JP3363708B2 - Rechargeable battery - Google Patents
Rechargeable batteryInfo
- Publication number
- JP3363708B2 JP3363708B2 JP18887696A JP18887696A JP3363708B2 JP 3363708 B2 JP3363708 B2 JP 3363708B2 JP 18887696 A JP18887696 A JP 18887696A JP 18887696 A JP18887696 A JP 18887696A JP 3363708 B2 JP3363708 B2 JP 3363708B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- positive electrode
- current collector
- attached
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】[0001]
【発明の属する技術分野】この発明は、正極と負極の間
にセパレータを介してスパイラル状に巻き取った電極群
を電池容器内に収容させた二次電池に係り、特に、電気
自動車等に使用するにあたり、大きな電池容量を持ち、
かつ大きい電流で充放電を行なう二次電池において、長
期に亘って安定して使用できるようにした点に特徴を有
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery in which a group of electrodes wound spirally between a positive electrode and a negative electrode via a separator is housed in a battery container, and particularly used for an electric vehicle or the like. In doing so, have a large battery capacity,
In addition, it is characterized in that it can be stably used for a long period in a secondary battery that is charged and discharged with a large current.
【0002】[0002]
【従来の技術】近年、様々な機器の開発やクリーンなエ
ネルギーの要求から二次電池が様々な分野で利用される
ようになり、高出力,高エネルギー密度でかつ長期に亘
って安定して使用できる二次電池の開発が要望されるよ
うになった。2. Description of the Related Art In recent years, secondary batteries have come to be used in various fields due to the development of various devices and the demand for clean energy, and high output, high energy density, and stable use over a long period of time. There has been a demand for the development of a secondary battery that can be used.
【0003】また、近年においては、自動車等の排ガス
による大気汚染が世界的な問題となっており、自動車の
動力源に電気を用いた電気自動車の開発が進むと共に、
このような電気自動車に使用するのに適した二次電池の
開発が要望されるようになった。In recent years, air pollution caused by exhaust gas from automobiles has become a global problem, and with the progress of development of electric vehicles using electricity as a power source for automobiles,
Development of a secondary battery suitable for use in such an electric vehicle has been demanded.
【0004】ここで、動力源に電気を用いた電気自動車
等においては、大きな電力が長期に亘って安定して得ら
れることが必要となり、このような電気自動車等に使用
する二次電池としては、その電池容量が大きく、かつ大
きい電流で充放電を安定して行なえることが要求され
た。Here, in an electric vehicle or the like which uses electricity as a power source, it is necessary to stably obtain a large amount of electric power over a long period of time, and as a secondary battery used in such an electric vehicle or the like. It is required that the battery has a large capacity and that charging and discharging can be stably performed with a large current.
【0005】ここで、従来より一般に使用されている二
次電池は、図1に示すように、正極集電体1aに正極材
料1bを付着させた正極1と、負極集電体2aに負極材
料2bを付着させた負極2との間にセパレータ3を介在
させた状態でスパイラル状に巻き取った電極群を、負極
端子4aとなる電池缶4aと、正極端子4bとなる電池
蓋4bとで構成される電池容器4内に収容させ、正極1
の正極集電体1aに取り付けられた正極集電タブ5を電
池蓋4bの内面に溶接させると共に、負極2の負極集電
体2aに取り付けられた負極集電タブ6を電池缶4a内
の底面部に溶接させるようにしていた。Here, as shown in FIG. 1, a conventional secondary battery generally used is a positive electrode 1 in which a positive electrode material 1b is attached to a positive electrode current collector 1a, and a negative electrode material in a negative electrode current collector 2a. The electrode group wound in a spiral shape with the separator 3 interposed between the negative electrode 2 to which 2b is attached is composed of a battery can 4a to be the negative electrode terminal 4a and a battery lid 4b to be the positive electrode terminal 4b. The positive electrode 1
The positive electrode current collector tab 5 attached to the positive electrode current collector 1a is welded to the inner surface of the battery lid 4b, and the negative electrode current collector tab 6 attached to the negative electrode current collector 2a of the negative electrode 2 is attached to the bottom surface of the battery can 4a. It was made to weld to the part.
【0006】しかし、上記のような二次電池において
は、電流が上記のような面積の小さな正極集電タブ5や
負極集電タブ6を通して流れるだけであるため、このよ
うな二次電池における電池容量を大きくして、大きい電
流で充放電を行なうようにした場合、この電流によって
正極集電タブ5や負極集電タブ6の温度が上昇すると共
に、この正極集電タブ5や負極集電タブ6が接続された
正極1や負極2の部分における温度も上昇し、正極集電
体1aや負極集電体2aに付着された正極材料1bや負
極材料2bがこれらの集電体1a,2aから剥離してし
まい、二次電池における充放電特性やサイクル特性が低
下し、長期に亘って安定して使用することができなくな
るという問題があった。However, in the secondary battery as described above, the current only flows through the positive electrode current collecting tab 5 and the negative electrode current collecting tab 6 having the small area as described above, so that the battery in such a secondary battery is When the capacity is increased and charging / discharging is performed with a large current, the temperature of the positive electrode current collecting tab 5 or the negative electrode current collecting tab 6 rises due to this current, and the positive electrode current collecting tab 5 or the negative electrode current collecting tab 5 also rises. The temperature of the positive electrode 1 and the negative electrode 2 to which 6 is connected also rises, and the positive electrode material 1b and the negative electrode material 2b attached to the positive electrode current collector 1a and the negative electrode current collector 2a are removed from these current collectors 1a and 2a. There is a problem that the secondary battery is peeled off, the charge / discharge characteristics and cycle characteristics of the secondary battery are deteriorated, and the secondary battery cannot be stably used for a long period of time.
【0007】[0007]
【発明が解決しようとする課題】この発明は、正極と負
極の間にセパレータを介してスパイラル状に巻き取った
電極群を電池容器内に収容させた二次電池における上記
のような問題を解決することを課題とするものであり、
上記のような二次電池を電気自動車等に使用するにあた
り、その電池容量を大きくして、大きな電流で充放電を
行なうようにした場合であっても、正極や負極が部分的
に加熱されて正極集電体に付着された正極材料や負極集
電体に付着された負極材料がそれぞれの集電体から剥離
して充放電特性やサイクル特性が低下するということが
なく、長期に亘って安定して使用できるようにすること
を課題とするものである。SUMMARY OF THE INVENTION The present invention solves the above problems in a secondary battery in which a group of electrodes wound spirally between a positive electrode and a negative electrode is housed in a battery container. The task is to
When using the secondary battery as described above in an electric vehicle or the like, even when the battery capacity is increased and charging / discharging is performed with a large current, the positive electrode and the negative electrode are partially heated. Stable over a long period of time without the positive electrode material attached to the positive electrode current collector and the negative electrode material attached to the negative electrode current collector peeling off from the respective current collectors to deteriorate charge / discharge characteristics and cycle characteristics. The problem is to be able to use it.
