造における加工率
も、結晶粒微細化にあまり影響しないので特に限定しな
い。 【0023】変態点以下の温度での鍛造による加工率お
よび鍛造温度の結晶粒の微細化に及ぼす影響を調べるた
め以下のような試験を実施した。 【0024】直径140mmのJIS H−4600の
1種に相当の純チタン20kgの鋳塊から、厚さ30m
m、幅100mm、長さ150mmの試験片を切出し、
750℃および850℃の各温度で加工率を5〜70%
と種々変えて圧延し、圧延後950℃に加熱して冷却し
た後、光学顕微鏡で比較法により結晶粒度を判定して結
晶粒の平均面積を求めた。なお、鋳塊移送方向における
金型と鋳塊表面との接触長さは全て150mmとした。 【0025】図4は、上記試験により得られた加工率と
結晶粒面積の関係を示す図である。この図から明らかな
ように、結晶粒の平均面積は、すべての条件で0.38
〜0.48mm2 であり、結晶粒が微細であり、かつ加
工温度の高低や加工率の大きさは、結晶粒の微細化には
ほとんど影響しないことが分かる。 【0026】次に、鋳塊移送方向における金型と鋳塊表
面との接触長さを300mm以下にするのは、300m
mを超えるとデッドメタル部の加工率が極めて小さくな
り、歪が鋳塊全体に均一に付与されなく、結晶粒の大き
さが不均一になるからである。300mm未満とするこ
とにより、デッドメタル部の細粒化が可能となる。 【0027】鍛造効率とデッドメタル部への歪付与の観
点から、好ましくは、100〜300mmである。 【0028】この300mmは、以下に示す実験により
求めたものである。 【0029】直径760mmの JIS H−4600の
1種に相当する純チタン鋳塊を用いて、変態点以下の8
50℃で、加工率を20%と40%の2種とし、鋳塊移
送方向における金型と鋳塊表面との接触長さを100〜
400mmと種々変化さて鍛造し、950℃に加熱して
鍛造および冷却後、顕微鏡で結晶粒を調べるための試片
をスラブ表層から採取し、結晶粒の平均面積を上記と同
じ方法で求めた。 【0030】図5は、この試験により求めた、鍛造時の
送り量と結晶粒面積との関係を示す図である。この図が
示すように金型と鋳塊表面との接触長さが300mmを
超えると結晶粒が細粒化されていない。 【0031】なお、接触長さを300mm以下にして鍛
造するのは、鋳塊全長にわたりおこなうのは当然である
が、1度300mm以下で鍛造した部分を2度目の鍛造
を施す場合は、送り量が300mmを超えてもよく、細
粒化に大きな影響はない。 【0032】次に、変態点以上に加熱して変態点以上の
温度で鍛造を開始し、変態点以下の温度で鍛造を終了す
るのは、以下の理由による。 【0033】変態点以上の体心立方晶のβ相温度域で鍛
造するのは、加工が容易であり目標の大きさに効率よく
鍛造ができ、また結晶粒をより細粒にすることができる
からである。さらに、鍛造終止温度を変態点以下とした
のは、スラブの結晶粒がβ相の影響を受け、熱延用素材
としては好ましくない針状組織になるのを防止するため
である。 【0034】 【実施例】以下、実施例により本発明の効果を説明す
る。 【0035】真空溶解により2回溶解したJIS-H-4
600の1種に相当する直径760mmの6t鋳塊を用
いて表1に示す条件でプレス鍛造した。 【0036】すなわち、変態点以下の鍛造温度は、75
0℃そして850℃の3種とし、またそれぞれの温度に
おける加工率は10%、30%そして50%とした。ま
た、変態点以上への加熱温度はいずれの場合も950℃
とし、変態点以上で鍛造を開始し、鍛造終了時の温度を
変態点以下となるよう調整しながら作業し、鍛造終止後
の温度はスラブの温度を実測した。 【0037】比較例としては、変態点以下の温度では鍛
造しないで、変態点以上の温度のみで鍛造する条件と、
変態点以下の温度で鍛造し、変態点以上の温度に加熱、
鍛造し鍛造終了温度を変態点以上とする条件で鍛造し
た。 【0038】なお変態点以上の温度での加工率は全て約
70%とした。また、鋳塊の送り量はすべて150mm
とした。 【0039】 【表1】【0040】鋳塊の加熱には大気雰囲気加熱炉を、鍛造
には断面が400mm角状の金型の2500t自由鍛造
機を用いた。鍛造終了後、スラブからミクロ組織観察用
サンプルを切り出して結晶粒の面積を求めた。サンプル
は、スラブの結晶粒の均一性を見るために、スラブ板厚
方向に対し、スラブの表層部と中心部から採取した。ミ
クロ組織は、スラブの縦断面で観察し、その時の結晶粒
平均面積を求めた。結果を表1に併せて示す。 【0041】表1から明らかなように、変態点以下の温
度で鍛造したスラブの結晶粒は、それを行わないスラブ
の結晶粒に比較し、細粒となっている。しかも、変態点
以下の加工を行わなかったスラブは、その表面と中心で
結晶粒の面積の差が大きいが、変態点以下の温度で鍛造
したスラブは結晶粒の大きさが均一になっている。 【0042】また、比較例の NO.4、8、11は、鍛造
終了温度が900℃であったため、後工程の熱延にとっ
て好ましくない針状組織が残っていた。 【0043】 【発明の効果】 本発明のスラブの製造方法によ
れば、結晶粒が微細で均一に分布したスラブが得られ、
その後の熱延に供するして疵のないチタン熱延板がえら
れる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a titanium slab for hot rolling into a fine and uniform structure by forging an industrial titanium ingot with a press. On how to do it. 2. Description of the Related Art In the production of hot and cold rolled sheets of industrial pure titanium and titanium containing a small amount of palladium (hereinafter simply referred to as titanium in the present invention), sponge titanium is generally produced by vacuuming. A circular ingot obtained by melting by arc melting or the like is used. Usually the diameter of this ingot is 600-
At about 1000 mm, it is hot crushed by a press or a large-diameter roll, formed into a slab, and subjected to hot rolling. [0003] In the method of sizing titanium, a large sizing roll is often used, but in some cases, the slab is formed by forging. However, in each case, the morphology of the structure depends on the final processing temperature of the lumping step. [0004] If the final processing temperature in the agglomeration step is a temperature below the transformation point of titanium, it becomes an equiaxed α phase, and if it is above the transformation point, it becomes a needle-like α phase affected by the β phase. This has been known for some time. From general metallurgical findings, the size of the slab crystal grains affects the deformability of the subsequent hot working.
In other words, the smaller the crystal grains of the slab, the easier the deformation of the crystal grains becomes, and as a result, the overall deformability increases.
The larger the deformability is, the less the flaw is generated on the surface of the hot pressing plate in the subsequent hot rolling. Therefore, the crystal grains of the slab are preferably fine. As described above, slabs subjected to hot rolling of titanium are often manufactured using large sizing rolls. The size of the crystal grains can be controlled to some extent by controlling the heating temperature of the ingot before the ingot and the temperature control at the end of the ingot, but the control of the crystal grains is limited due to the large size equipment. . When manufacturing slabs by forging, temperature control is relatively easy, but unlike lumping by rolls,
The lumping process tends to be uneven in the slab thickness direction. In particular, the crystal grains tend to be large in the vicinity of the surface of the slab, and the crystal grains become small in the central portion in the thickness direction, resulting in a slab in which the crystal grains are unevenly distributed. The reason is that it is difficult to forge at a portion directly below the forging die (hereinafter referred to as dead metal). FIG. 1 is a cross-sectional view for explaining a dead metal. This figure shows a state where a titanium ingot 1 is forged by an upper die 3 of a press, and 2 shows a forged material after forging. Fig. 1 just below the mold when pressed down by the upper mold 3
The processing rate of the triangular portion indicated by the oblique line becomes smaller, and this portion is called dead metal. [0008] Japanese Patent Application Laid-Open No. Hei 8-232601 discloses that in a forging process of a high-purity titanium material, primary forging combining forging and upsetting so that the forging ratio becomes 5 or more at a temperature equal to or higher than the transformation point. After processing at least once,
A forging method is disclosed in which a secondary forging process combining forging and upsetting is performed at least once so that a forging ratio at a temperature equal to or lower than the transformation point is 5 or more to refine crystal grains. [0009] However, in the range of production on an industrial scale, it is often difficult to easily increase the forging ratio due to dimensional restrictions in forming a slab from an ingot. In addition, the number of times of heating increases, and the production efficiency is not good. SUMMARY OF THE INVENTION The present invention provides a method for producing a titanium slab for hot rolling having fine and uniform crystal grains and excellent in hot deformability by press forging. As an issue. The inventors of the present invention have conducted experiments and studies in order to develop a method for making titanium crystal grains fine and uniform without increasing the forging ratio by press forging. The following knowledge was obtained. A) In order to refine the structure of the titanium slab after forging, relatively light forging is performed at a low temperature below the transformation point, strain is given to the ingot in advance, and then the temperature is increased to a temperature above the transformation point. It is preferable to start the forging at a temperature higher than the transformation point by heating, and to end the forging at a temperature lower than the transformation point. B) Prevention of non-uniformity of crystal grains due to dead metal, which is inevitable during forging, is achieved by limiting the contact length between the mold and the surface of the ingot in the direction of ingot transfer in forging below the transformation point. it can. C) The magnitude of the working ratio and the temperature during forging at a temperature below the transformation point for giving strain to the ingot in advance have little effect on the refinement of the crystal grains. The present invention has been made based on such knowledge, and the gist is as follows. A method for producing a slab by forging a titanium ingot with a press, wherein the contact length between the mold and the surface of the ingot in the ingot transfer direction is 300 mm at a temperature below the transformation point.
Forging in the following manner, then heating to a temperature above the transformation point, starting forging at a temperature above the transformation point, and terminating the forging at a temperature below the transformation point. Is a small amount of P in addition to pure titanium for industrial use.
It also includes titanium containing a corrosion resistance improving element such as d, Co, and Ta. For example, Pd is 0.04 to 0.25
%, The corrosion resistance is improved. The ingot surface refers to a surface in an as-cast state that has not been forged. FIG. 2 is a view showing a heat pattern of a titanium ingot in the production method of the present invention. As shown in the figure, the manufacturing method of the present invention has a transformation point (880-9).
00 ° C) or less in a dense hexagonal α-phase temperature range (zigzag part in Fig. 2), and then heated to a body-centered cubic β-phase temperature range above the transformation point and forged in a β-phase temperature range. In the forging in the α phase temperature range below the first transformation point, the contact length between the mold and the ingot surface in the direction of the ingot is transferred by the method of starting forging in the temperature range below the transformation point. Make it 300 mm or less. FIG. 3 is a longitudinal sectional view of the vicinity of the forged portion for explaining the contact length between the mold and the surface of the ingot in the ingot transfer direction. This figure shows that the titanium ingot 1 before forging is
And a state in which the forged material 2 is forged with a lower die (not shown). It shows a state where forging of the D portion of the ingot 1 is started. The length D of contact between the mold 3 and the ingot surface 1S in the ingot transfer direction is the contact length. The contact length in the width direction (the direction perpendicular to D) is not particularly defined because it has a small effect on grain refinement, but is usually about 300 mm because the ingot is usually circular in cross section.
Hereinafter, the reasons for limiting the production conditions of the present invention will be described. The titanium ingot is a generally used ingot having a circular cross section and a diameter of about 600 to 1000 mm. This ingot is forged at a temperature below the transformation point, the contact length between the mold and the surface of the ingot in the direction of ingot transfer is 300 mm or less, and then heated above the transformation point for the following reasons. . The reason for forging at a temperature lower than the transformation point is to give strain to the ingot. In addition, heating to a temperature above the transformation point after strain is applied is to heat the α phase incorporating the processing strain to a temperature above the transformation point, and to recrystallize it into a β phase with finer β grains. To do that. The forging temperature below the transformation point may be any temperature as long as it is below the transformation point, but it is preferable to heat to 880 to 700 ° C. and forge in the range of 700 to 600 ° C. for easy forging. Further, the working ratio in forging below the transformation point is not particularly limited because it does not significantly affect the refinement of crystal grains. The following tests were conducted to investigate the effects of the forging rate and the forging temperature on the crystal grain refinement at temperatures below the transformation point. From an ingot of 20 kg of pure titanium corresponding to one of JIS H-4600 having a diameter of 140 mm, a thickness of 30 m
m, cut out a test piece of width 100mm, length 150mm,
5% to 70% reduction at 750 ° C and 850 ° C
After being rolled, and then heated to 950 ° C. and cooled, the crystal grain size was determined by a comparative method using an optical microscope to determine the average area of the crystal grains. The length of contact between the mold and the surface of the ingot in the ingot transfer direction was all 150 mm. FIG. 4 is a diagram showing the relationship between the processing rate and the crystal grain area obtained by the above test. As is apparent from this figure, the average area of the crystal grains was 0.38 under all conditions.
A ~0.48Mm 2, crystal grains are fine, and the size of the high and low and processing rate of processing temperature is seen to have little effect on the grain refinement. Next, the reason why the contact length between the mold and the surface of the ingot in the ingot transfer direction is set to 300 mm or less is 300 m
If it exceeds m, the processing rate of the dead metal portion becomes extremely small, strain is not uniformly applied to the entire ingot, and the size of crystal grains becomes non-uniform. By setting the diameter to be less than 300 mm, it is possible to reduce the size of the dead metal portion. From the viewpoint of forging efficiency and imparting distortion to a dead metal portion, the thickness is preferably 100 to 300 mm. This 300 mm was determined by the following experiment. Using a pure titanium ingot corresponding to one type of JIS H-4600 having a diameter of 760 mm, a temperature of 8
At 50 ° C., the working ratio is set to 20% and 40%, and the contact length between the mold and the ingot surface in the ingot transfer direction is 100 to 100%.
After forging with various changes of 400 mm, heating to 950 ° C. and forging and cooling, a specimen for examining crystal grains with a microscope was sampled from the surface layer of the slab, and the average area of the crystal grains was determined by the same method as described above. FIG. 5 is a diagram showing the relationship between the amount of feed during forging and the area of crystal grains, obtained by this test. As shown in this figure, when the contact length between the mold and the surface of the ingot exceeds 300 mm, the crystal grains are not refined. The forging with a contact length of 300 mm or less is, of course, performed over the entire length of the ingot. However, when a portion forged once at 300 mm or less is subjected to a second forging, the feed amount is reduced. May exceed 300 mm, and there is no significant effect on grain refinement. Next, the forging is started at a temperature higher than the transformation point by heating to a temperature higher than the transformation point, and the forging is terminated at a temperature lower than the transformation point for the following reasons. Forging in a body-centered cubic β-phase temperature region higher than the transformation point is easy to work, can be efficiently forged to a target size, and can make crystal grains finer. Because. Further, the reason why the forging end temperature is set to the transformation point or lower is to prevent the crystal grains of the slab from being affected by the β phase and having a needle-like structure which is not preferable as a material for hot rolling. The effects of the present invention will be described below with reference to examples. JIS-H-4 melted twice by vacuum melting
Press forging was performed under the conditions shown in Table 1 using a 6-ton ingot having a diameter of 760 mm corresponding to one of the 600 types. That is, the forging temperature below the transformation point is 75
There were three types, 0 ° C. and 850 ° C., and the processing rates at each temperature were 10%, 30% and 50%. The heating temperature above the transformation point is 950 ° C.
The forging was started at the transformation point or higher, and the work was performed while adjusting the temperature at the end of the forging to be equal to or lower than the transformation point. As the temperature after the end of the forging, the temperature of the slab was actually measured. As a comparative example, conditions for forging at a temperature above the transformation point without forging at a temperature below the transformation point are as follows:
Forging at a temperature below the transformation point, heating to a temperature above the transformation point,
Forging was performed under the condition that the forging end temperature was equal to or higher than the transformation point. The processing rates at temperatures above the transformation point were all about 70%. In addition, all ingots are fed 150mm
And [Table 1] An air atmosphere heating furnace was used for heating the ingot, and a 2500-t free forging machine having a 400 mm square cross section was used for forging. After the forging, a sample for microstructure observation was cut out from the slab, and the area of crystal grains was determined. Samples were taken from the surface layer and the center of the slab in the slab thickness direction in order to check the uniformity of the crystal grains of the slab. The microstructure was observed in a vertical section of the slab, and the average area of the crystal grains at that time was determined. The results are shown in Table 1. As is clear from Table 1, the crystal grains of the slab forged at a temperature lower than the transformation point are finer than those of the slab not subjected to the transformation. In addition, the slab which has not been processed below the transformation point has a large difference in the area of the crystal grains between the surface and the center, but the slab forged at a temperature below the transformation point has a uniform crystal grain size. . In Comparative Examples Nos. 4, 8, and 11, the forging end temperature was 900 ° C., so that an undesired needle-like structure remained in the hot rolling in the subsequent step. According to the slab manufacturing method of the present invention, a slab in which crystal grains are finely and uniformly distributed can be obtained.
By subjecting it to subsequent hot rolling, a flawless titanium hot rolled sheet is obtained.

【図面の簡単な説明】 【図1】デッドメタルを説明するための断面図である。 【図2】本発明の製造方法におけるチタン鋳塊のヒート
パターンを示す図である。 【図3】送り量を説明するための図である。 【図4】加工率と結晶粒面積の関係を示す図である。 【図5】鋳塊の送り量と結晶粒の平均面積の関係を示す
図である。 【符号の説明】 1 チタン鋳塊 2 鍛伸材 3 上金型 1S チタン鋳塊表面
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view for explaining dead metal. FIG. 2 is a view showing a heat pattern of a titanium ingot in the production method of the present invention. FIG. 3 is a diagram for explaining a feed amount. FIG. 4 is a diagram showing a relationship between a processing rate and a crystal grain area. FIG. 5 is a diagram showing a relationship between a feed amount of an ingot and an average area of crystal grains. [Description of Signs] 1 Titanium ingot 2 Forged material 3 Upper mold 1S Titanium ingot surface

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−232061(JP,A) 特開 平8−81747(JP,A) 特開 昭59−104233(JP,A) 特開 昭53−1617(JP,A) 特開 平2−213453(JP,A) 特開 昭64−28347(JP,A) 特開 昭62−286639(JP,A) 特開 平1−156456(JP,A) 特公 平4−46643(JP,B2) (58)調査した分野(Int.Cl.7,DB名) B21J 1/04 B21J 5/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-8-2322061 (JP, A) JP-A-8-81747 (JP, A) JP-A-59-104233 (JP, A) JP-A-53-1983 1617 (JP, A) JP-A-2-213453 (JP, A) JP-A-64-28347 (JP, A) JP-A-62-286639 (JP, A) JP-A-1-156456 (JP, A) JP-B4-46643 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) B21J 1/04 B21J 5/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】チタン鋳塊をプレスで鍛造してスラブを製
造する方法であって、変態点以下の温度で、鋳塊移送方
向における金型と鋳塊表面との接触長さを300mm以
下にして鍛造し、次いで変態点以上に加熱して変態点以
上の温度で鍛造を開始し、変態点以下の温度で鍛造を終
了することを特徴とするチタンスラブの製造方法。
(1) A method for producing a slab by forging a titanium ingot by a press, wherein the surface of the mold and the surface of the ingot in the ingot transfer direction are formed at a temperature not higher than a transformation point. Forging with a contact length of 300 mm or less, and then heating above the transformation point, starting forging at a temperature above the transformation point, and terminating forging at a temperature below the transformation point. Production method.
JP23268397A 1997-08-28 1997-08-28 Manufacturing method of titanium slab Expired - Fee Related JP3367392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23268397A JP3367392B2 (en) 1997-08-28 1997-08-28 Manufacturing method of titanium slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23268397A JP3367392B2 (en) 1997-08-28 1997-08-28 Manufacturing method of titanium slab

Publications (2)

Publication Number Publication Date
JPH1177212A JPH1177212A (en) 1999-03-23
JP3367392B2 true JP3367392B2 (en) 2003-01-14

Family

ID=16943164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23268397A Expired - Fee Related JP3367392B2 (en) 1997-08-28 1997-08-28 Manufacturing method of titanium slab

Country Status (1)

Country Link
JP (1) JP3367392B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004215924A (en) * 2003-01-15 2004-08-05 Sumitomo Rubber Ind Ltd Golf club head and method of manufacturing thereof
FR2936172B1 (en) * 2008-09-22 2012-07-06 Snecma PROCESS FOR FORGING A THERMOMECHANICAL PIECE OF TITANIUM ALLOY

Also Published As

Publication number Publication date
JPH1177212A (en) 1999-03-23

Similar Documents

Publication Publication Date Title
JP5114812B2 (en) Method for producing deformed metal member
US6746553B2 (en) Process for producing sputtering target materials
JP2008163361A (en) Method for producing magnesium alloy thin sheet having uniformly fine crystal grain
JP4991280B2 (en) Magnesium alloy sheet manufacturing method
JP2006144059A (en) Magnesium alloy sheet superior in press formability, and manufacturing method therefor
JP4991281B2 (en) Magnesium alloy sheet manufacturing method
JPH11269621A (en) Method for working high-purity titanium material
US5108517A (en) Process for preparing titanium and titanium alloy materials having a fine equiaxed microstructure
JP3367392B2 (en) Manufacturing method of titanium slab
JP4429877B2 (en) Method for producing magnesium alloy sheet having fine crystal grains
JP2006144044A (en) Magnesium alloy sheet having superior deep-drawability, and manufacturing method therefor
JP2007521140A (en) High integrity sputtering target material and method for producing it in large quantities
CN115261668B (en) Brass alloy strip and preparation method thereof
JP2002266057A (en) Method for producing magnesium alloy sheet having excellent press formability
JP2884913B2 (en) Manufacturing method of α + β type titanium alloy sheet for superplastic working
CN111318570B (en) Process for manufacturing micronized target material crystal grains
JPS6053727B2 (en) Method for manufacturing austenitic stainless steel sheets and steel strips
JP3488076B2 (en) Method for producing titanium for Cu foil production drum and titanium slab used for the production
JPH0696759B2 (en) Method for producing α + β type titanium alloy rolled rod and wire having good structure
TWI744780B (en) Processed titanium material and its manufacturing method
JPS634908B2 (en)
WO2021149155A1 (en) Method for producing processed titanium material
TWI732435B (en) Manufacturing method of processed titanium material
JP3711196B2 (en) Method for producing titanium for sputtering target and titanium slab used for the production
JPS59215450A (en) Hot worked plate of ti-base material and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071108

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131108

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131108

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131108

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees