JP4991280B2 - Magnesium alloy sheet manufacturing method - Google Patents
Magnesium alloy sheet manufacturing method Download PDFInfo
- Publication number
- JP4991280B2 JP4991280B2 JP2006354813A JP2006354813A JP4991280B2 JP 4991280 B2 JP4991280 B2 JP 4991280B2 JP 2006354813 A JP2006354813 A JP 2006354813A JP 2006354813 A JP2006354813 A JP 2006354813A JP 4991280 B2 JP4991280 B2 JP 4991280B2
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- magnesium alloy
- warm
- peripheral speed
- roll
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Metal Rolling (AREA)
Description
本発明は、双ロール法の温間異周速圧延工程により得られる均一微細な結晶粒組織を有するマグネシウム合金薄板の製造方法に関するものである。 The present invention relates to a method for producing a magnesium alloy thin plate having a uniform fine crystal grain structure obtained by a warm different peripheral speed rolling process of a twin roll method.
マグネシウム合金の機械的性質は結晶粒度に強く依存し、結晶粒が微細になるほど強度および伸びが向上し、また超塑性が現れやすくなるなどのように、いろいろな優れた特性があることがよく知られている。従来、微細な結晶粒組織を有するマグネシウム合金板を製造する方法としては、加工熱処理法がよく用いられている。この方法は、熱間加工時の動的再結晶現象、あるいは温間加工の中間および/または後での熱処理時の溶質元素の固溶、析出現象や回復と再結晶現象を制御して、さらに多くの場合、前記の各現象を総合的に制御して結晶粒の微細化を図るものである。また、最近ではECAP(Equal channel angular pressing)などの強ひずみ加工法も開発されている。 It is well known that the mechanical properties of magnesium alloys are strongly dependent on the crystal grain size, and that they have various excellent properties, such as the finer the crystal grains, the higher the strength and elongation, and the easier superplasticity appears. It has been. Conventionally, as a method for producing a magnesium alloy plate having a fine crystal grain structure, a thermomechanical processing method is often used. This method controls the dynamic recrystallization phenomenon during hot working, or the solid solution, precipitation phenomenon, recovery and recrystallization phenomenon of solute elements during the heat treatment during and / or after warm working. In many cases, the above-mentioned phenomena are comprehensively controlled to refine crystal grains. Recently, a high strain processing method such as ECAP (Equal channel angular pressing) has been developed.
しかしながら、マグネシウム合金の結晶構造は稠密六法晶であることから、常温で塑性変形しにくく、また冷間加工性が悪いため、従来の厚いスラブからの製造方法においては、加熱と熱間または温間での圧延が繰り返されることから、加工熱処理法を適用したとしても得られるマグネシウム合金板の結晶粒のサイズは10μm程度が限界であった。また、ECAPなどの強ひずみ加工法は未だ実験室レベルの技術であり、マグネシウム合金板の量産技術として適用できるものではない。 However, since the crystal structure of the magnesium alloy is a dense hexagonal crystal, it is difficult to be plastically deformed at room temperature, and cold workability is poor. Therefore, in the conventional manufacturing method from a thick slab, heating and hot or warm Since the rolling at is repeated, the size of the crystal grain of the magnesium alloy plate obtained even when the heat treatment method is applied is limited to about 10 μm. In addition, a strong strain processing method such as ECAP is still a laboratory level technique and cannot be applied as a mass production technique for magnesium alloy sheets.
さらに、上述した従来の方法では、所定の厚さのマグネシウム合金板を製造するための加熱と圧延が繰り返されることから、非常に多くの時間と労力を必要とし、生産性向上の障害にもなっており、マグネシウム合金板の製造コストにも反映していた。 Furthermore, in the conventional method described above, since heating and rolling for producing a magnesium alloy sheet having a predetermined thickness are repeated, a great amount of time and labor are required, which hinders improvement in productivity. This was also reflected in the manufacturing cost of the magnesium alloy sheet.
上記事情を鑑みて、特許文献1では、マグネシウム合金板製造工程において、双ロール法に温間異周速圧延工程を導入することによって、平均粒径5μm以下の微細な結晶粒組織が得られる技術について開示されている。
In view of the above circumstances, in
しかしながら、前記工程を導入するのみでは、温間異周速圧延工程の設定要件の変化に伴い、平均粒径が5μm以下とならない場合や、平均粒径が5μm以下の微細な結晶粒組織が得られたとしても、部分的に限られる場合などがあった。また、結晶粒が微細になるほど強度および伸びが向上し、また超塑性が現れやすくなるマグネシウム合金の機械的性質から、平均粒径を4μm以下にするニーズも高まってきていた。
本発明は、上記事情を鑑みてなされたもので、材料および製造コストが安く、速やかにかつ安定的に、平均粒径が4μm以下の均一微細な結晶粒組織を有するマグネシウム合金薄板を製造する方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a method for producing a magnesium alloy thin plate having a uniform and fine crystal grain structure with an average grain size of 4 μm or less, quickly and stably, with low material and production costs. The purpose is to provide.
上記の目的を達成するために、本発明は以下の構成を採用した。すなわち、本発明のマグネシウム合金薄板の製造方法は、質量%で、Al:1.0〜11%、Zn:2.0%以下、Mn:0.1〜0.5%、残部がMgおよび不可避不純物を含有するマグネシウム合金溶湯を、連続鋳造圧延を行い、帯状板とした後、均質化処理、熱間圧延、中間焼鈍をこの順序で行うか、もしくは熱間圧延、均質化処理をこの順序で行った後、温間圧延を行うマグネシウム合金薄板の製造方法において、前記温間圧延の一部または全部において、材料加熱温度を200℃〜280℃の範囲とし、圧延ロール表面温度を180〜280℃の範囲とし、上下ロールの回転周速比1.1〜1.7の条件で圧下率15%以上とする温間異周速圧延を行うことを特徴とする。
In order to achieve the above object, the present invention employs the following configuration. That is, the magnesium alloy thin plate manufacturing method of the present invention is in mass%, Al: 1.0 to 11%, Zn: 2.0% or less, Mn: 0.1 to 0.5%, the balance being Mg and inevitable. The molten magnesium alloy containing impurities is continuously cast and rolled to form a strip, and then homogenization, hot rolling and intermediate annealing are performed in this order, or hot rolling and homogenization are performed in this order. In the manufacturing method of the magnesium alloy thin plate which performs warm rolling after performing, in part or all of the said warm rolling, material heating temperature shall be the range of 200 to 280 degreeC, and roll roll surface temperature will be 180 to 280 degreeC. It is characterized by carrying out warm different peripheral speed rolling with a rolling reduction of 15% or more under the condition of a rotational peripheral speed ratio of 1.1 to 1.7 of the upper and lower rolls.
上記の構成によれば、平均粒径4μm以下の均一微細な結晶粒組織を有するマグネシウム合金薄板を、材料および製造コストが安く、速やかにかつ安定的に製造することができる。さらに、強度、延性、超塑性などが要求される用途に好適なマグネシウム合金薄板を得ることができる。また、本発明によって製造されたマグネシウム合金薄板は、微細な結晶粒を有するため、成形性に優れる。 According to said structure, the magnesium alloy thin plate which has a uniform fine crystal grain structure | tissue whose average particle diameter is 4 micrometers or less can be manufactured quickly and stably with a low material and manufacturing cost. Furthermore, a magnesium alloy sheet suitable for applications requiring strength, ductility, superplasticity and the like can be obtained. Moreover, since the magnesium alloy thin plate manufactured by this invention has a fine crystal grain, it is excellent in a moldability.
以下、本発明のマグネシウム合金薄板の製造方法について説明する。
図1は、本発明のマグネシウム合金薄板の製造方法の実施形態の一例を示したものである。まず、マグネシウム合金溶湯を、双ロール法により連続鋳造圧延S1を行い、帯状とした鋳造板を製造する。鋳造板の板厚は2〜10mmが挙げられる。
Hereinafter, the manufacturing method of the magnesium alloy thin plate of this invention is demonstrated.
FIG. 1 shows an example of an embodiment of a method for producing a magnesium alloy sheet according to the present invention. First, a molten magnesium alloy, the continuous casting and rolling S 1 by a twin roll method, to produce a cast strip having a strip. The plate thickness of the cast plate is 2 to 10 mm.
前記連続鋳造圧延S1は、マグネシウム合金溶湯を、連続的に薄い帯状板に鋳造圧延する工程である。この連続鋳造圧延S1により、マグネシウム合金薄板の製造は極めて効率的となる。 The continuous casting and rolling S 1 is the molten magnesium alloy, a step of casting and rolling to continuously thin strip-shaped plate. The continuous casting and rolling S 1, the production of magnesium alloy sheet is extremely efficient.
連続鋳造圧延方法として、双ロール法が好適なものとして挙げられる。双ロール法は、溶解炉で得られるマグネシウム合金溶湯をタンディッシュに供給し、タンディッシュから供給されるマグネシウム合金溶湯を、水冷された双ロールの間に供給し、圧延する方法である。しかしながら、前記連続鋳造圧延方法として、前記双ロール法に限定されるものではない。 As a continuous casting and rolling method, a twin roll method is preferable. The twin roll method is a method in which molten magnesium alloy obtained in a melting furnace is supplied to a tundish, and the molten magnesium alloy supplied from the tundish is supplied between water-cooled twin rolls and rolled. However, the continuous casting and rolling method is not limited to the twin roll method.
図2(a)は、双ロール装置の圧延部の概略図である。双ロール装置の圧延部は、双ロール部1と吹き込みノズル10から構成される。双ロール部1は、上ロール2と下ロール3および、2つの離型剤スプレー4およびロール表面温度センサー5から構成される。吹き込みノズル10から水冷された双ロールの間にマグネシウム合金溶湯が供給され、鋳造板が製造される。ロール表面温度は、ロール表面温度センサー5によって測定する。圧延後、離型剤スプレー4で、上ロール2と下ロール3の表面を洗浄処理する。
Fig.2 (a) is the schematic of the rolling part of a twin roll apparatus. The rolling unit of the twin roll device is composed of a
図2(b)は、前記概略図における吹き込みノズル10の拡大模式図である。吹き込みノズル10は、チップ部11とトラフ部12とから構成される。トラフ部12の上部の空間は、ガス管15から流入されるSF6+N2などのような不活性ガスで満たされている。レーザー式湯面レベルセンサー16から、耐熱ガラス17を通して、レーザーを湯面に照射し、湯面での反射光を再びレーザー式湯面レベルセンサー16で測定して、湯面の高さを計測する。計測結果に基づき、移湯パイプ14を通して、マグネシウム合金溶湯が補充される。マグネシウム合金溶湯13の温度は、2つの熱電対18で測定される。双ロールへのマグネシウム合金溶湯の供給は、チップ部11から行われる。
FIG. 2B is an enlarged schematic diagram of the blowing
前記マグネシウム合金溶湯は、Al、ZnおよびMnを含有し、残部がMgおよび不可避不純物からなるマグネシウム合金を用いる。 As the magnesium alloy molten metal, a magnesium alloy containing Al, Zn, and Mn and the balance of Mg and inevitable impurities is used.
前記Alは、1.0〜11%の範囲内で添加されていることが好ましく、2.0〜4.0%の範囲内で添加されていることがより好ましい。前記Alは、鋳造性、強度等の機械的性質および耐食性の向上を目的として積極的に添加されるものであるが、前記Alの添加量が11%を超えると、圧延工程における加工性が低下する。また、前記Alの添加量が1.0%未満では、十分な鋳造性、強度および耐食性が得られない。 The Al is preferably added in the range of 1.0 to 11%, and more preferably in the range of 2.0 to 4.0%. The Al is actively added for the purpose of improving mechanical properties such as castability and strength, and corrosion resistance. However, if the amount of Al exceeds 11%, the workability in the rolling process decreases. To do. Further, when the addition amount of Al is less than 1.0%, sufficient castability, strength and corrosion resistance cannot be obtained.
前記Znは、2.0%以下の範囲内で添加されていても良い。前記Znは、Alと同様に、鋳造性と強度等の機械的性質の向上に寄与するものであるが、前記Znの添加量が2.0%を超えると、鋳造性が低下する。 Zn may be added within a range of 2.0% or less. Zn, like Al, contributes to improvement of mechanical properties such as castability and strength. However, if the amount of Zn exceeds 2.0%, castability deteriorates.
前記Mnは、0.1〜0.5%の範囲内で添加されていることが好ましい。前記Mnは、耐食性を低下させる元素の影響を緩和する効果を有するものである。すなわち、前記Mnを添加することによって、耐食性を低下させる不純物元素であるFeの影響を緩和することができ、上記の範囲内で添加することによって、その効果を最も発揮することができるが、0.5%を超えると連続鋳造圧延時に粗大な金属間化合物が生成し、圧延性が悪化する。 The Mn is preferably added within a range of 0.1 to 0.5%. The Mn has an effect of alleviating the influence of elements that lower the corrosion resistance. That is, by adding Mn, the influence of Fe, which is an impurity element that lowers corrosion resistance, can be mitigated, and by adding it within the above range, the effect can be most exerted. If it exceeds 5%, a coarse intermetallic compound is produced during continuous casting and rolling, and the rollability deteriorates.
次に、図1に示すように、均質化処理S2、熱間圧延S3、中間焼鈍S4をこの順序で行うか、もしくは熱間圧延S5、均質化処理S6をこの順序で行い、前記鋳造板からマグネシウム合金板を製造する。 Next, as shown in FIG. 1, homogenization treatment S 2 , hot rolling S 3 , and intermediate annealing S 4 are performed in this order, or hot rolling S 5 and homogenization treatment S 6 are performed in this order. A magnesium alloy plate is manufactured from the cast plate.
前記均質化処理S2、S6は、一定条件のもと、前記鋳造板を熱処理する工程である。前記条件は、370℃〜470℃の温度範囲で1時間以上保持する熱処理が好ましい。前記連続鋳造圧延S1において急冷凝固されたAl、Znなどの溶質元素は、デンドライト・セル境界および板厚中心部に高濃度に偏析するが、前記均質化処理S2、S6により、前記溶質元素の高濃度の偏析を解消できるためである。また、圧延性に優れたマグネシウム合金板とすることもできる。 The homogenization treatments S 2 and S 6 are steps of heat-treating the cast plate under certain conditions. As for the said conditions, the heat processing hold | maintained in the temperature range of 370 degreeC-470 degreeC for 1 hour or more is preferable. The solute elements such as Al and Zn rapidly solidified in the continuous casting and rolling S 1 are segregated at a high concentration at the dendrite cell boundary and the central portion of the plate thickness. However, the solute is subjected to the homogenization treatments S 2 and S 6. This is because high concentration segregation of elements can be eliminated. Moreover, it can also be set as the magnesium alloy plate excellent in rolling property.
前記熱間圧延S3、S5は、一定条件のもと、前記鋳造板をマグネシウム合金板とする圧延工程である。前記条件は、材料加熱温度を280〜350℃とし、圧延装置のロール表面温度を150〜350℃の範囲とするのが好ましい。 The hot rolling S 3 and S 5 are rolling processes in which the cast plate is a magnesium alloy plate under certain conditions. As for the said conditions, it is preferable that the material heating temperature shall be 280-350 degreeC, and the roll surface temperature of a rolling apparatus shall be the range of 150-350 degreeC.
前記中間焼鈍S4は、一定条件のもと、前記マグネシウム合金板を熱処理する工程である。前記条件は、300〜350℃の温度範囲で1〜8時間保持する熱処理や、350〜450℃の温度範囲で1分以下保持する熱処理などを例示することができる。中間焼鈍S4に用いる炉は、バッチ炉、連続炉のいずれであってもよい。 The intermediate annealing S 4, under certain conditions, a step of heat-treating the magnesium alloy plate. Examples of the conditions include heat treatment that is held for 1 to 8 hours in a temperature range of 300 to 350 ° C., heat treatment that is held for 1 minute or less in a temperature range of 350 to 450 ° C. Furnace for use in the intermediate annealing S 4 is batch furnace may be any of a continuous furnace.
最後に、図1に示すように、温間異周速圧延S7を行い、前記マグネシウム合金板からマグネシウム合金薄板を製造する。 Finally, as shown in FIG. 1, it performs a differential speed rolling S 7 warm, to produce magnesium alloy sheet of the magnesium alloy plate.
前記温間異周速圧延S7は、一定条件のもと、マグネシウム合金板をマグネシウム合金薄板とする圧延工程である。前記条件は、材料加熱温度は200℃〜280℃の範囲とし、圧延装置のロール表面温度は180〜280℃の範囲とし、異周速圧延機の上下ロールの回転周速比(以後、周速比)は1.1〜1.7とするのが好ましい。また、圧下率は、15%以上とすることが好ましい。なお、温間異周速圧延S7を行う異周速圧延機の構成は、特に限定されるものではなく、既知の装置を用いることができる。 The warm differential speed rolling S 7, under certain conditions, a rolling step for the magnesium alloy plate and magnesium alloy thin plate. The material heating temperature is in the range of 200 ° C. to 280 ° C., the roll surface temperature of the rolling apparatus is in the range of 180 to 280 ° C., and the rotational peripheral speed ratio between the upper and lower rolls of the different peripheral speed rolling mill (hereinafter referred to as peripheral speed). The ratio is preferably 1.1 to 1.7. The rolling reduction is preferably 15% or more. The configuration of the differential speed rolling mill to perform the differential speed rolling S 7 warm is not limited in particular, it is possible to use known devices.
前記温間異周速圧延S7で、前記周速比が1.1より小さくなると、十分な付加せん断変形が得られないため、微細な結晶粒組織が得られない。また、結晶粒微細化の効果が低く、所々に粗大な結晶粒の存在する混粒組織になる。 In the warm differential speed rolling S 7, if the peripheral speed ratio is smaller than 1.1, sufficient additional shear deformation because not obtained, not obtained fine grain structure. Further, the effect of refining crystal grains is low, and a mixed grain structure in which coarse crystal grains are present in some places is obtained.
前記周速比が1.1以上の領域では、周速比の増加に伴い、結晶粒のサイズをより微細にすることができるが、周速比が1.7においてその結晶粒微細化の効果は飽和する。前記周速比が1.7より大きくなると、結晶粒微細化への効果がそれほど向上しないばかりでなく、圧延時に前記マグネシウム合金板を損傷させやすくなる恐れが発生する。 In the region where the peripheral speed ratio is 1.1 or more, the crystal grain size can be made finer as the peripheral speed ratio increases. However, when the peripheral speed ratio is 1.7, the effect of crystal grain refinement is achieved. Is saturated. If the peripheral speed ratio is greater than 1.7, not only the effect on crystal grain refinement will not be improved, but also the magnesium alloy sheet may be easily damaged during rolling.
前記温間異周速圧延時の材料加熱温度が280℃を超える時には、圧延中の粒成長が顕著となり、平均粒径が4μm超となる場合があるので、微細な結晶粒組織を得る上で好ましくない。同様に、前記温間異周速圧延時のロール表面温度が280℃を超える場合も、圧延中の粒成長が顕著となり、平均粒径が4μm超となる場合があるので、微細な結晶粒組織を得る上で好ましくない。 When the material heating temperature during the warm different peripheral speed rolling exceeds 280 ° C., grain growth during rolling becomes significant, and the average grain size may exceed 4 μm. Therefore, in obtaining a fine grain structure It is not preferable. Similarly, when the roll surface temperature during the warm different peripheral speed rolling exceeds 280 ° C., grain growth during rolling becomes significant, and the average grain size may exceed 4 μm. It is not preferable in obtaining.
前記温間異周速圧延時のロール表面温度の最低値を180℃、材料加熱温度の最低値を200℃と設定すれば、圧延時のロールが材料温度の抜熱を行っても、前記材料温度は180℃以上となり、動的再結晶温度である180℃以上となるので、動的再結晶が引き起こされ、マグネシウム合金板の結晶粒微細化を引き起こす。前記温間異周速圧延時のロール表面温度を180℃未満とする場合は、動的再結晶が引き起こされず、マグネシウム合金板の結晶粒微細化もまたなされない。 If the minimum value of the roll surface temperature at the time of the warm different peripheral speed rolling is set to 180 ° C. and the minimum value of the material heating temperature is set to 200 ° C., even if the roll at the time of rolling performs heat removal of the material temperature, the material Since the temperature is 180 ° C. or higher and the dynamic recrystallization temperature is 180 ° C. or higher, dynamic recrystallization is caused and crystal grains of the magnesium alloy plate are refined. When the roll surface temperature at the time of the warm different peripheral speed rolling is less than 180 ° C., dynamic recrystallization is not caused, and the crystal grain refinement of the magnesium alloy sheet is also not performed.
前記圧下率は、15%より小さい場合、十分なせん断ひずみが得られないので、結晶粒が微細にならない。 When the rolling reduction is less than 15%, sufficient shear strain cannot be obtained, so that the crystal grains do not become fine.
なお、前記温間異周速圧延S7は、温間圧延の一部として行ってもかまわない。前記温間圧延は、一定条件のもと、マグネシウム合金板をマグネシウム合金薄板とする圧延工程である。前記条件は、材料加熱温度を200〜280℃、圧延装置のロール表面温度を180〜280℃の範囲とするのが好ましい。 Incidentally, the warm differential speed rolling S 7 is may be performed as part of a warm rolling. The warm rolling is a rolling process in which a magnesium alloy sheet is made into a magnesium alloy sheet under certain conditions. As for the said conditions, it is preferable to make material heating temperature into the range of 200-280 degreeC, and roll surface temperature of a rolling mill into the range of 180-280 degreeC.
前記温間異周速圧延S7あるいは前記温間圧延において、パス回数は一回であってもよいし、複数回であってもよい。ただし、1パスの圧下率は30%以上が好ましい。最終温間異周速圧延あるいは最終温間圧延での圧下率としては、50%以上の圧下率が特に好ましい。前記圧下率は、一回の圧延であっても、複数回の圧延であってもよい。 In the warm differential speed rolling S 7 or the warm rolling, number of passes may be the one, it may be a plurality of times. However, the rolling reduction per pass is preferably 30% or more. As the rolling reduction in the final warm different peripheral speed rolling or the final warm rolling, a rolling reduction of 50% or more is particularly preferable. The rolling reduction may be a single rolling or a plurality of rollings.
前記中間焼鈍S4を、温間圧延の途中に設けることもできる。特に、温間圧延での圧下率が80%を超える場合に、中間焼鈍S4を設けるのが好ましい。一回の温間圧延での圧下率が80%以下であっても、二回以上の温間圧延でのトータルの圧下率が80%を超える場合には、途中で中間焼鈍S4を行うことが好ましい。 The intermediate annealing S 4, may be provided in the middle of the warm rolling. In particular, if the rolling reduction in the warm rolling is more than 80%, to provide an intermediate annealing S 4 are preferred. Even rolling reduction in one warm rolling is 80% or less, when the total rolling reduction at twice or more warm rolling is more than 80%, to perform intermediate annealing S 4 on the way Is preferred.
また、製品の要求仕様により、前記温間圧延後、更に冷間圧延、焼鈍を組み合わせ、あるいはそれぞれ単独で行ってもかまわない。 Further, depending on the required specifications of the product, after the warm rolling, cold rolling and annealing may be further combined, or may be performed independently.
以下、本発明の実施形態の効果について説明する。
本発明のマグネシウム合金薄板の製造方法は、質量%で、Al:1.0〜11%、Zn:2.0%以下、Mn:0.1〜0.5%、残部がMgおよび不可避不純物を含有するマグネシウム合金溶湯を用い、連続鋳造圧延を行い、帯状板とした後、均質化処理、熱間圧延、中間焼鈍をこの順序で行うか、もしくは熱間圧延、均質化処理をこの順序で行った後、温間圧延を行うマグネシウム合金薄板の製造方法なので、各プロセスを速やかにかつ安定的に行うことができ、また、各プロセスを適切に運用することによって、材料および製造コストを安くすることができる。
Hereinafter, effects of the embodiment of the present invention will be described.
The manufacturing method of the magnesium alloy sheet of the present invention is, in mass%, Al: 1.0 to 11%, Zn: 2.0% or less, Mn: 0.1 to 0.5%, the balance being Mg and inevitable impurities. Using the molten magnesium alloy contained, continuous casting and rolling are performed to form strips, and then homogenization, hot rolling, and intermediate annealing are performed in this order, or hot rolling and homogenization are performed in this order. After that, it is a method of manufacturing a magnesium alloy sheet that is warm-rolled, so that each process can be performed quickly and stably, and the materials and manufacturing costs can be reduced by operating each process appropriately. Can do.
本発明のマグネシウム合金薄板の製造方法は、温間圧延の一部または全部において、材料加熱温度を200℃〜280℃の範囲とし、圧延装置のロール表面温度を180〜280℃の範囲とし、上下ロールの回転周速比1.1〜1.7の条件で温間異周速圧延を行うことを特徴とする構成なので、前記温間異周速圧延において、動的再結晶を行わせ、4μm以下の微細な結晶粒組織からなるマグネシウム合金薄板とすることができ、強度、延性、超塑性などが要求される用途に好適なマグネシウム合金薄板とすることができる。 The method for producing a magnesium alloy sheet according to the present invention includes a material heating temperature in a range of 200 ° C. to 280 ° C. and a roll surface temperature of a rolling device in a range of 180 to 280 ° C. Since it is a structure characterized by performing the warm different peripheral speed rolling under the condition of the rotational peripheral speed ratio of the roll of 1.1 to 1.7, in the warm different peripheral speed rolling, dynamic recrystallization is performed and 4 μm. It can be set as the magnesium alloy thin plate which consists of the following fine crystal grain structures, and it can be set as the magnesium alloy thin plate suitable for the use as which intensity | strength, ductility, superplasticity, etc. are requested | required.
以下、本発明を実施例に基づいて具体的に説明する。しかし、本発明はこれらの実施例にのみ限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples. However, the present invention is not limited only to these examples.
(実施例1)
マグネシウム合金板を用いて、双ロール法で板厚5.4mmのマグネシウム鋳造板を製造した。表1に、前記マグネシウム合金板の化学成分を示す。
Example 1
Using the magnesium alloy plate, a magnesium cast plate having a thickness of 5.4 mm was manufactured by a twin roll method. Table 1 shows chemical components of the magnesium alloy sheet.
次に、前記合金1のマグネシウム鋳造板について、アルゴンガス雰囲気中で450℃の温度に8時間保持する均質化処理を行った。さらに、材料加熱温度300℃、ロール温度200℃の条件で熱間圧延を行い、前記マグネシウム鋳造板の板厚を2.1mmとした。最後に、300℃の温度に1時間保持する中間焼鈍を行い、板厚2.1mmのマグネシウム合金板を製造した。
Next, the magnesium cast plate of the
前記マグネシウム合金板を異周速圧延機にセットし、温間異周速圧延を行った。前記異周速圧延機は、ロール内にヒータを内蔵したツインモータ駆動式を使用した。ここで、高速上ロール側の周速は8m/minとし、下ロール側の周速を5.3m/minとして、周速比を1.50に設定した。ロール表面温度は250℃とし、目標板厚0.8mmまで繰り返し圧延を行い、板厚0.8mmのマグネシウム合金薄板を製造した。また、一回(1パス)ごとに加熱処理炉で、前記マグネシウム合金板を250℃に加熱した。また、温間異周速圧延の方向は、一定になるように設定した。 The magnesium alloy sheet was set in a different peripheral speed rolling mill, and warm different peripheral speed rolling was performed. The different peripheral speed rolling mill used a twin motor drive type in which a heater was built in a roll. Here, the peripheral speed on the high speed upper roll side was 8 m / min, the peripheral speed on the lower roll side was 5.3 m / min, and the peripheral speed ratio was set to 1.50. The roll surface temperature was 250 ° C., and rolling was repeated until the target plate thickness was 0.8 mm to produce a magnesium alloy thin plate having a plate thickness of 0.8 mm. Moreover, the said magnesium alloy plate was heated at 250 degreeC with the heat processing furnace for every time (1 pass). Moreover, the direction of warm different circumferential speed rolling was set to be constant.
前記マグネシウム合金薄板に対して、光学顕微鏡観察と引張特性評価を行った。
光学顕微鏡観察は圧延方向に平行な断面で行った。光学顕微鏡観察面は、エメリー#1000で研磨仕上げした後に、蒸留水20ml、ピクリン酸32ml、エチルアルコール18ml、氷酢酸20mlの混合液で20秒間、エッチング処理を行った。結晶粒サイズの測定は切断法で行った。
引張特性評価は、作成したマグネシウム合金薄板を圧延方向に切り出した引張試験片を用いて行った。前記引張試験片の大きさは、平行部長さ30mm×幅12.5mm×厚さ0.8mmであり、引張試験条件は、室温にてひずみ速度3.3×10−3/secとした。
実施例2〜4および比較例1は、表2のとおりである。
The magnesium alloy thin plate was observed with an optical microscope and evaluated for tensile properties.
The optical microscope observation was performed with a cross section parallel to the rolling direction. The observation surface of the optical microscope was polished with Emery # 1000, and then etched with a mixed solution of 20 ml of distilled water, 32 ml of picric acid, 18 ml of ethyl alcohol, and 20 ml of glacial acetic acid for 20 seconds. The crystal grain size was measured by a cutting method.
The tensile property evaluation was performed using a tensile test piece obtained by cutting the prepared magnesium alloy thin plate in the rolling direction. The size of the tensile test piece was a parallel part length 30 mm × width 12.5 mm × thickness 0.8 mm, and the tensile test conditions were a strain rate of 3.3 × 10 −3 / sec at room temperature.
Examples 2 to 4 and Comparative Example 1 are as shown in Table 2.
(実施例5)
温間異周速圧延におけるロール表面温度を200℃とした他は、実施例1と同様にして、マグネシウム合金薄板を製造した。実施例1と同様に光学顕微鏡観察を行った。
(Example 5)
A magnesium alloy sheet was produced in the same manner as in Example 1 except that the roll surface temperature in the warm different peripheral speed rolling was set to 200 ° C. Observation with an optical microscope was performed in the same manner as in Example 1.
(比較例2)
温間異周速圧延におけるロール表面温度を150℃とした他は、実施例1と同様にして、マグネシウム合金薄板を製造した。実施例1と同様に光学顕微鏡観察を行った。
(Comparative Example 2)
A magnesium alloy sheet was produced in the same manner as in Example 1 except that the roll surface temperature in the warm different peripheral speed rolling was set to 150 ° C. Observation with an optical microscope was performed in the same manner as in Example 1.
実施例1、実施例5および比較例2の結果を表3に示す。 The results of Example 1, Example 5 and Comparative Example 2 are shown in Table 3.
本発明は、双ロール法の温間異周速圧延を用いて、材料および製造コストが安く、速やかにかつ安定的に、平均粒径が4μm以下の均一微細な結晶粒組織を有するマグネシウム合金薄板を製造する方法を必要とする産業分野での利用可能性がある。また、強度、伸びおよび超塑性を有するマグネシウム合金薄板を必要とする応用分野での利用可能性がある。 The present invention relates to a magnesium alloy thin plate having a uniform and fine crystal grain structure having an average grain size of 4 μm or less, using a twin roll method of warm differential rolling at a low speed and with a low material and manufacturing cost. There is an applicability in the industrial field that requires a method of manufacturing In addition, it can be used in application fields that require a magnesium alloy sheet having strength, elongation, and superplasticity.
1…双ロール部、2…上ロール、3…下ロール、4…離型剤スプレー、5…ロール表面温度センサー、10…吹き込みノズル、11…チップ部分、12…トラフ部分、13…溶湯、14…移湯パイプ、15…不活性ガス、16…レーザー式湯面レベルセンサー、17…耐熱ガラス、18…熱電対、S1…連続鋳造圧延、S2…均質化処理、S3…熱間圧延、S4…中間焼鈍、S5…熱間圧延、S6…均質化処理、S7…異周速温間圧延
DESCRIPTION OF
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006354813A JP4991280B2 (en) | 2006-12-28 | 2006-12-28 | Magnesium alloy sheet manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006354813A JP4991280B2 (en) | 2006-12-28 | 2006-12-28 | Magnesium alloy sheet manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008163398A JP2008163398A (en) | 2008-07-17 |
JP4991280B2 true JP4991280B2 (en) | 2012-08-01 |
Family
ID=39693251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006354813A Expired - Fee Related JP4991280B2 (en) | 2006-12-28 | 2006-12-28 | Magnesium alloy sheet manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4991280B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105234174A (en) * | 2015-08-31 | 2016-01-13 | 东北大学 | Method for rolling ultra-thin magnesium or magnesium alloy band |
JP7075496B2 (en) | 2018-09-11 | 2022-05-25 | 株式会社日立国際電気 | Monitoring system and monitoring equipment |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010209452A (en) * | 2009-03-12 | 2010-09-24 | Sumitomo Electric Ind Ltd | Magnesium alloy member |
JP5606709B2 (en) * | 2009-09-10 | 2014-10-15 | 公立大学法人大阪府立大学 | Magnesium alloy rolled material and method for producing the same |
JP5660374B2 (en) * | 2009-11-24 | 2015-01-28 | 住友電気工業株式会社 | Magnesium alloy plate manufacturing method and magnesium alloy coil material |
CN103276328B (en) * | 2013-05-30 | 2015-05-27 | 济南大学 | Severe plastic deformation technology of magnesium alloy board |
DE102016221902A1 (en) * | 2016-11-08 | 2018-05-09 | Volkswagen Aktiengesellschaft | Sheet of a magnesium-based alloy and method for producing a sheet and sheet metal component therefrom |
KR102043786B1 (en) * | 2017-12-26 | 2019-11-12 | 주식회사 포스코 | Magnesium alloy sheet and method for manufacturing the same |
CN116921430B (en) * | 2023-08-25 | 2024-02-23 | 太原科技大学 | Magnesium alloy plate toughening rolling method based on cooperative regulation and control of grain size and basal plane texture |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06293944A (en) * | 1993-04-06 | 1994-10-21 | Nippon Steel Corp | Production of magnesium alloy sheet excellent in press formability |
JP4476787B2 (en) * | 2004-11-17 | 2010-06-09 | 三菱アルミニウム株式会社 | Method for producing magnesium alloy sheet with excellent press formability |
JP4780600B2 (en) * | 2004-11-17 | 2011-09-28 | 三菱アルミニウム株式会社 | Magnesium alloy sheet excellent in deep drawability and manufacturing method thereof |
JP4780601B2 (en) * | 2004-11-18 | 2011-09-28 | 三菱アルミニウム株式会社 | Magnesium alloy plate excellent in press formability and manufacturing method thereof |
JP4429877B2 (en) * | 2004-11-18 | 2010-03-10 | 三菱アルミニウム株式会社 | Method for producing magnesium alloy sheet having fine crystal grains |
-
2006
- 2006-12-28 JP JP2006354813A patent/JP4991280B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105234174A (en) * | 2015-08-31 | 2016-01-13 | 东北大学 | Method for rolling ultra-thin magnesium or magnesium alloy band |
CN105234174B (en) * | 2015-08-31 | 2017-04-05 | 东北大学 | A kind of milling method of magnesium and magnesium alloy strip in razor-thin |
JP7075496B2 (en) | 2018-09-11 | 2022-05-25 | 株式会社日立国際電気 | Monitoring system and monitoring equipment |
Also Published As
Publication number | Publication date |
---|---|
JP2008163398A (en) | 2008-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4991280B2 (en) | Magnesium alloy sheet manufacturing method | |
KR101251237B1 (en) | Aluminum alloy sheet with excellent post-fabrication surface qualities and method of manufacturing same | |
JP4991281B2 (en) | Magnesium alloy sheet manufacturing method | |
CN104818439B (en) | Anticorodal aluminium alloy with high content of magnesium and preparation method thereof | |
CN105765094B (en) | Soldering property and excellent heat exchanger aluminium alloy fin material and its manufacturing method of sagging resistance | |
JP4555183B2 (en) | Manufacturing method of forming aluminum alloy sheet and continuous casting apparatus for forming aluminum alloy | |
CN104114726A (en) | Aluminum alloy sheet with excellent baking-paint curability | |
JP2008163361A (en) | Method for producing magnesium alloy thin sheet having uniformly fine crystal grain | |
CN103946404B (en) | Press formability and the excellent aluminium alloy plate of shape freezing and its manufacturing method | |
JP4780601B2 (en) | Magnesium alloy plate excellent in press formability and manufacturing method thereof | |
JP4542016B2 (en) | Manufacturing method of forming aluminum alloy sheet | |
JP2009144190A (en) | High-strength and high-ductility aluminum alloy sheet and manufacturing method therefor | |
Meng et al. | Effects of predeformation and semi-solid processing on microstructure and mechanical properties of Cr–V–Mo steel | |
JP4914098B2 (en) | Method for producing aluminum alloy cast plate | |
JP5945370B2 (en) | Method for producing aluminum-zinc-magnesium-copper alloy sheet with refined crystal grains | |
JP2010121165A (en) | Magnesium alloy sheet and method for producing the same | |
JP6356084B2 (en) | Method for producing cold rolled rolled plate and method for producing pure titanium plate | |
JP2006206932A (en) | Method for producing aluminum alloy sheet for forming | |
EP2698216B1 (en) | Method for manufacturing an aluminium alloy intended to be used in automotive manufacturing | |
JP5059505B2 (en) | Aluminum alloy cold-rolled sheet that can be formed with high strength | |
JP4429877B2 (en) | Method for producing magnesium alloy sheet having fine crystal grains | |
JP4427020B2 (en) | Manufacturing method of forming aluminum alloy sheet | |
JP6694265B2 (en) | Aluminum alloy foil for electrode current collector and method for manufacturing aluminum alloy foil for electrode current collector | |
JP2006144044A (en) | Magnesium alloy sheet having superior deep-drawability, and manufacturing method therefor | |
JP2006249481A (en) | Method for producing aluminum alloy sheet for forming and aluminum alloy sheet stock for cold rolling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120402 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120424 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120507 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150511 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |