JPS634908B2 - - Google Patents

Info

Publication number
JPS634908B2
JPS634908B2 JP16556884A JP16556884A JPS634908B2 JP S634908 B2 JPS634908 B2 JP S634908B2 JP 16556884 A JP16556884 A JP 16556884A JP 16556884 A JP16556884 A JP 16556884A JP S634908 B2 JPS634908 B2 JP S634908B2
Authority
JP
Japan
Prior art keywords
titanium alloy
rolling
transformation point
phase
blooming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16556884A
Other languages
Japanese (ja)
Other versions
JPS6144167A (en
Inventor
Hideo Sakuyama
Ichiro Sawamura
Michio Hanaki
Chiaki Oochi
Hiroyoshi Suenaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nippon Kokan Ltd filed Critical Nippon Mining Co Ltd
Priority to JP16556884A priority Critical patent/JPS6144167A/en
Publication of JPS6144167A publication Critical patent/JPS6144167A/en
Publication of JPS634908B2 publication Critical patent/JPS634908B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は均質かつ等軸α晶組織を有し、機械的
特性の優れたチタン合金の製造方法に関する。 一般にチタン合金鋳塊の製造後、熱間圧延用の
スラブに形状を整え、かつ鋳造組織を破壊するた
めに熱間鍛造又は分塊圧延によるインゴツトブレ
ークダウンが行なわれる。前記チタン合金の鋳造
組織を破壊し、また変形抵抗を小さくするために
通常β変態点以上に加熱し、このβ変態点以上の
領域で鍛造又は分塊圧延の大半が行なわれる。そ
して加工の終了後又は加工の途中においてβ域か
らβ変態点を通過してα+β域に空冷(徐冷)さ
れる。 メタルスエンジニアリングインステイテユート
(1969)に記載されたチタン合金鍛造温度は第1
表に示す通りである。この第1表には鍛造温度の
みが示されているが分塊圧延の場合の温度も同様
である。 前記の鍛造又は分塊圧延後の冷却の段階では、
旧β粒界にそつてネツトワーク状の粗大粒界α相
が析出し、また旧β粒内にはα+βlamellar組織
が粗大化する(なおα+βlamellar相は板状のα
相とβ相が層状にならんだ組織である。)。 この工程で製造された熱間圧延用スラブは、次
にα+β域で熱間圧延、その後の熱処理が行なわ
れるが、この熱間圧延、及びその後の熱処理は微
細かつ均質な等軸α晶組織として機械的特性の向
上を図ることを目的としている。例えば、特開昭
58−25423においては表面温度を980℃〜700℃に
制御しつつ70%以上の加工度をとりその後再結晶
させることが記載されている。 一般にはα+β域での加工度を大きくすればす
るほど等軸晶組織とならないα相は減少していく
傾向にはあるが、この加工度にも製造段階におけ
る制限があり、またいくら加工度を増大させても
等軸晶とならない組織が残存し機械的特性に悪影
響を与えている。 本発明者はこの点を鋭意研究の結果、熱間圧延
及びその後の熱処理の後も等軸晶とならないα相
は、鋳壊の熱間鍛造又は分塊圧延工程で生ずる旧
β粒界に析出したネツトワーク状の粗大粒界α相
や旧β粒内におけるα+βlamellar相の粗大化に
起因することを知つた。 そこでα+β型チタン合金鋳塊の熱間鍛造又は
分塊圧延の工程後、該工程で発生した粗大粒界α
相及び粗大lamellar相を消失させるために、前記
熱間鍛造又は分塊圧延によつて得られたスラブを
β変態点以上β変態点+150℃以下の範囲に加熱
した後、50℃/min以上の冷却速度で急冷し、そ
の後α+β域で断面減少率50%以上の熱間圧延を
行なうことを特徴とするチタン合金板の製造方法
を開発した。 このようにして得られた熱間圧延板は製品用途
に応じて、焼鈍、溶体化時効処理等の熱処理が行
なわれる。 前記α+β型チタン合金鋳塊の熱間鍛造又は分
塊圧延はβ変態点以上のβ域で行なわれるが、こ
の鍛造又は圧延の途中においてα+β域に材料の
温度が低下する場合もある。しかし、この工程に
おいて鍛造組織を完全に破壊するという品質面及
び変形抵抗の小さいβ域での加工度を大きくとつ
て製造コストを減少させるという面からみてβ変
態点以上での鍛造又は分塊圧延を行なうことが好
ましい。 この工程によつて、スラブが形成され空冷され
るが、スラブは、旧β粒界にネツトワーク状に粗
大粒界α相が析出し、また旧β粒内には粗大α+
βlamellar相が発達した組織となる。しかし、こ
のスラブをβ変態点以上β変態点+150℃以下の
範囲に加熱した後、50℃/min以上の冷却速度で
急冷することにより前記ネツトワーク状の粗大粒
界α相や粗大α+βlamellar相を消失させα′(マル
テンサイト)あるいは微細なα+βlamellar相組
織とすることができる。 さらにその後該スラブをα+β域で断面減少率
50%以上の熱間圧延を行なうことにより、加工歪
をたくわえて、これをドライビングフオースとし
て再結晶させ均質かつ微細な等軸α晶組織を得る
ことができる。これによつて機械的特性に優れた
チタン合金板を容易に製造することに成功した。 前記スラブの加熱温度はネツトワーク状の粗大
粒界α相や粗大α+βlamellar相を消失させるた
めにα変態点以上の加熱が必要であるが、高すぎ
ると表面の酸化が激しくなり、またβ粒の粗大化
が著しくなるので上限はβ変態点+150℃とする
必要がある。再結晶のためのドライビングフオー
スとなる加工歪をたくわえるためにα+β域で断
面減少率50%以上の熱間圧延を必要とする。この
時の温度はα+β域であれば特に規制はないが、
β変態点直下では、加工熱により材料温度がβ変
態点以上になる可能性があり、また、温度が低す
ぎると加工による割れが発生するためβ変態点以
下50℃〜β変態点以下200℃までの範囲の温度が
好ましい。 このα+β域での熱間圧延工程を経た板はその
後、焼鈍や溶体化時効処理等によつて均質かつ等
軸α晶組織が得られる。 次に実施例について説明する。 実施例 代表的なα+β型チタン合金であるTi−6Al−
4V合金における本発明の実施例及び従来工程等
の比較結果を第2表に示す。試験材のβ変態点は
1000℃であつた。スラブは直径550mmのインゴツ
トを用いて分塊圧延により製造した。第2表の引
張り特性については板厚中心部より平行部8.75mm
φ、GL35mmの試験片を最終圧延方向にサンプリ
ングして測定した。圧延後の熱処理(STA処理)
は12.5mm(厚)×100mm(巾)×125mm(長さ)の板
で行なつた。非等軸α晶の発生率は任意の70ケ所
のミクロ組織写真を撮影し、その中で明らかに等
軸となつていないα晶が観察された写真の割合で
示した。ミクロ組織観察面は最終圧延方向平行断
面(L−Z面)とし、また一枚の写真の視野は
180×120μmとした。 第2表から明らかなように、本発明方法による
工程No.1〜3については比較工程No.4〜7に比
べ非等軸α晶の発生率が大巾に低下し、引張り強
さ、耐力、伸び、絞り等の強度、延性が格段に優
れていることが分る。 比較工程No.6は加工度が30%であり他は本発
明の方法を満足していても充分な特性が得られて
いないのが分る。なお、この第2表でα+β域圧
延でクロス圧延を行つているが、一方向圧延でも
同様の結果が得られた。 以上本発明方法は均質かつ等軸の組織の機械的
特性に優れたチタン合金板を得ることができる優
れた方法である。
The present invention relates to a method for producing a titanium alloy having a homogeneous and equiaxed α crystal structure and excellent mechanical properties. Generally, after producing a titanium alloy ingot, the ingot is broken down by hot forging or blooming in order to shape it into a slab for hot rolling and to destroy the cast structure. In order to destroy the cast structure of the titanium alloy and to reduce the deformation resistance, it is usually heated above the β transformation point, and most of the forging or blooming is performed in the region above the β transformation point. Then, after finishing the processing or during the processing, the material is air-cooled (slowly cooled) from the β region through the β transformation point to the α+β region. The titanium alloy forging temperature listed in the Metals Engineering Institute (1969) is the first.
As shown in the table. Although only the forging temperatures are shown in Table 1, the temperatures for blooming are also the same. In the cooling stage after forging or blooming,
A network-like coarse grain boundary α phase precipitates along the prior β grain boundaries, and an α+β lamellar structure becomes coarse within the prior β grains (the α+β lamellar phase is a plate-like α
It has a structure in which phase and β phase are arranged in layers. ). The hot rolling slab produced in this process is then hot rolled in the α+β region and then heat treated, but this hot rolling and subsequent heat treatment produces a fine and homogeneous equiaxed α crystal structure. The purpose is to improve mechanical properties. For example, Tokukai Akira
No. 58-25423 describes that the surface temperature is controlled at 980° C. to 700° C., the degree of processing is 70% or more, and then recrystallization is performed. In general, as the degree of working in the α+β region increases, the α phase that does not form an equiaxed crystal structure tends to decrease. However, this degree of working is also limited at the manufacturing stage, and no matter how Even if it is increased, a structure that does not become an equiaxed crystal remains and has a negative effect on mechanical properties. As a result of intensive research on this point, the present inventor found that the α phase, which does not become equiaxed even after hot rolling and subsequent heat treatment, precipitates at the prior β grain boundaries that occur during the hot forging or blooming process of casting. We found that this is due to the coarsening of the network-like coarse grain boundary α phase and the coarsening of the α+β lamellar phase within the prior β grains. Therefore, after the process of hot forging or blooming rolling of an α+β type titanium alloy ingot, the coarse grain boundary α generated in this process is
In order to eliminate the phase and the coarse lamellar phase, the slab obtained by the hot forging or blooming rolling is heated to a temperature above the β transformation point and below the β transformation point + 150°C, and then heated at a rate of 50°C/min or more. We have developed a method for producing titanium alloy sheets, which is characterized by rapid cooling at a cooling rate and then hot rolling in the α+β region with a cross-section reduction rate of 50% or more. The hot-rolled plate thus obtained is subjected to heat treatments such as annealing and solution aging treatment depending on the intended use of the product. Hot forging or blooming of the α+β type titanium alloy ingot is carried out in the β region above the β transformation point, but the temperature of the material may drop to the α+β region during this forging or rolling. However, from the viewpoint of quality, which involves completely destroying the forged structure in this process, and from the viewpoint of reducing manufacturing costs by increasing the degree of processing in the β region where deformation resistance is low, forging or blooming at a temperature higher than the β transformation point is preferred. It is preferable to do this. Through this process, a slab is formed and air cooled, but in the slab, coarse grain boundary α phase precipitates in a network shape at the prior β grain boundaries, and coarse α+ phase precipitates within the prior β grains.
The structure has a developed βlamellar phase. However, by heating this slab to a temperature above the β transformation point and below the β transformation point + 150°C, and then rapidly cooling it at a cooling rate of 50°C/min or more, the network-like coarse grain boundary α phase and coarse α+β lamellar phase are removed. It can be made to disappear into α' (martensite) or a fine α+β lamellar phase structure. Furthermore, after that, the cross-sectional reduction rate of the slab in the α + β region
By performing hot rolling of 50% or more, it is possible to accumulate processing strain and recrystallize it as a driving force to obtain a homogeneous and fine equiaxed α-crystal structure. As a result, we succeeded in easily manufacturing titanium alloy plates with excellent mechanical properties. The heating temperature of the slab needs to be higher than the α transformation point in order to eliminate the network-like coarse grain boundary α phase and the coarse α+β lamellar phase, but if it is too high, the surface oxidation will be severe and the β grains will be Since coarsening becomes significant, the upper limit needs to be set to β transformation point + 150°C. Hot rolling with a reduction in area of 50% or more is required in the α+β region in order to store the processing strain that becomes the driving force for recrystallization. There are no particular regulations regarding the temperature at this time as long as it is in the α+β range, but
Just below the β-transformation point, the material temperature may rise above the β-transformation point due to processing heat, and if the temperature is too low, cracks will occur due to processing. Temperatures in the range up to are preferred. The plate that has undergone the hot rolling process in the α+β region is then subjected to annealing, solution aging treatment, etc. to obtain a homogeneous and equiaxed α crystal structure. Next, an example will be described. Example Ti-6Al-, a typical α+β type titanium alloy
Table 2 shows the comparison results between the example of the present invention and the conventional process for 4V alloy. The β transformation point of the test material is
It was 1000℃. The slab was produced by blooming using an ingot with a diameter of 550 mm. Regarding the tensile properties in Table 2, the parallel part is 8.75mm from the center of the plate thickness.
A test piece with a diameter of 35 mm and a diameter of GL of 35 mm was sampled in the final rolling direction and measured. Heat treatment after rolling (STA treatment)
The test was carried out on a board measuring 12.5 mm (thickness) x 100 mm (width) x 125 mm (length). The incidence of non-equiaxed α-crystals was expressed as the percentage of microstructure photographs taken at 70 arbitrary locations in which α-crystals that were clearly not equiaxed were observed. The microstructure observation surface is a cross section parallel to the final rolling direction (L-Z plane), and the field of view of one photograph is
The size was 180×120 μm. As is clear from Table 2, in processes No. 1 to 3 according to the method of the present invention, the generation rate of anisometric α crystals is greatly reduced compared to comparative processes No. 4 to 7, and the tensile strength and yield strength are It can be seen that the strength and ductility of elongation, drawing strength, etc. are significantly superior. Comparison process No. 6 has a processing degree of 30%, and although the other conditions satisfy the method of the present invention, it can be seen that sufficient characteristics are not obtained. Note that although cross rolling was performed in the α+β region rolling in Table 2, similar results were obtained with unidirectional rolling. As described above, the method of the present invention is an excellent method for obtaining a titanium alloy plate having a homogeneous and equiaxed structure and excellent mechanical properties.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 α+β型チタン合金鋳塊の熱間鍛造又は分塊
圧延の工程後、該工程で発生した粗大粒界α相及
び粗大α+βlamellar相を消失させるために、前
記熱間鍛造又は分塊圧延によつて得られたスラブ
をβ変態点以上β変態点+150℃以下の範囲に加
熱した後、50℃/min以上の冷却速度で急冷し、
その後α+β域で断面減少率50%以上の熱間圧延
を行なうことを特徴とするチタン合金板の製造方
法。 2 製品用途に応じて焼鈍、溶体化時効処理等の
熱処理を行なうことを特徴とする特許請求の範囲
第1項記載のチタン合金板の製造方法。
[Scope of Claims] 1 After the process of hot forging or blooming rolling of an α+β type titanium alloy ingot, in order to eliminate the coarse grain boundary α phase and the coarse α+β lamellar phase generated in the process, the hot forging or After heating the slab obtained by blooming rolling to a range of not less than the β transformation point and not more than the β transformation point + 150°C, rapidly cooling it at a cooling rate of 50°C/min or more,
A method for producing a titanium alloy sheet, which comprises then hot rolling in the α+β region with a reduction in area of 50% or more. 2. The method for manufacturing a titanium alloy plate according to claim 1, which comprises performing heat treatment such as annealing and solution aging treatment depending on the product use.
JP16556884A 1984-08-09 1984-08-09 Production of titanium alloy plate Granted JPS6144167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16556884A JPS6144167A (en) 1984-08-09 1984-08-09 Production of titanium alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16556884A JPS6144167A (en) 1984-08-09 1984-08-09 Production of titanium alloy plate

Publications (2)

Publication Number Publication Date
JPS6144167A JPS6144167A (en) 1986-03-03
JPS634908B2 true JPS634908B2 (en) 1988-02-01

Family

ID=15814831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16556884A Granted JPS6144167A (en) 1984-08-09 1984-08-09 Production of titanium alloy plate

Country Status (1)

Country Link
JP (1) JPS6144167A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160030333A (en) 2011-02-24 2016-03-16 신닛테츠스미킨 카부시키카이샤 HIGH-STRENGTH α+β TYPE HOT-ROLLED TITANIUM ALLOY WITH EXCELLENT COIL HANDLING PROPERTIES WHEN COLD, AND PRODUCTION METHOD THEREFOR
CN103392019B (en) 2011-02-24 2015-07-08 新日铁住金株式会社 Alfa and Beta type titanium alloy sheet with excellent cold rolling properties and cold handling properties, and production method therefor
CN102581188B (en) * 2012-02-29 2014-07-30 湖南金天钛业科技有限公司 Method for machining TC4-DT titanium alloy large-specification slab forged piece
JP6372373B2 (en) * 2015-01-27 2018-08-15 新日鐵住金株式会社 Production method of titanium material mainly containing α phase and titanium hot rolling material
CN110508732B (en) * 2019-08-29 2021-11-19 陕西天成航空材料有限公司 Forging forming method for eliminating crescent marks at end of TC4 titanium alloy slab

Also Published As

Publication number Publication date
JPS6144167A (en) 1986-03-03

Similar Documents

Publication Publication Date Title
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
JP2008163361A (en) Method for producing magnesium alloy thin sheet having uniformly fine crystal grain
EP0761837A1 (en) Method of producing aluminum alloys having superplastic properties
JPH0730404B2 (en) New production method of austenitic stainless steel sheet with excellent surface characteristics and materials
JPS634908B2 (en)
US4528042A (en) Method for producing superplastic aluminum alloys
US4486242A (en) Method for producing superplastic aluminum alloys
JPS634907B2 (en)
JPS5953347B2 (en) Manufacturing method of aircraft stringer material
JPS6053727B2 (en) Method for manufacturing austenitic stainless steel sheets and steel strips
KR20030055286A (en) Method for producing a cold rolled strip that is cold formed with low degrees of deformation
JP6623950B2 (en) Titanium plate excellent in balance between proof stress and ductility and method for producing the same
JPH0672295B2 (en) Method for producing aluminum alloy material having fine crystal grains
RU2635650C1 (en) Method of thermomechanical processing of high-alloyed pseudo- (titanium alloys alloyed by rare and rare-earth metals
JPH0663076B2 (en) Method for producing titanium alloy material having equiaxed fine grain (α + β) two-phase structure
JPS61110756A (en) Rolling method of titanium alloy plate
JPH0588302B2 (en)
JPS5941508B2 (en) Manufacturing method of titanium hot rolled sheet
JPS63270448A (en) Production of alpha type and alpha type titanium alloy plate
JP2626922B2 (en) Method for producing aluminum plate with uniform mechanical properties and ear ratio in plate width direction
JP2705411B2 (en) Manufacturing method of high toughness ferritic stainless steel strip
JPS6320907B2 (en)
JPS62284048A (en) Production of hot rolled alpha+beta type titanium alloy sheet having decreased anisotropy
JPS62127455A (en) Manufacture of heat treatment-type aluminum-alloy rolled sheet
JPS63230857A (en) Manufacture of titanium-alloy sheet for superplastic working