【0008】[0008]
【課題を解決するための手段】この発明における二次電
池においては、上記のような課題を解決するため、正極
集電体に正極材料を付着させた正極と、負極集電体に負
極材料を付着させた負極との間にセパレータを介した状
態で多層状に形成した電極群を電池容器内に収容させた
二次電池において、正極材料を付着させる正極集電体の
端部に正極材料が付着されていない部分を設けると共
に、負極材料を付着させる負極集電体の端部に負極材料
が付着されていない部分を設け、正極材料が付着されて
いない正極集電体の部分を正極端子に圧着させると共
に、負極材料が付着されていない負極集電体の部分を負
極端子に圧着させた。In the secondary battery according to the present invention, in order to solve the above problems, a positive electrode having a positive electrode material attached to a positive electrode current collector and a negative electrode material provided on a negative electrode current collector. In a secondary battery in which an electrode group formed in a multilayer shape with a separator interposed between the attached negative electrode and a battery container is housed in a battery container, the positive electrode material is attached to the end of the positive electrode current collector to which the positive electrode material is attached. In addition to providing a non-adhered portion, a negative electrode current collector end to which the negative electrode material is attached is provided with a negative electrode material non-adhered portion, and the positive electrode current collector portion where the positive electrode material is not attached is used as a positive electrode terminal. Along with the pressure bonding, the negative electrode current collector portion to which the negative electrode material was not attached was pressure bonded to the negative electrode terminal.
【0009】そして、この発明における二次電池のよう
に、正極材料が付着されていない正極集電体の部分を正
極端子に圧着させると共に、負極材料が付着されていな
い負極集電体の部分を負極端子に圧着させると、電流が
これらの集電体を通して流れるようになり、正極集電タ
ブや負極集電タブを通して電流が流れる場合に比べて電
流が流れる部分の面積が非常に大きくなり、この二次電
池における電池容量を大きくして、大きな電流で充放電
を行なう場合においても、正極や負極の一部が加熱され
て正極材料や負極材料がそれぞれの集電体から剥離する
ということが少なくなり、安定した充放電特性を有する
サイクル特性に優れた二次電池が得られるようになる。Then, as in the secondary battery of the present invention, the portion of the positive electrode current collector to which the positive electrode material is not attached is crimped to the positive electrode terminal, and the portion of the negative electrode current collector to which the negative electrode material is not attached is removed. When pressure is applied to the negative electrode terminal, current will flow through these current collectors, and the area of the current flowing area will be much larger than when current flows through the positive electrode current collecting tab or the negative electrode current collecting tab. Even when the battery capacity of the secondary battery is increased and charging / discharging is performed with a large current, it is less likely that the positive electrode material and the negative electrode material are partially heated and the positive electrode material and the negative electrode material are separated from the respective current collectors. As a result, a secondary battery having stable charge / discharge characteristics and excellent cycle characteristics can be obtained.
【0010】ここで、上記のように正極集電体や負極集
電体に正極材料や負極材料が付着されていない部分を設
けるにあたり、正極材料や負極材料が付着されていない
部分の幅を小さくしすぎると、上記のように各集電体に
おいて正極材料や負極材料が付着されていない部分を負
極端子や正極端子に圧着させる場合に、十分な接触面積
を確保することが出来なくなり、上記のように大きい電
流で充放電を行なった場合に、これらの集電体と正極端
子や負極端子とが接触する部分が熱くなって、前記のよ
うにこれらの集電体に付着された正極材料や負極材料が
剥離して、充放電特性やサイクル特性が低下する一方、
正極材料や負極材料が付着されていない部分の幅が大き
すぎると、正極材料や負極材料が付着された電極部分の
面積が小さくなり、充放電特性が低下すると共に、過電
流等により正極材料や負極材料が劣化ししてサイクル特
性等が低下するため、正極材料や負極材料が付着されて
ない部分の幅を1〜10mmの範囲にすることが好まし
い。Here, in providing the portion where the positive electrode material or the negative electrode material is not attached to the positive electrode current collector or the negative electrode current collector as described above, the width of the portion where the positive electrode material or the negative electrode material is not attached is reduced. If too much, it is impossible to secure a sufficient contact area when crimping the portion where the positive electrode material or the negative electrode material is not attached to each of the current collectors to the negative electrode terminal or the positive electrode terminal as described above. When charging and discharging with a large current as described above, the part where these current collectors contact the positive electrode terminal and the negative electrode terminal becomes hot, and the positive electrode material or the positive electrode material attached to these current collectors as described above. While the negative electrode material peels off and the charge / discharge characteristics and cycle characteristics deteriorate,
If the width of the portion to which the positive electrode material or the negative electrode material is not attached is too large, the area of the electrode portion to which the positive electrode material or the negative electrode material is attached becomes small, and the charging / discharging characteristics are deteriorated. Since the negative electrode material is deteriorated and the cycle characteristics and the like are deteriorated, it is preferable that the width of the portion where the positive electrode material and the negative electrode material are not adhered is within the range of 1 to 10 mm.
【0011】また、正極材料が付着されていない正極集
電体の部分や負極材料が付着されていない負極集電体の
部分を正極端子や負極端子に圧着させるにあたり、これ
らの集電体と正極端子や負極端子との接触が十分に行な
われるようにするため、これらの集電体が圧着される正
極端子や負極端子の部分に集電網や導電性ペーストを設
けることが好ましい。なお、正極端子に設ける集電網と
しては、アルミニウム製やステンレス製のものを用いる
一方、負極端子に設ける集電網としては、ステンレス製
や銅製やニッケル製のものを用いるようにする。また、
導電性ペーストとしては、黒鉛等の導電剤を結着剤によ
り結着させてペースト状にしたものを使用することがで
きる。When the positive electrode current collector portion to which the positive electrode material is not attached and the negative electrode current collector portion to which the negative electrode material is not attached are pressure-bonded to the positive electrode terminal and the negative electrode terminal, these current collector and positive electrode In order to make sufficient contact with the terminal and the negative electrode terminal, it is preferable to provide a current collecting net or a conductive paste on the positive electrode terminal and the negative electrode terminal where these current collectors are crimped. The current collector network provided on the positive electrode terminal is made of aluminum or stainless steel, while the current collector network provided on the negative electrode terminal is made of stainless steel, copper or nickel. Also,
As the conductive paste, a paste made by binding a conductive agent such as graphite with a binder can be used.
【0012】また、この発明における二次電池において
は、上記のように正極や負極において、正極材料や負極
材料が付着されていない正極集電体や負極集電体の部分
をそれぞれ正極端子や負極端子に圧着させ、電流が流れ
る部分の面積を大きくしているため、電池容量が大き
く、大きな電流で充放電を行なうような二次電池に対し
て有効であり、電池容量が5Wh以上の大型二次電池、
特に電池容量が50Wh以上の大型二次電池において有
効に使用できる。Further, in the secondary battery according to the present invention, in the positive electrode and the negative electrode as described above, the portions of the positive electrode current collector and the negative electrode current collector to which the positive electrode material and the negative electrode material are not attached are respectively the positive electrode terminal and the negative electrode. It is effective for a secondary battery that has a large battery capacity and is charged and discharged with a large current because it is crimped to the terminal and the area where the current flows is large. It is a large battery with a battery capacity of 5 Wh or more. Next battery,
In particular, it can be effectively used in a large secondary battery having a battery capacity of 50 Wh or more.
【0013】ここで、この発明における二次電池におい
て、その正極や負極に使用する材料は特に限定されず、
様々な種類の二次電池に応用することができ、例えば、
リチウム二次電池、ニッケル・水素二次電池、ニッケル
・カドミウム二次電池等に利用することができる。Here, in the secondary battery of the present invention, the material used for the positive electrode and the negative electrode is not particularly limited,
It can be applied to various types of secondary batteries, for example,
It can be used for lithium secondary batteries, nickel-hydrogen secondary batteries, nickel-cadmium secondary batteries, and the like.
【0014】ここで、この発明における二次電池がリチ
ウム二次電池の場合、その正極に使用する正極材料とし
ては、リチウムイオンを吸蔵,放出することができる公
知の正極材料を用いることができ、例えば、マンガン,
コバルト,ニッケル,鉄,バナジウム,ニオブの少なく
とも1種を含むリチウム遷移金属複合酸化物等を使用す
ることができる。また、その負極に使用する負極材料と
しても、公知の負極材料を用いることができ、例えば、
金属リチウム,リチウム合金の他に、リチウムイオンを
吸蔵,放出することができる黒鉛等の炭素材料を用いる
ことができる。さらに、電解質として使用する非水電解
液も、従来より使用されている公知の非水電解液を用い
ることができ、その溶媒としては、例えば、エチレンカ
ーボネート、プロピレンカーボネート、ブチレンカーボ
ネート、ビニレンカーボネート、シクロペンタノン、ス
ルホラン、ジメチルスルホラン、3−メチル−1,3−
オキサゾリジン−2−オン、γ−ブチロラクトン、ジメ
チルカーボネート、ジエチルカーボネート、エチルメチ
ルカーボネート、メチルプロピルカーボネート、ブチル
メチルカーボネート、エチルプロピルカーボネート、ブ
チルエチルカーボネート、ジプロピルカーボネート、
1,2−ジメトキシエタン、テトラヒドロフラン、2−
メチルテトラヒドロフラン、1,3−ジオキソラン、酢
酸メチル、酢酸エチル等の有機溶媒を1種又は2種以上
組み合わせたものを使用することができる。また、この
ような溶媒に溶解させる溶質としては、例えば、LiP
F6 、LiBF4 、LiClO4 、LiCF3 SO3 、
LiAsF6 、LiN(CF3 SO2 )2 、LiOSO
2 (CF2 )3 CF3 等のリチウム化合物を使用するこ
とができる。When the secondary battery of the present invention is a lithium secondary battery, a known positive electrode material capable of inserting and extracting lithium ions can be used as the positive electrode material used for the positive electrode. For example, manganese,
A lithium transition metal composite oxide containing at least one of cobalt, nickel, iron, vanadium, and niobium can be used. Also, as the negative electrode material used for the negative electrode, a known negative electrode material can be used, for example,
In addition to metallic lithium and lithium alloys, carbon materials such as graphite that can store and release lithium ions can be used. Furthermore, the non-aqueous electrolytic solution used as the electrolyte can also be a known non-aqueous electrolytic solution that has been conventionally used, as the solvent, for example, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, cyclo Pentanone, sulfolane, dimethylsulfolane, 3-methyl-1,3-
Oxazolidin-2-one, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl ethyl carbonate, dipropyl carbonate,
1,2-dimethoxyethane, tetrahydrofuran, 2-
One or a combination of two or more organic solvents such as methyltetrahydrofuran, 1,3-dioxolane, methyl acetate and ethyl acetate can be used. Further, as the solute to be dissolved in such a solvent, for example, LiP
F 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 ,
LiAsF 6, LiN (CF 3 SO 2) 2, LiOSO
Lithium compounds such as 2 (CF 2 ) 3 CF 3 can be used.
【0015】また、この発明における二次電池がニッケ
ル・水素二次電池の場合には、その正極に使用する正極
材料として、水酸化ニッケルやオキシ水酸化ニッケルを
用いることができ、また負極に使用する負極材料とし
て、ミッシュメタル(以下、Mmと略す。)系の水素吸
蔵合金や、チタン−ニッケル系等のLavas相合金を
使用することができる。When the secondary battery according to the present invention is a nickel-hydrogen secondary battery, nickel hydroxide or nickel oxyhydroxide can be used as the positive electrode material for the positive electrode, and it can also be used for the negative electrode. As the negative electrode material to be used, a misch metal (hereinafter abbreviated as Mm) -based hydrogen storage alloy, or a Lavas phase alloy such as titanium-nickel-based alloy can be used.
【0016】また、この発明における二次電池がニッケ
ル・カドミウム二次電池の場合においては、その正極に
使用する正極材料として、水酸化ニッケルやオキシ水酸
化ニッケルを用いることができ、またその負極に使用す
る負極材料に、カドミウムや水酸化カドミウムを用い、
このカドミウムや水酸化カドミウムをペーストにして負
極集電体に付着させる場合に特に効果がある。When the secondary battery of the present invention is a nickel-cadmium secondary battery, nickel hydroxide or nickel oxyhydroxide can be used as the positive electrode material used for the positive electrode, and the negative electrode thereof can be used. For the negative electrode material used, use cadmium or cadmium hydroxide,
It is particularly effective when this cadmium or cadmium hydroxide is made into a paste and attached to the negative electrode current collector.
【0017】[0017]
【実施例】以下、この発明に係る二次電池について実施
例を挙げて具体的に説明すると共に、電池容量を大きく
して、大きな電流で充放電を行なう場合において、この
実施例に係る二次電池が長期に亘って安定して使用でき
ることを比較例を挙げて明らかにする。なお、この発明
における二次電池は下記の実施例に示したものに限定さ
れるものではなく、その要旨を変更しない範囲において
適宜変更して実施できるものである。EXAMPLES Hereinafter, the secondary battery according to the present invention will be specifically described with reference to Examples, and in the case where the battery capacity is increased and charging / discharging is performed with a large current, the secondary battery according to this Example is described. It will be clarified by using comparative examples that the battery can be stably used for a long period of time. The secondary battery according to the present invention is not limited to the ones shown in the following examples, and can be implemented with appropriate modifications within the scope of the invention.
【0018】(実施例1〜8)これらの実施例において
は、下記のようにして作製した正極と負極と非水電解液
とを用い、直径が20mm、高さが100mmで電池容
量が約10Whになった図2に示すような円筒型のリチ
ウム二次電池を作製した。(Examples 1 to 8) In these examples, the positive electrode, the negative electrode and the non-aqueous electrolyte prepared as described below were used, and the diameter was 20 mm, the height was 100 mm, and the battery capacity was about 10 Wh. A cylindrical lithium secondary battery as shown in FIG. 2 was manufactured.
【0019】[正極の作製]正極を作製するにあたって
は、正極材料として、リチウム含有二酸化コバルト(L
iCoO2 )を用い、このLiCoO2 と導電剤である
人工黒鉛とを重量比9:1の割合で混合して正極合剤を
得た。そして、結着剤であるポリフッ化ビニリデンをN
−メチル−2−ピロリドン(以下、NMPと略す。)に
溶解させたNMP溶液と上記の正極合剤とを混練して、
正極合剤とポリフッ化ビニリデンとの重量比が95:5
になったスラリーを調製し、このスラリーを正極集電体
であるアルミニウム箔の両面にドクターブレード法によ
り塗布し、これを150℃で2時間真空乾燥させてシー
ト状になった各正極を作製した。[Production of Positive Electrode] In producing the positive electrode, lithium-containing cobalt dioxide (L
iCoO 2 ) was used to mix the LiCoO 2 and artificial graphite as a conductive agent in a weight ratio of 9: 1 to obtain a positive electrode mixture. Then, polyvinylidene fluoride, which is a binder, is added to the N
-Methyl-2-pyrrolidone (hereinafter abbreviated as NMP) is kneaded with an NMP solution dissolved in the above positive electrode mixture,
The weight ratio of the positive electrode mixture and polyvinylidene fluoride is 95: 5.
Was prepared, and the slurry was applied to both surfaces of an aluminum foil as a positive electrode current collector by the doctor blade method, and this was vacuum dried at 150 ° C. for 2 hours to produce sheet-shaped positive electrodes. .
【0020】ここで、上記のように正極材料を含むスラ
リーを正極集電体に塗布して正極を作製するにあたり、
これらの実施例においては、正極集電体に上記のスラリ
ーを塗布しない部分を設けるようにし、正極集電体にス
ラリーを塗布しない部分の幅を、下記の表1に示すよう
に、実施例1では0.5mm、実施例2では1mm、実
施例3では2mm、実施例4では3mm、実施例5では
5mm、実施例6では8mm、実施例7では10mm、
実施例8では12mmにした。When the positive electrode current collector is coated with the slurry containing the positive electrode material as described above, a positive electrode is prepared.
In these examples, the positive electrode current collector was provided with a portion not coated with the above-mentioned slurry, and the width of the portion not coated with the slurry on the positive electrode current collector was determined as shown in Table 1 below. 0.5 mm, 1 mm in Example 2, 2 mm in Example 3, 3 mm in Example 4, 5 mm in Example 5, 8 mm in Example 6, 10 mm in Example 7,
In Example 8, it was 12 mm.
【0021】[負極の作製]負極を作製するにあたって
は、負極材料として黒鉛粉末を用い、結着剤であるポリ
フッ化ビニリデンをNMPに溶解させたNMP溶液と上
記の黒鉛粉末とを混練して、黒鉛粉末とポリフッ化ビニ
リデンの重量比が85:15になったスラリーを調製
し、このスラリーを負極集電体である銅箔の両面にドク
ターブレード法により塗布し、これを150℃で2時間
真空乾燥させてシート状になった各負極を作製した。[Preparation of Negative Electrode] In preparing a negative electrode, graphite powder was used as a negative electrode material, and an NMP solution prepared by dissolving polyvinylidene fluoride as a binder in NMP was kneaded with the above graphite powder. A slurry in which the weight ratio of graphite powder to polyvinylidene fluoride was 85:15 was prepared, and this slurry was applied to both surfaces of a copper foil, which is a negative electrode current collector, by a doctor blade method, and vacuumed at 150 ° C. for 2 hours. Each negative electrode was dried and formed into a sheet.
【0022】ここで、上記のように負極材料を含むスラ
リーを負極集電体に塗布して負極を作製するにあたり、
これらの実施例においては、上記の正極の場合と同様
に、負極集電体に上記のスラリーを塗布しない部分を設
けるようにし、負極集電体にスラリーを塗布しない部分
の幅を正極の場合と同様に、実施例1では0.5mm、
実施例2では1mm、実施例3では2mm、実施例4で
は3mm、実施例5では5mm、実施例6では8mm、
実施例7では10mm、実施例8では12mmにした。Here, in preparing the negative electrode by applying the slurry containing the negative electrode material to the negative electrode current collector as described above,
In these examples, as in the case of the positive electrode, the negative electrode current collector was provided with a portion not coated with the slurry, and the width of the portion not coated with the slurry was negative electrode collector. Similarly, in Example 1, 0.5 mm,
1 mm in Example 2, 2 mm in Example 3, 3 mm in Example 4, 5 mm in Example 5, 8 mm in Example 6,
In Example 7, it was 10 mm, and in Example 8, it was 12 mm.
【0023】[非水電解液の作製]非水電解液を作製す
るにあたっては、エチレンカーボネートとジメチルカー
ボネートとを1:1の体積比で混合させた混合溶媒に、
溶質としてヘキサフルオロリン酸リチウムLiPF6 を
1mol/lの割合で溶解させて非水電解液を作製し
た。[Preparation of Non-Aqueous Electrolyte] In preparing the non-aqueous electrolyte, a mixed solvent prepared by mixing ethylene carbonate and dimethyl carbonate in a volume ratio of 1: 1 was added.
Lithium hexafluorophosphate LiPF 6 was dissolved as a solute at a ratio of 1 mol / l to prepare a non-aqueous electrolytic solution.
【0024】[電池の作製]これらの実施例においては
二次電池を作製するにあたり、図2に示すように、上記
のようにして作製した正極1と負極2との間に、セパレ
ータ3としてリチウムイオン透過性のポリプロピレン製
微多孔膜を介在させて、正極材料1bが付着されていな
い正極集電体1aの部分と、負極材料2bが付着されて
いない負極集電体2aの部分とがそれぞれ逆方向に突出
するようにして、これらをスパイラル状に巻いて各電極
群を得た。[Preparation of Battery] In preparing a secondary battery in these examples, as shown in FIG. 2, lithium was used as the separator 3 between the positive electrode 1 and the negative electrode 2 prepared as described above. A portion of the positive electrode current collector 1a to which the positive electrode material 1b is not attached and a portion of the negative electrode current collector 2a to which the negative electrode material 2b is not attached are reversed with the ion-permeable polypropylene microporous film interposed. Each electrode group was obtained by spirally winding these so as to project in the direction.
【0025】そして、負極端子4aとなる電池缶4a
と、正極端子4bとなる電池蓋4bとで構成される電池
容器4を用い、この電池缶4a内の底面部に負極材料2
bが付着されていない負極集電体2aの部分が接触する
ようにして、上記の各電極群をそれぞれ各電池缶4a内
に収容させた後、各電池缶4a内に上記の非水電解液を
注液し、その後、周囲に絶縁パッキン7が取り付けられ
た電池蓋4bを各電池缶4a内に押し込むようにして取
り付けて、各電池缶4aを各電池蓋4bによって封口
し、各電池蓋4bの内面部に正極材料1bが付着されて
いない正極集電体1aの部分を圧着させると共に、各電
池缶4a内の底面部に負極材料2bが付着されていない
負極集電体2aの部分を圧着させて各リチウム二次電池
を作製した。なお、上記のように正極材料1bが付着さ
れていない正極集電体1aの部分を各電池蓋4bの内面
部に圧着させると共に、負極材料2bが付着されていな
い負極集電体2aの部分を各電池缶4a内の底面部に圧
着させるにあたっては、その圧着部分の長さがそれぞれ
約1mm程度になるようにした。The battery can 4a serving as the negative electrode terminal 4a
And a battery lid 4b serving as a positive electrode terminal 4b, and a negative electrode material 2 is formed on the bottom surface of the battery can 4a.
Each of the above electrode groups was housed in each battery can 4a such that the portion of the negative electrode current collector 2a to which b was not attached was brought into contact, and then the above nonaqueous electrolyte solution was placed in each battery can 4a. Then, the battery lid 4b having the insulating packing 7 attached thereto is attached by pushing it into each battery can 4a, and each battery can 4a is sealed by each battery lid 4b. A portion of the positive electrode current collector 1a to which the positive electrode material 1b is not attached is pressure-bonded to the inner surface of the battery, and a portion of the negative electrode current collector 2a to which the negative electrode material 2b is not attached is pressure-bonded to the bottom surface of each battery can 4a. Then, each lithium secondary battery was produced. As described above, the portion of the positive electrode current collector 1a to which the positive electrode material 1b is not attached is pressure-bonded to the inner surface of each battery lid 4b, and the portion of the negative electrode current collector 2a to which the negative electrode material 2b is not attached is removed. When crimping the bottom surface of each battery can 4a, the length of each crimping portion was set to about 1 mm.
【0026】(実施例9)この実施例においては、上記
の実施例4の二次電池と同様に、アルミニウム箔で構成
された正極集電体1aにおいて正極材料1bが付着され
ていない部分の幅を3mm、銅箔で構成された負極集電
体2aにおいて負極材料2bが付着されない部分の幅を
3mmにすると共に、この実施例においては、図3に示
すように、上記の正極集電体1aが圧着される電池蓋4
bの内面部及び負極集電体2aが圧着される電池缶4a
内の底面部に、それぞれステンレス製の集電網10を取
り付け、それ以外については、上記の各実施例の場合と
同様にしてリチウム二次電池を作製した。(Embodiment 9) In this embodiment, like the secondary battery of Embodiment 4 described above, the width of the portion of the positive electrode current collector 1a made of aluminum foil to which the positive electrode material 1b is not adhered. 3 mm, and the width of the portion of the negative electrode current collector 2a made of copper foil to which the negative electrode material 2b is not attached is set to 3 mm. In this embodiment, as shown in FIG. Battery cover 4 to which is crimped
Battery can 4a to which the inner surface portion of b and the negative electrode current collector 2a are pressure bonded
A stainless steel current collecting net 10 was attached to each of the inner bottom surfaces, and a lithium secondary battery was produced in the same manner as in each of the above-described examples except for the above.
【0027】(比較例1)この比較例においては、図1
に示した従来の二次電池の場合と同様に、正極1の正極
集電体1aに取り付けられた正極集電タブ5を電池蓋4
bの内面に溶接させると共に、負極2の負極集電体2a
に取り付けられた負極集電タブ6を電池缶4a内の底面
部に溶接させるようにし、それ以外については、上記の
各実施例の場合と同様にしてリチウム二次電池を作製し
た。Comparative Example 1 In this comparative example, FIG.
As in the case of the conventional secondary battery shown in FIG. 1, the positive electrode current collecting tab 5 attached to the positive electrode current collector 1 a of the positive electrode 1 is attached to the battery lid 4.
While being welded to the inner surface of b, the negative electrode current collector 2a of the negative electrode 2
The negative electrode current collecting tab 6 attached to was welded to the bottom surface of the battery can 4a, and other than that, the lithium secondary battery was manufactured in the same manner as in each of the above-described examples.
【0028】(比較例2)この比較例の場合、図4に示
すように、正極1については、正極集電体1aに取り付
けられた正極集電タブ5を電池蓋4bの内面に溶接させ
る一方、負極2については、上記実施例4の場合と同様
に、負極集電体2aにおいて負極材料2bが付着されて
いない部分の幅を3mmにし、このように負極材料2b
が付着されていない負極集電体2aの部分を電池缶4a
内の底面部に圧着させるようにしてリチウム二次電池を
作製した。Comparative Example 2 In this Comparative Example, as shown in FIG. 4, for the positive electrode 1, the positive electrode current collector tab 5 attached to the positive electrode current collector 1a is welded to the inner surface of the battery lid 4b. As for the negative electrode 2, the width of the portion of the negative electrode current collector 2a to which the negative electrode material 2b is not adhered is set to 3 mm, as in the case of the fourth embodiment.
Portion of the negative electrode current collector 2a on which the battery is not attached is attached to the battery can 4a.
A lithium secondary battery was manufactured so as to be pressure-bonded to the bottom part of the inside.
【0029】(比較例3)この比較例の場合、図5に示
すように、負極2については、負極集電体2aに取り付
けられた負極集電タブ6を電池缶4a内の底面部に溶接
させる一方、正極1については、上記実施例4の場合と
同様に、正極集電体1aにおいて正極材料1bが付着さ
れていない部分の幅を3mmし、このように正極材料1
bが付着されていない正極集電体1aの部分を電池蓋4
bの内面に圧着させてリチウム二次電池を作製した。(Comparative Example 3) In this comparative example, as shown in FIG. 5, for the negative electrode 2, the negative electrode current collector tab 6 attached to the negative electrode current collector 2a was welded to the bottom surface of the battery can 4a. On the other hand, for the positive electrode 1, as in the case of the fourth embodiment, the width of the portion of the positive electrode current collector 1a where the positive electrode material 1b is not attached is set to 3 mm.
The portion of the positive electrode current collector 1a where b is not attached is attached to the battery lid 4
A lithium secondary battery was manufactured by pressing the inner surface of b.
【0030】次に、上記のようにして作製した実施例1
〜9及び比較例1〜3の各二次電池について、温度25
℃の条件の下で、充電電流1Aで充電終止電圧5.2V
まで充電を行なった後、放電電流1Aで放電終止電圧3
Vまで放電を行ない、これを1サイクルとして充放電を
繰り返し、各電池における容量が初期容量の80%にな
るサイクル数を求め、その結果を下記の表1に示した。Next, Example 1 produced as described above
9 to 9 and each of the secondary batteries of Comparative Examples 1 to 3, a temperature of 25
Under the condition of ℃, charging current 1A, end-of-charge voltage 5.2V
After charging up to, discharge current 1A and discharge end voltage 3
The battery was discharged to V, and charging and discharging were repeated by setting this as one cycle, and the number of cycles in which the capacity of each battery was 80% of the initial capacity was determined. The results are shown in Table 1 below.
【0031】[0031]
【表1】 [Table 1]
【0032】この結果、正極材料1bが付着されていな
い正極集電体1aの部分を電池蓋4bの内面部に圧着さ
せると共に負極材料2bが付着されていない負極集電体
2aの部分を電池缶4a内の底面部に圧着させた実施例
1〜9の各二次電池は、正極1と負極2との双方又は何
れか一方をこのように圧着させなかった比較例1〜3の
各二次電池に比べて初期容量の80%になるサイクル数
が増加しており、大電流で充放電を行なった場合であっ
ても、長期に亘って安定した充放電が行なえるようにな
っていた。As a result, the portion of the positive electrode current collector 1a to which the positive electrode material 1b is not attached is pressure-bonded to the inner surface of the battery lid 4b, and the portion of the negative electrode current collector 2a to which the negative electrode material 2b is not attached is attached to the battery can. Each of the secondary batteries of Examples 1 to 9 that was pressure-bonded to the bottom surface portion in 4a was a secondary battery of Comparative Examples 1 to 3 in which both or one of the positive electrode 1 and the negative electrode 2 was not pressure-bonded in this manner. The number of cycles at which the initial capacity is 80% of that of the battery is increased, and stable charging / discharging can be performed for a long period even when charging / discharging is performed at a large current.
【0033】また、上記の実施例1〜9の二次電池にお
いて、正極材料1bや負極材料2bをそれぞれの集電体
1a,2aに付着させない部分の幅を1〜10mmの範
囲にした実施例2〜7及び実施例9のものにおいては、
初期容量の80%になるサイクル数が増加しており、特
に、正極集電体1aが圧着される電池蓋4bの内面部及
び負極集電体2aが圧着される電池缶4a内の底面部に
それぞれ集電網10を取り付けた実施例9のものにおい
ては、さらに初期容量の80%になるサイクル数が増加
し、大電流で充放電を行なった場合であっても、より長
期に亘って安定した充放電が行なえた。In addition, in the secondary batteries of Examples 1 to 9 described above, the widths of the portions where the positive electrode material 1b and the negative electrode material 2b are not attached to the respective current collectors 1a and 2a are set within the range of 1 to 10 mm. 2-7 and Example 9,
The number of cycles reaching 80% of the initial capacity is increasing. Especially, on the inner surface part of the battery lid 4b to which the positive electrode current collector 1a is pressure bonded and the bottom surface part inside the battery can 4a to which the negative electrode current collector 2a is pressure bonded. In the case of Example 9 in which each of the current collecting networks 10 was attached, the number of cycles at which the initial capacity reached 80% increased, and even when charging / discharging was performed at a large current, the cycle was stable for a longer period of time. I was able to charge and discharge.
【0034】(実施例10)この実施例においては、下
記のように正極材料にオキシ水酸化ニッケル(NiOO
H)を用いて正極を作製する一方、負極材料にMm系の
水素吸蔵合金を用いて負極を作製し、前記の図2に示す
ような構造になった円筒型のニッケル・水素二次電池を
作製した。Example 10 In this example, nickel oxyhydroxide (NiOO) was used as the positive electrode material as follows.
H) is used to manufacture a positive electrode, while a negative electrode is manufactured using an Mm-based hydrogen storage alloy to prepare a negative electrode, and a cylindrical nickel-hydrogen secondary battery having the structure shown in FIG. It was made.
【0035】[正極の作製]正極を作製するにあたって
は、正極材料であるオキシ水酸化ニッケルに対してメチ
ルセルロースを1重量%含有する水溶液を加え、これら
を混練してペーストにし、このペーストを正極集電体で
ある厚み0.05mmのニッケル薄板の両面に塗布し、
これを乾燥させて正極を作製した。なお、上記のように
正極材料を含むペーストを正極集電体に塗布して正極を
作製するにあたり、この実施例においては、正極集電体
に上記のペーストを塗布しない部分を設けるようにし、
その幅を3mmにした。[Preparation of Positive Electrode] To prepare a positive electrode, an aqueous solution containing 1% by weight of methylcellulose is added to nickel oxyhydroxide, which is a positive electrode material, and these are kneaded to form a paste. Apply to both sides of a 0.05 mm thick nickel thin plate that is an electric body,
This was dried and the positive electrode was produced. Incidentally, when the paste containing the positive electrode material is applied to the positive electrode current collector to manufacture the positive electrode as described above, in this embodiment, the positive electrode current collector is provided with a portion where the paste is not applied,
Its width was 3 mm.
【0036】[負極の作製]負極を作製するにあたって
は、負極材料として使用するMm系の水素吸蔵合金に、
MmNi3.2 Co1.0 Al0.2 Mn0.6 の組成からなる
水素吸蔵合金を使用し、これにポリエチレンオキサイド
と水とを加え、これらを混練してペーストにし、このペ
ーストを負極集電体である厚み0.05mmのニッケル
薄板の両面に塗布し、これを乾燥させて負極を作製し
た。なお、上記のように負極材料を含むペーストを負極
集電体に塗布して負極を作製するにあたっては、上記の
正極の場合と同様に、負極集電体に上記のペーストを塗
布しない部分を設け、その幅を3mmにした。[Preparation of Negative Electrode] In preparing the negative electrode, an Mm-based hydrogen storage alloy used as a negative electrode material was prepared.
A hydrogen storage alloy having a composition of MmNi 3.2 Co 1.0 Al 0.2 Mn 0.6 is used, polyethylene oxide and water are added thereto, and these are kneaded to form a paste, and the paste is a negative electrode current collector having a thickness of 0.05 mm. Was applied to both surfaces of the nickel thin plate of No. 1 and dried to prepare a negative electrode. When the paste containing the negative electrode material is applied to the negative electrode current collector as described above to form the negative electrode, the negative electrode current collector is provided with a portion to which the paste is not applied, as in the case of the positive electrode. , Its width was 3 mm.
【0037】[電池の作製]この実施例の二次電池を作
製するにあたっても、図2に示すように、上記のように
して作製した正極1と負極2との間にナイロン不織布で
構成されたセパレータ3を介在させ、正極材料1bが付
着されていない正極集電体1aの部分と、負極材料2b
が付着されていない負極集電体2aの部分とがそれぞれ
逆方向に突出するようにして、これらをスパイラル状に
巻いて電極群を得た。[Preparation of Battery] Also in preparing the secondary battery of this example, as shown in FIG. 2, a nylon non-woven fabric was formed between the positive electrode 1 and the negative electrode 2 prepared as described above. A portion of the positive electrode current collector 1a where the separator 3 is interposed and the positive electrode material 1b is not attached, and the negative electrode material 2b.
Part of the negative electrode current collector 2a to which is not attached is projected in the opposite direction, and these are spirally wound to obtain an electrode group.
【0038】そして、負極端子4aとなる電池缶4a
と、正極端子4bとなる電池蓋4bとで構成される電池
容器4を用い、この電池缶4a内の底面部に負極材料2
bが付着されていない負極集電体2aの部分が接触する
ようにして、上記の電極群を電池缶4a内に収容させた
後、この電池缶4a内に電解液として7Mの水酸化カリ
ウム水溶液を注液し、その後、周囲に絶縁パッキン7が
取り付けられた電池蓋4bを電池缶4a内に押し込むよ
うにして取り付け、電池缶4aをこの電池蓋4bによっ
て封口し、電池蓋4bの内面部に正極材料1bが付着さ
れていない正極集電体1aの部分を圧着させると共に、
電池缶4a内の底面部に負極材料2bが付着されていな
い負極集電体2aの部分を圧着させて、ニッケル・水素
二次電池を作製した。なお、上記のように正極材料1b
が付着されていない正極集電体1aの部分を電池蓋4b
の内面部に圧着させると共に、負極材料2bが付着され
ていない負極集電体2aの部分を電池缶4a内の底面部
に圧着させるにあたっては、その圧着部分の長さがそれ
ぞれ約1mm程度になるようにした。The battery can 4a serving as the negative electrode terminal 4a
And a battery lid 4b serving as a positive electrode terminal 4b, and a negative electrode material 2 is formed on the bottom surface of the battery can 4a.
After the above-mentioned electrode group was housed in the battery can 4a such that the portion of the negative electrode current collector 2a to which b was not attached was brought into contact, a 7M aqueous potassium hydroxide solution was used as an electrolytic solution in the battery can 4a. Then, the battery lid 4b having the insulating packing 7 attached thereto is pushed into the battery can 4a, and the battery can 4a is sealed by the battery lid 4b. While pressing the portion of the positive electrode current collector 1a to which the positive electrode material 1b is not attached,
A portion of the negative electrode current collector 2a to which the negative electrode material 2b was not attached was pressure-bonded to the bottom surface of the battery can 4a to produce a nickel-hydrogen secondary battery. In addition, as described above, the positive electrode material 1b
The portion of the positive electrode current collector 1a not attached to the battery cover 4b
When the portion of the negative electrode current collector 2a to which the negative electrode material 2b is not attached is pressure-bonded to the bottom portion of the battery can 4a while being pressure-bonded to the inner surface of the battery, the length of each pressure-bonded portion is about 1 mm. I did it.
【0039】(比較例4)この比較例においても、上記
の実施例10の場合と同様に、正極材料にオキシ水酸化
ニッケル(NiOOH)を用いて正極を作製すると共
に、負極材料に上記のMm系の水素吸蔵合金を用いて負
極を作製するようにし、この比較例においては、図1に
示した従来の二次電池の場合と同様に、正極1の正極集
電体1aに取り付けられた正極集電タブ5を電池蓋4b
の内面に溶接させると共に、負極2の負極集電体2aに
取り付けられた負極集電タブ6を電池缶4a内の底面部
に溶接させ、それ以外については、上記の実施例10の
場合と同様にしてニッケル・水素二次電池を作製した。(Comparative Example 4) Also in this Comparative Example, as in Example 10 above, a positive electrode was prepared using nickel oxyhydroxide (NiOOH) as the positive electrode material, and the above Mm was used as the negative electrode material. In this comparative example, the positive electrode attached to the positive electrode current collector 1a of the positive electrode 1 was used in the same manner as in the conventional secondary battery shown in FIG. Connect the current collecting tab 5 to the battery lid 4b
And the negative electrode current collector tab 6 attached to the negative electrode current collector 2a of the negative electrode 2 are welded to the bottom surface of the battery can 4a. Otherwise, the same as in the case of Example 10 above. Then, a nickel-hydrogen secondary battery was produced.
【0040】次に、上記のようにして作製した実施例1
0及び比較例4の各二次電池について、前記の実施例1
〜9及び比較例1〜3の場合と同様に、温度25℃の条
件の下で、充電電流1Aで充電終止電圧5.2Vまで充
電を行なった後、放電電流1Aで放電終止電圧3Vまで
放電を行ない、これを1サイクルとして充放電を繰り返
し、各電池における容量が初期容量の80%になるサイ
クル数を求めた。Next, Example 1 produced as described above
0 and the respective secondary batteries of Comparative Example 4 in Example 1 above.
9 to 9 and Comparative Examples 1 to 3, under the condition of a temperature of 25 ° C., after charging to a charge end voltage of 5.2 V with a charge current of 1 A, discharge to a discharge end voltage of 3 V with a discharge current of 1 A. This was set as one cycle, and charging / discharging was repeated to obtain the number of cycles in which the capacity of each battery was 80% of the initial capacity.
【0041】この結果、図1に示した従来の二次電池の
場合と同様にして作製した比較例4の二次電池において
は、上記サイクル数が1000回であったのに対し、図
2に示すように正極材料1bが付着されていない正極集
電体1aの部分を電池蓋4bの内面部に圧着させると共
に負極材料2bが付着されていない負極集電体2aの部
分を電池缶4a内の底面部に圧着させた実施例10の二
次電池においては、上記のサイクル数が1200回であ
り、比較例4の二次電池に比べて初期容量の80%にな
るサイクル数が増加しており、大電流で充放電を行なっ
た場合であっても、長期に亘って安定した充放電が行な
えるようになっていた。As a result, in the secondary battery of Comparative Example 4 produced in the same manner as in the case of the conventional secondary battery shown in FIG. 1, the number of cycles was 1000, while in FIG. As shown, the portion of the positive electrode current collector 1a to which the positive electrode material 1b is not attached is pressure-bonded to the inner surface of the battery lid 4b, and the portion of the negative electrode current collector 2a to which the negative electrode material 2b is not attached is located inside the battery can 4a. In the secondary battery of Example 10 that was pressure-bonded to the bottom surface, the number of cycles was 1200, and the number of cycles that was 80% of the initial capacity increased compared to the secondary battery of Comparative Example 4. Even when charging / discharging with a large current, stable charging / discharging can be performed for a long period of time.
【0042】[0042]
【発明の効果】以上詳述したように、この発明における
二次電池においては、正極集電体に正極材料を付着させ
た正極と、負極集電体に負極材料を付着させた負極との
間にセパレータを介した状態で多層状に形成した電極群
を電池容器内に収容させるにあたり、正極集電体に正極
材料が付着されていない部分を設け、この部分を正極端
子に圧着させると共に、負極集電体に負極材料が付着さ
れていない部分を設け、この部分を負極端子に圧着させ
るようにしたため、電流がこれらの集電体を通して流れ
るようになり、電流が正極集電タブや負極集電タブを通
して流れる場合に比べて、電流が流れる部分の面積が非
常に大きくなった。As described above in detail, in the secondary battery according to the present invention, the positive electrode current collector has the positive electrode material attached to the positive electrode and the negative electrode current collector has the negative electrode material attached to the negative electrode. In accommodating a multi-layered electrode group in a battery container with a separator interposed between them, a portion where the positive electrode material is not attached to the positive electrode current collector is provided, and this portion is crimped to the positive electrode terminal, and the negative electrode Since the current collector has a part where the negative electrode material is not attached and this part is crimped to the negative electrode terminal, the current flows through these current collectors, and the current flows through the positive electrode current collector tab and the negative electrode current collector. Compared with the case where the current flows through the tab, the area where the current flows becomes much larger.
【0043】この結果、この発明における二次電池にお
いては、その電池容量を大きくして大きい電流で充放電
を行なうような場合であっても、正極や負極の一部が加
熱されて、正極材料や負極材料がそれぞれの集電体から
剥離するということが少なく、大きい電流で安定した充
放電が行なえるサイクル特性に優れた二次電池が得られ
るようになり、大きい電流で多くの充放電を行なう電気
自動車等においても好適に利用できるようになった。As a result, in the secondary battery of the present invention, even when the battery capacity is increased and charging / discharging is performed with a large current, a part of the positive electrode or the negative electrode is heated and the positive electrode material is heated. It is possible to obtain a secondary battery with excellent cycle characteristics that can perform stable charge and discharge with a large current, and to prevent a large amount of charge and discharge with a large current. It has become suitable for use in electric vehicles that are carried out.
【図1】従来及び比較例1,4の二次電池の内部構造を
示した断面説明図である。FIG. 1 is an explanatory cross-sectional view showing the internal structure of secondary batteries of a conventional type and comparative examples 1 and 4.
【図2】この発明の実施例1〜8及び実施例10の二次
電池の内部構造を示した断面説明図である。FIG. 2 is a sectional explanatory view showing the internal structure of the secondary batteries of Examples 1 to 8 and Example 10 of the present invention.
【図3】この発明の実施例9の二次電池の内部構造を示
した断面説明図である。FIG. 3 is a sectional explanatory view showing an internal structure of a secondary battery of embodiment 9 of the present invention.
【図4】比較例2の二次電池の内部構造を示した断面説
明図である。FIG. 4 is a cross-sectional explanatory view showing an internal structure of a secondary battery of Comparative Example 2.
【図5】比較例3の二次電池の内部構造を示した断面説
明図である。5 is a cross-sectional explanatory view showing the internal structure of the secondary battery of Comparative Example 3. FIG.
1 正極 1a 正極集電体 1b 正極材料 2 負極 2a 負極集電体 2b 負極材料 3 セパレータ 4 電池容器 4a 負極端子(電池缶) 4b 正極端子(電池蓋) 10 集電網 1 positive electrode 1a Positive electrode current collector 1b Positive electrode material 2 Negative electrode 2a Negative electrode current collector 2b Negative electrode material 3 separator 4 battery container 4a Negative electrode terminal (battery can) 4b Positive electrode terminal (battery lid) 10 electricity collection network
───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平2−288158(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/04 H01M 10/40 H01M 6/02 H01M 2/26 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Nishio 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (56) Reference JP-A-2-288158 (JP, A) (58) ) Fields investigated (Int.Cl. 7 , DB name) H01M 10/04 H01M 10/40 H01M 6/02 H01M 2/26
Claims (4)
と、負極集電体に負極材料を付着させた負極との間にセ
パレータを介した状態で多層状に形成した電極群を電池
容器内に収容させた二次電池において、正極材料を付着
させる正極集電体の端部に正極材料が付着されていない
部分を設けると共に、負極材料を付着させる負極集電体
の端部に負極材料が付着されていない部分を設け、正極
材料が付着されていない正極集電体の部分を正極端子に
圧着させると共に、負極材料が付着されていない負極集
電体の部分を負極端子に圧着させたことを特徴とする二
次電池。1. A battery comprising a positive electrode current collector having a positive electrode material adhered thereto and a negative electrode current collector having a negative electrode material adhered thereto and a separator interposed between the positive electrode current collector and a negative electrode formed in a multilayer structure. In the secondary battery housed in the container, a portion where the positive electrode material is not attached is provided at the end of the positive electrode current collector to which the positive electrode material is attached, and the negative electrode is attached to the end of the negative electrode current collector to which the negative electrode material is attached. Provide a part where no material is attached, crimp the part of the positive electrode current collector to which the positive electrode material is not attached to the positive electrode terminal, and press the part of the negative electrode current collector to which the negative electrode material is not attached to the negative electrode terminal. A secondary battery characterized by that.
負極材料が付着されていない負極集電体の部分の幅及び
正極材料が付着されていない正極集電体の部分の幅がそ
れぞれ1〜10mmの範囲であることを特徴とする二次
電池。2. The secondary battery according to claim 1, wherein
A secondary battery, wherein the width of the portion of the negative electrode current collector to which the negative electrode material is not attached and the width of the portion of the positive electrode current collector to which the positive electrode material is not attached are each in the range of 1 to 10 mm.
いて、上記の正極端子と負極端子の少なくとも一方に集
電網又は導電性ペーストを設けたことを特徴とする二次
電池。3. The secondary battery according to claim 1, wherein a current collecting network or a conductive paste is provided on at least one of the positive electrode terminal and the negative electrode terminal.
次電池において、その電池容量が5Wh以上であること
を特徴とする二次電池。4. The secondary battery according to claim 1, wherein the secondary battery has a battery capacity of 5 Wh or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18887696A JP3363708B2 (en) | 1996-06-27 | 1996-06-27 | Rechargeable battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18887696A JP3363708B2 (en) | 1996-06-27 | 1996-06-27 | Rechargeable battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1021953A JPH1021953A (en) | 1998-01-23 |
JP3363708B2 true JP3363708B2 (en) | 2003-01-08 |
Family
ID=16231429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18887696A Expired - Fee Related JP3363708B2 (en) | 1996-06-27 | 1996-06-27 | Rechargeable battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3363708B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4866496B2 (en) | 1999-04-08 | 2012-02-01 | パナソニック株式会社 | Manufacturing method of secondary battery |
JP2000323117A (en) * | 1999-05-14 | 2000-11-24 | Sanyo Electric Co Ltd | Cylindrical storage battery |
JP3709495B2 (en) * | 1999-07-15 | 2005-10-26 | 三菱マテリアル株式会社 | Lithium ion polymer secondary battery |
US11495833B2 (en) | 2018-04-06 | 2022-11-08 | Sanyo Electric Co., Ltd. | Cylindrical battery |
WO2021086078A1 (en) | 2019-11-01 | 2021-05-06 | 주식회사 엘지에너지솔루션 | Secondary battery and method for manufacturing same |
WO2022138334A1 (en) * | 2020-12-24 | 2022-06-30 | 株式会社村田製作所 | Secondary battery and method for producing secondary battery |
-
1996
- 1996-06-27 JP JP18887696A patent/JP3363708B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1021953A (en) | 1998-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6521884B2 (en) | Non-aqueous electrolyte battery system | |
JP5218808B2 (en) | Lithium ion battery | |
JP3619125B2 (en) | Nonaqueous electrolyte secondary battery | |
JPH09293537A (en) | Nonaqueous electrolyte secondary battery and manufacture thereof | |
JP2001176547A (en) | Lithium secondary battery | |
JP2003217667A (en) | Nonaqueous electrolyte secondary battery | |
WO2022138451A1 (en) | Electrode, nonaqueous electrolyte battery, and battery pack | |
JP2002237292A (en) | Nonaqueous electrolyte secondary battery | |
JPH1167281A (en) | Battery | |
JP3363708B2 (en) | Rechargeable battery | |
JP2000090980A (en) | Lithium secondary battery | |
JP4455008B2 (en) | Nonaqueous electrolyte secondary battery | |
JP7209196B2 (en) | Cylindrical secondary battery | |
JP2004259485A (en) | Nonaqueous electrolyte secondary battery | |
US20030049532A1 (en) | Negative electrode for lithium battery and lithium battery | |
JP4476379B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2007172878A (en) | Battery and its manufacturing method | |
JP4457441B2 (en) | Nonaqueous electrolyte secondary battery | |
JP4878690B2 (en) | Lithium secondary battery | |
JP2000030743A (en) | Battery | |
JP2004193139A (en) | Non-aqueous electrolyte secondary battery | |
JP2000323173A (en) | Nonaqueous secondary battery | |
JP3349364B2 (en) | Battery current collector, battery and non-aqueous electrolyte battery | |
WO2024127668A1 (en) | Non-aqueous electrolyte battery and battery pack | |
JP4389398B2 (en) | Non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071025 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081025 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081025 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091025 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101025 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101025 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111025 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111025 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121025 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121025 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131025 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |