JP3362756B2 - Oxygen-absorbing resin composition and oxygen-absorbing laminate - Google Patents

Oxygen-absorbing resin composition and oxygen-absorbing laminate

Info

Publication number
JP3362756B2
JP3362756B2 JP33503495A JP33503495A JP3362756B2 JP 3362756 B2 JP3362756 B2 JP 3362756B2 JP 33503495 A JP33503495 A JP 33503495A JP 33503495 A JP33503495 A JP 33503495A JP 3362756 B2 JP3362756 B2 JP 3362756B2
Authority
JP
Japan
Prior art keywords
oxygen
resin composition
absorbing
composition
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33503495A
Other languages
Japanese (ja)
Other versions
JPH09176499A (en
Inventor
秀利 畠山
芳樹 伊東
誠 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP33503495A priority Critical patent/JP3362756B2/en
Publication of JPH09176499A publication Critical patent/JPH09176499A/en
Application granted granted Critical
Publication of JP3362756B2 publication Critical patent/JP3362756B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、保存性の改良され
た熱成形性に優れる酸素吸収性樹脂組成物及びこれから
なる酸素吸収性積層体に関する。また本発明は、ポリ−
4−メチルペンテン−1(以下、ポリメチルペンテンと
言う)を通気性隔離層に用いた酸素吸収性積層体に関す
る。本発明の酸素吸収性積層体からなる包装容器は酸素
吸収性能に優れまたガスバリヤー性にも優れ、食品、薬
品等の保存に適する。
TECHNICAL FIELD The present invention relates to an oxygen-absorbing resin composition having improved storage stability and excellent thermoformability, and an oxygen-absorbing laminate comprising the same. The present invention also provides a poly-
The present invention relates to an oxygen-absorbing laminate in which 4-methylpentene-1 (hereinafter referred to as polymethylpentene) is used as a breathable isolation layer. The packaging container comprising the oxygen-absorbing laminate of the present invention is excellent in oxygen absorption performance and gas barrier property, and is suitable for storing foods, chemicals and the like.

【0002】[0002]

【従来の技術】従来、フィルム、シート、容器等の部材
に脱酸素剤組成物を樹脂中に分散させた樹脂層を用い、
包装材料自体に酸素吸収能力を持たせる技術が特公昭6
2ー1824、特開昭57ー146651、特開平4ー
45152、特開平4ー90848等に提案されてい
る。しかしながら、これら従来技術のものは酸素吸収速
度が緩慢であり酸素吸収能力が低く、実用的な脱酸素機
能が得られないという大きな問題があった。本発明者ら
は、この脱酸素機能を実用的な水準に引き上げるべく種
々検討した結果、金属鉄主剤の脱酸素剤組成物を配合し
た樹脂層を用い従来技術のものを大幅に上回る実用的な
脱酸素機能を発揮することができる酸素吸収性積層体を
開発するに至り、既に特願平7ー158159に提案し
た。
2. Description of the Related Art Conventionally, a resin layer in which a deoxidizer composition is dispersed in a resin has been used for a member such as a film, a sheet or a container.
The technology that gives the packaging material itself oxygen absorption capability is
2-1824, JP-A-57-146651, JP-A-4-45152, and JP-A-4-90848. However, these conventional techniques have a serious problem that the oxygen absorption rate is slow, the oxygen absorption capacity is low, and a practical deoxidization function cannot be obtained. As a result of various studies to raise the deoxidizing function to a practical level, the present inventors have used a resin layer containing a deoxidizing agent composition containing a metallic iron base compound as a practical material, which is far superior to that of the prior art. The development of an oxygen-absorbing laminate capable of exerting a deoxidizing function has been developed, and it has already been proposed in Japanese Patent Application No. 7-158159.

【0003】しかしながら、本発明者らの研究によれ
ば、酸素吸収性積層体の酸素吸収性能を改良してその性
能が向上するに伴って、取り扱い上の問題点が発生して
くることが判明した。酸素吸収能に最も優れた金属鉄を
主剤とする脱酸素剤組成物を配合した酸素吸収性樹脂組
成物の場合、一つには、この酸素吸収性樹脂組成物から
なる積層体が次に成形加工されるまでの保存期間中に、
またこの積層体がフィルム、シート、ボトル等に成形加
工された製品が実際に使用されるまでの保存期間中に、
簡単に包装をしただけでは従来特に問題にならなかった
ような、環境中の酸素を徐々に吸収して酸素吸収能力が
低下しまうという問題が生じた。もう一つは、酸素吸収
性積層体のシートを容器等に熱成形加工する場合、シー
ト成形後成形までの保存期間が長期にわたると、真空成
形、圧空成形等による熱成形時にシートが発泡し、シー
ト表面にあばたが生じることであった。このような問題
が起こる原因は、この積層体の酸素吸収能力が向上した
結果、酸素吸収活性が高くなったことと、これにより酸
素吸収反応に必要な水分を非常に取り込み易くなったこ
とによると考えられる。
However, according to the research conducted by the present inventors, it has been found that as the oxygen absorption performance of the oxygen-absorbing laminate is improved and the performance thereof is improved, handling problems will occur. did. In the case of an oxygen-absorbing resin composition containing a deoxidizer composition mainly composed of metallic iron, which has the best oxygen-absorbing ability, in one case, a laminate made of this oxygen-absorbing resin composition is molded next. During the storage period until processing,
In addition, during the storage period until the product in which this laminate is molded into a film, sheet, bottle, etc. is actually used,
There was a problem that oxygen in the environment was gradually absorbed and the oxygen absorption capacity decreased, which was not a problem in the past simply by simply packaging. Another is that when a sheet of an oxygen-absorbing laminate is thermoformed into a container or the like, if the storage period after sheet forming is long, the sheet foams during thermoforming such as vacuum forming and pressure forming, It was the occurrence of pockmarks on the surface of the sheet. The cause of such a problem is that the oxygen absorption capacity of this laminate was improved, resulting in higher oxygen absorption activity, and this made it very easy to take in the water necessary for the oxygen absorption reaction. Conceivable.

【0004】例えば、吸湿性の高いエチレンービニルア
ルコール共重合体や各種ナイロン等のペレットや多層シ
ートは吸湿による水分が成形加工に支障となるので、従
来から樹脂の吸湿対策として防湿包装をする等の対策が
講じられているが、フィルム、容器等に成形加工された
製品段階では、吸湿は格別問題になることはなく、ポリ
袋内袋入りケース詰め等の極めて簡便な包装で流通が可
能となる。これに対して、金属鉄主剤の脱酸素剤組成物
を配合し酸素吸収性能の改良された酸素吸収性樹脂層に
おいては、水分は本来鉄の酸化による酸素吸収反応に必
須の成分であり、反応に必要な水分を得るには脱酸素剤
組成物の吸湿性が大きくなければ、好ましい酸素吸収性
能は得られず、このため、酸素吸収性樹脂層の吸湿性
は、前記の吸湿性樹脂に採られる簡便な防湿包装では防
止できない程大きくなっている。したがって、この酸素
吸収性樹脂層からなる酸素吸収性積層体やその成形品
は、酸素吸収性能が向上すればする程、僅かな吸湿でも
酸素吸収能が働き、保存中に酸素吸収能力の低下を招く
ために、従来以上に特別な防湿対策の配慮が必要となっ
た。
For example, in the case of ethylene-vinyl alcohol copolymers having high hygroscopicity and various nylon pellets and multilayer sheets, moisture due to moisture will hinder the molding process. Therefore, moisture-proof packaging has been conventionally used as a measure against moisture absorption of resins. However, moisture absorption does not become a particular problem at the product stage when it is formed into a film, container, etc., and it can be distributed by extremely simple packaging such as packing in a plastic bag inside a bag. Become. On the other hand, in the oxygen-absorbing resin layer having an improved oxygen absorption performance by blending the oxygen absorber composition of the metallic iron base agent, water is originally an essential component for the oxygen absorption reaction due to the oxidation of iron, and the reaction In order to obtain the required water content, the oxygen absorbing property of the oxygen absorber composition is not large enough to obtain the desired oxygen absorbing performance. Therefore, the hygroscopic property of the oxygen absorbing resin layer is It is so large that it cannot be prevented with simple moisture-proof packaging. Therefore, the oxygen-absorbing laminate and its molded article made of the oxygen-absorbing resin layer, the more the oxygen-absorbing performance is improved, the more the oxygen-absorbing ability works even with a slight moisture absorption, and the oxygen-absorbing ability is reduced during storage. In order to invite them, it is necessary to take special moisture prevention measures into consideration.

【0005】また防湿対策として、シリカゲル、ゼオラ
イト等の乾燥剤を使用するにしても、吸湿性が大きく、
しかも、一旦脱酸素剤組成物に吸収された水分は非可逆
で容易に乾燥剤に除湿されない上記酸素吸収性積層体に
おいては、乾燥剤を大量に要し、しかも効果は必ずしも
十分でなく、問題を解決することはできない。また、ガ
スバリア性の完全な金属缶や金属箔積層ヒートシール性
袋による保存も考えられるが、数百kgものロール巻き
のフィルムやシートの包装には、作業性、強度、包装設
備等問題が多く、さらに容器等の成形体の包装となる
と、形状が複雑なためかさばり効率的に包装することが
できず、作業性、コスト等が問題となってくる。
Even if a desiccant such as silica gel or zeolite is used as a moisture-proof measure, the hygroscopicity is large,
Moreover, in the above oxygen-absorbing laminate in which the water once absorbed by the oxygen scavenger composition is irreversible and is not easily dehumidified by the desiccant, a large amount of the desiccant is required, and the effect is not always sufficient. Can not be solved. It is also conceivable to store it in a metal can or a metal foil laminated heat-sealing bag that has a complete gas barrier property, but there are many problems such as workability, strength, and packaging equipment when packaging a roll of film or sheet of several hundred kg. Further, when it comes to packaging a molded article such as a container, since the shape is complicated, it cannot be packaged in a bulky and efficient manner, and workability, cost and the like become problems.

【0006】また、酸素吸収性樹脂層からなる酸素吸収
性積層体の通気性膜に酸素透過性に優れるポリメチルペ
ンテンが従来から提案されている。しかしながら、ポリ
メチルペンテンの樹脂層と酸素吸収性樹脂層との接着性
に問題があり、容易に実用化に至らなかった。
Polymethylpentene, which is excellent in oxygen permeability, has been conventionally proposed for a breathable film of an oxygen-absorbing laminate comprising an oxygen-absorbing resin layer. However, there was a problem with the adhesiveness between the resin layer of polymethylpentene and the oxygen-absorbing resin layer, and it could not be put to practical use easily.

【0007】[0007]

【発明が解決しようとする課題】本発明の第一の目的
は、酸素吸収能力の向上によって新たに生じる酸素吸収
性積層体の保存性に関する上記課題を解決し、簡便な防
湿包装で長期保存が可能となり、かつ、保存中に酸素吸
収性能の低下がなく、さらには保存後の熱成形加工に問
題のない、保存性の改良された酸素吸収性積層体を提供
することにある。本発明の第二の目的は、酸素吸収性積
層体において、ポリメチルペンテンからなる通気性隔離
層を形成する上での上記課題を解決し、通気性隔離層に
ポリメチルペンテンの酸素透過性に優れる特性を生かし
ながら、接着加工性の優れた酸素吸収性積層体を提供す
ることにある。
SUMMARY OF THE INVENTION The first object of the present invention is to solve the above problems relating to the preservability of an oxygen-absorbing laminate which is newly generated by improving the oxygen-absorbing ability, and to provide long-term preservation with simple moisture-proof packaging. It is an object of the present invention to provide an oxygen-absorbing laminate that is made possible and has no deterioration in oxygen absorption performance during storage, and that has no problem in thermoforming processing after storage and has improved storage stability. A second object of the present invention is to solve the above problems in forming a breathable isolation layer made of polymethylpentene in an oxygen-absorbing laminate, and to improve the oxygen permeability of polymethylpentene in the breathable isolation layer. An object of the present invention is to provide an oxygen-absorbing laminate having excellent adhesive workability while making use of excellent characteristics.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
に鑑み鋭意研究を重ねた結果、水分を得て酸素吸収反応
を生起する脱酸素剤組成物を配合した熱可塑性樹脂中に
アルカリ土類金属酸化物を配合することにより、上記第
一の課題を解決できることを見出し、また、ポリメチル
ペンテンとポリオレフィンとの混合物からなる樹脂層を
通気性隔離層とすることにより、上記第二の課題を解決
できることを見出して、本発明を完成した。
Means for Solving the Problems The inventors of the present invention have made extensive studies in view of the above problems, and as a result, as a result, an alkali was added to a thermoplastic resin containing a deoxidizer composition that obtains water to cause an oxygen absorption reaction. By adding an earth metal oxide, it was found that the first problem can be solved, and by using a resin layer made of a mixture of polymethylpentene and polyolefin as a gas permeable isolation layer, the second The present invention has been completed by finding that the problems can be solved.

【0009】すなわち、本発明の酸素吸収性樹脂組成物
は、熱可塑性樹脂中に水分を得て酸素吸収反応を生起す
る脱酸素剤組成物とアルカリ土類金属酸化物とを分散し
てなることを特徴とする樹脂組成物である。上記本発明
の酸素吸収性樹脂組成物における脱酸素剤組成物は、金
属鉄およびハロゲン化金属からなるものが好ましく、鉄
粉およびハロゲン化金属からなるものがより好まし
さらには鉄粉にハロゲン化金属を付着させたものが最も
好ましい。また上記酸素吸収性樹脂組成物においては、
金属鉄含有率は2〜93重量%であり、好ましくは10
〜70重量%であり、またハロゲン化金属含有量は金属
鉄100重量部あたり0.1〜20重量部が好ましく、
また、アルカリ土類金属酸化物含有率は0.1〜5重量
%が好ましい。また上記鉄粉の粒径は平均粒径200μ
m以下が好ましく、1〜50μmがより好ましく、ま
た、アルカリ土類金属酸化物の粒径は平均粒径1〜20
0μmが好ましく、1〜50μmがより好ましい。
That is, the oxygen-absorbing resin composition of the present invention comprises a thermoplastic resin in which a deoxidizer composition that obtains water to cause an oxygen-absorbing reaction and an alkaline earth metal oxide are dispersed. Is a resin composition. The oxygen absorbing composition in the oxygen absorbing resin composition of the present invention is preferably made of metal iron and metal halide, rather more preferably it is made of iron powder and metal halide,
Further, iron powder to which a metal halide is attached is most preferable. Further, in the oxygen-absorbing resin composition ,
The metallic iron content is 2 to 93% by weight, preferably 10
Is about 70% by weight, and the content of the metal halide is preferably 0.1 to 20 parts by weight per 100 parts by weight of metallic iron,
The alkaline earth metal oxide content is preferably 0.1 to 5% by weight. The particle size of the iron powder is 200 μm in average particle size.
m or less, more preferably 1 to 50 μm, and the particle size of the alkaline earth metal oxide is 1 to 20 as an average particle size.
0 μm is preferable, and 1 to 50 μm is more preferable.

【0010】さらに、本発明の酸素吸収性積層体は、上
記の酸素吸収性樹脂組成物からなる中間層の少なくとも
一面に通気性隔離層を配してなる積層体である。また上
記本発明の酸素吸収性積層体は酸素吸収性樹脂組成物か
らなる中間層の一面に通気性隔離層、他面にガスバリア
性隔離層を配してなる積層体である。また上記本発明の
酸素吸収性積層体は酸素吸収性樹脂組成物からなる中間
層の両面に通気性隔離層を配してなる積層体である。
Further, the oxygen-absorbing laminate of the present invention is a laminate having a breathable isolation layer on at least one surface of the intermediate layer made of the oxygen-absorbing resin composition. Further, the oxygen-absorbing laminate of the present invention is a laminate having an air-permeable isolation layer on one side of the intermediate layer made of the oxygen-absorbing resin composition and a gas barrier isolation layer on the other side. The oxygen-absorbing laminate of the present invention is a laminate having an air-permeable isolation layer on both sides of an intermediate layer made of the oxygen-absorbing resin composition.

【0011】さらに、本発明の酸素吸収性積層体は、ポ
リオレフィンからなる樹脂に脱酸素剤組成物を分散させ
た樹脂層に、ポリ−4−メチルペンテン−1の割合が5
0重量%以下、好ましくは10〜40重量%であるポリ
オレフィンとの混合樹脂を積層してなる酸素吸収性積層
体である。また上記本発明の酸素吸収性積層体において
は、ポリオレフィンはポリエチレン、ポリプロピレンま
たはこれらの共重合体であることが好ましい。
Further, in the oxygen-absorbing laminate of the present invention, the proportion of poly-4-methylpentene-1 is 5 in the resin layer in which the oxygen scavenger composition is dispersed in the resin made of polyolefin.
It is an oxygen-absorbing laminate formed by laminating a mixed resin with a polyolefin of 0% by weight or less, preferably 10 to 40% by weight. Further, in the oxygen-absorbing laminate of the present invention, the polyolefin is preferably polyethylene, polypropylene or a copolymer thereof.

【0012】[0012]

【作用】一般に金属鉄主剤の脱酸素剤は、アルカリ土類
金属水酸化物を含有させると酸素吸収能力が低下する。
金属鉄による酸素吸収反応は、次式で説明される。 Fe → Fe2+ + 2e- (1) H2 O+1/2 O2 +2e- → 2OH- (2) Fe+H2 O+1/2 O2 +2e- →Fe2++2OH- (3) すなわち、鉄の酸化による酸素吸収は反応環境のpHに
大きく依存し、pHが高くアルカリ性になると、式
(1)、(2)の電子移動反応が阻害され、酸素吸収反
応は進みにくくなる。一方、アルカリ土類金属酸化物は
水と容易に反応して強アルカリ性のアルカリ土類金属水
酸化物となることが知られ、このため、金属鉄主剤の脱
酸素剤にアルカリ土類金属酸化物を共存させると、酸素
吸収反応に必要な水がアルカリ土類金属酸化物の水酸化
に費消されてしまい酸素吸収反応が起こりにくくなるば
かりか、生成したアルカリ土類金属水酸化物によりアル
カリ性となって、不活性化するためである。
In general, the oxygen absorbing ability of the metallic iron-based deoxidizer decreases when it contains an alkaline earth metal hydroxide.
The oxygen absorption reaction by metallic iron is described by the following equation. Fe → Fe 2+ + 2e - ( 1) H 2 O + 1/2 O 2 + 2e - → 2OH - (2) Fe + H 2 O + 1/2 O 2 + 2e - → Fe 2+ + 2OH - (3) That is, by oxidation of iron Oxygen absorption largely depends on the pH of the reaction environment, and when the pH is high and alkaline, the electron transfer reactions of the formulas (1) and (2) are obstructed and the oxygen absorption reaction becomes difficult to proceed. On the other hand, it is known that alkaline earth metal oxides easily react with water to form a strongly alkaline alkaline earth metal hydroxide. Therefore, the alkaline earth metal oxide is used as a deoxidizer for the metallic iron base agent. When coexisting, the water required for the oxygen absorption reaction is consumed by the hydroxylation of the alkaline earth metal oxide, making it difficult for the oxygen absorption reaction to occur, and the alkaline earth metal hydroxide produced makes it alkaline. To inactivate it.

【0013】ところが、本発明の酸素吸収性樹脂組成物
においては、樹脂中に脱酸素剤組成物とアルカリ土類金
属酸化物とが共存しても、保存中の脱酸素剤組成物への
吸湿を抑制して酸素吸収性能の失効を防ぎ、使用状態で
は酸素吸収反応を全く阻害しないという驚くべき効果を
奏する。これは、脱酸素剤組成物とアルカリ土類金属酸
化物とは樹脂中に十分に分散し、アルカリ土類金属酸化
物は脱酸素剤組成物とは樹脂により実質的に隔離された
状態にあり、水酸化物となってもアルカリイオンは脱酸
素剤組成物に移行しにくいため、脱酸素剤組成物自体は
アルカリ性とならないことにもとずく。さらには、酸素
吸収性樹脂組成物のアルカリ土類金属酸化物が、吸湿に
よる水分ばかりか、熱可塑性樹脂又は脱酸素剤組成物中
に存する僅かの付着水分や結晶水を除去するために、酸
素吸収性樹脂組成物の押出機による混合、混練や熱成
形、その後の酸素吸収性積層体の熱成形加工に際し、発
泡等のトラブル防止に著しい効果を奏する。
However, in the oxygen-absorbing resin composition of the present invention, even if the oxygen absorber composition and the alkaline earth metal oxide coexist in the resin, the oxygen absorber composition absorbs moisture during storage. Is suppressed to prevent the oxygen absorption performance from deactivating, and the oxygen absorption reaction is not hindered at all when used. This means that the oxygen absorber composition and the alkaline earth metal oxide are sufficiently dispersed in the resin, and the alkaline earth metal oxide is substantially separated from the oxygen absorber composition by the resin. However, even if a hydroxide is formed, the alkali ions are unlikely to migrate to the oxygen absorber composition, so that the oxygen absorber composition itself does not become alkaline. Furthermore, the alkaline earth metal oxide of the oxygen-absorbing resin composition is not only water due to moisture absorption, but oxygen is removed in order to remove a slight amount of attached water or crystallization water present in the thermoplastic resin or the oxygen absorber composition. In the mixing, kneading and thermoforming of the absorbent resin composition by an extruder, and the subsequent thermoforming of the oxygen-absorbing laminate, a remarkable effect is obtained in preventing troubles such as foaming.

【0014】[0014]

【発明の実施の形態】本発明の酸素吸収性樹脂組成物に
配合される脱酸素剤組成物は、水分を得て酸素吸収反応
を生起することができるものであって熱可塑性樹脂中に
分散可能なものであれば、必ずしも制限することなく使
用できるが、金属鉄を酸素吸収反応の主剤とする脱酸素
剤組成物が好ましく、特に金属鉄とハロゲン化金属とを
含有するものが好ましい。主剤の金属鉄としては、酸素
吸収反応を起こしうるものであれば純度等に特に制限す
ることなく使用でき、例えば、表面の一部が既に酸化し
ていても他の金属を含有するものであってもよい。また
金属鉄は粒状または繊維状のものが好ましく、例えば、
還元鉄粉、噴霧鉄粉、電解鉄粉等の鉄粉、ダライ粉、鋳
鉄、鋼材等の各種鉄の粉砕物や研削品等が用いられる。
鉄粉は、酸素吸収性樹脂の層厚を薄くできるためには細
かい方がよく、平均粒径が200μm以下が好ましく、
特に1〜50μmが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The oxygen scavenger composition to be blended with the oxygen-absorbing resin composition of the present invention is one which can obtain water to cause an oxygen-absorption reaction and is dispersed in a thermoplastic resin. If possible, it can be used without limitation, but a deoxidizer composition containing metallic iron as a main component of the oxygen absorption reaction is preferable, and one containing metallic iron and a metal halide is particularly preferable. As the main ingredient, metallic iron, as long as it is capable of causing an oxygen absorption reaction, it can be used without any particular limitation on the purity and the like.For example, even if a part of the surface is already oxidized, it contains another metal. May be. Further, the metallic iron is preferably granular or fibrous, for example,
Iron powder such as reduced iron powder, atomized iron powder, electrolytic iron powder, pulverized products of various irons such as Dalai powder, cast iron, steel materials, and ground products are used.
The iron powder is preferably fine so that the layer thickness of the oxygen absorbing resin can be made thin, and the average particle size is preferably 200 μm or less,
Particularly, 1 to 50 μm is preferable.

【0015】ハロゲン化金属は主剤の酸素吸収反応に触
媒的に作用するものである。ハロゲン化金属としては、
アルカリ金属、アルカリ土類金属、銅、亜鉛、アルミニ
ウム、スズ、鉄、コバルト及びニッケルからなる群から
選ばれる金属のハロゲン化物が挙げられ、リチウム、カ
リウム、ナトリウム、マグネシウム、カルシウム又はバ
リウムのハロゲン化物が好ましい。また上記金属のハロ
ゲン化物としては、塩素化物、臭素化物、ヨウ素化物が
挙げられ、塩素化物が好ましい。ハロゲン化金属の配合
量は、金属鉄100重量部あたり0.1〜20重量部の
範囲に選ばれる。酸素吸収性樹脂組成物中でハロゲン化
金属が実質的に全量金属鉄に付着し金属鉄から分離した
ものがない場合は、ハロゲン化金属は主剤の酸素吸収反
応に効率的に作用するので、ハロゲン化金属の配合量
は、金属鉄100重量部あたり0.1〜5重量部で十分
である。
The metal halide catalytically acts on the oxygen absorption reaction of the main agent. As a metal halide,
Examples thereof include halides of metals selected from the group consisting of alkali metals, alkaline earth metals, copper, zinc, aluminum, tin, iron, cobalt and nickel, including lithium, potassium, sodium, magnesium, calcium or barium halides. preferable. Examples of halides of the above metals include chlorides, bromides and iodides, with chlorides being preferred. The amount of the metal halide compounded is selected in the range of 0.1 to 20 parts by weight per 100 parts by weight of metallic iron. In the oxygen-absorbing resin composition, when substantially all of the metal halide adheres to metallic iron and is not separated from metallic iron, the halogenated metal effectively acts on the oxygen-absorbing reaction of the main component. The compounding amount of the metal oxide is 0.1 to 5 parts by weight per 100 parts by weight of metallic iron.

【0016】ハロゲン化金属は、脱酸素剤組成物の一成
分として金属鉄と共に熱可塑性樹脂に配合されるが、樹
脂中では金属鉄に付着して容易に分離しないよう予め混
合して添加することが好ましい。例えば、らいかい機、
ボールミル、スピードミル等を用い粉砕かつ捏和的にハ
ロゲン化金属と鉄粉を混合する方法、鉄粉表面の凹部に
ハロゲン化金属微粒子を埋めこむ方法、バインダーを用
いハロゲン化金属を鉄粉表面に付着させる方法、ハロゲ
ン化金属水溶液と鉄粉を混合した後乾燥して鉄粉表面に
付着させる方法等の方法がとられる。脱酸素剤組成物中
における鉄粉へのハロゲン化金属の付着状況を確認する
には、電子線マイクロアナライザーによる解析が好適で
あり、SEM像で捉えた金属鉄粒子内にハロゲン化金属
を構成するハロゲン元素および金属元素が鉄と共に電子
線像として存在することにより、ハロゲン化金属が鉄粉
の表面に付着していることが確認できる。
The metal halide is blended in the thermoplastic resin together with metallic iron as a component of the oxygen scavenger composition, but it should be added in advance by mixing so as not to be easily separated from the metallic iron in the resin. Is preferred. For example, Raikai Machine,
A method of pulverizing and kneading a metal halide and iron powder by using a ball mill, a speed mill, etc., a method of embedding fine metal halide particles in recesses on the surface of the iron powder, a metal halide on the surface of the iron powder using a binder. Examples of the method include a method of adhering, a method of mixing an aqueous metal halide solution and iron powder, and then drying and adhering it to the surface of iron powder. In order to confirm the adhesion state of the metal halide to the iron powder in the oxygen scavenger composition, analysis by an electron beam microanalyzer is suitable, and the metal halide is formed in the metal iron particles captured by the SEM image. Since the halogen element and the metal element are present together with iron as an electron beam image, it can be confirmed that the metal halide is attached to the surface of the iron powder.

【0017】アルカリ土類金属酸化物としては、酸化マ
グネシウム、酸化カルシウム、酸化ストロンチウム、酸
化バリウムが挙げられ、入手のし易さ、反応性等の点か
ら、酸化マグネシウムまたは酸化カルシウムが特に好ま
しい。アルカリ土類金属酸化物もまた粒状で用いるのが
よく、粒子の大きさは、平均粒径1〜200μmの範囲
が好ましく、1〜50μmの範囲がより好ましく、脱酸
素剤組成物の粒径に同等もしくはそれより細かいことが
望ましい。しかし、微粒子があまり細かくなりすぎると
吸湿性が強くなりすぎ、保存や取り扱いに不便であり、
加えて酸素吸収性樹脂組成物中において金属鉄に付着し
てしまう恐れがあり好ましくなく、アルカリ土類金属酸
化物の粒径は、上記の範囲で適当に選ぶ必要がある。
Examples of the alkaline earth metal oxides include magnesium oxide, calcium oxide, strontium oxide, and barium oxide. Magnesium oxide or calcium oxide is particularly preferable in terms of availability and reactivity. Alkaline earth metal oxides are also preferably used in a granular form, and the size of the particles is preferably in the range of 1 to 200 μm in average particle size, more preferably in the range of 1 to 50 μm, and the particle size of the oxygen scavenger composition It is desirable that they are equivalent or finer. However, if the fine particles become too fine, the hygroscopicity becomes too strong, which is inconvenient for storage and handling,
In addition, the oxygen-absorbing resin composition may undesirably adhere to metallic iron, and the particle size of the alkaline earth metal oxide should be appropriately selected within the above range.

【0018】脱酸素剤組成物は酸素透過係数200cc・
0.1mm /m2・day ・atm (23℃、100%RH)以上
である熱可塑性樹脂に配合することが好ましく、脱酸素
剤組成物を配合する熱可塑性樹脂として、各種のポリエ
チレン、ポリプロピレン、ポリブテン、ポリメチルペン
テン、ポリメチルメタクリレート、各種のエチレン共重
合体、ポリ塩化ビニル、ポリアミド、ポリカーボネー
ト、ポリエステル及びこれらの変性樹脂が、単独又は混
合物として使用できる。上記の樹脂の中でも、酸素透過
性に優れるものとして、ポリエチレン、ポリプロピレ
ン、ポリブテン、ポリメチルペンテン、各種のエチレン
共重合体及びこれらの変性物が選ばれる。
The oxygen absorber composition has an oxygen permeability coefficient of 200 cc.
It is preferable to mix it with a thermoplastic resin of 0.1 mm / m 2 · day · atm (23 ° C, 100% RH) or more. As the thermoplastic resin with which the oxygen scavenger composition is mixed, various polyethylene, polypropylene and polybutene can be used. , Polymethylpentene, polymethylmethacrylate, various ethylene copolymers, polyvinyl chloride, polyamides, polycarbonates, polyesters and modified resins thereof can be used alone or as a mixture. Among the above resins, polyethylene, polypropylene, polybutene, polymethylpentene, various ethylene copolymers and modified products thereof are selected as those having excellent oxygen permeability.

【0019】酸素吸収性樹脂組成物における金属鉄含有
率は2〜93重量%であり、好ましくは10〜70重量
%がよい。金属鉄含有率は上記範囲より低くなると十分
な酸素吸収性能が得られず、また高すぎると樹脂組成物
の機械的強度や成形性に問題を生じる。酸素吸収性樹脂
組成物におけるアルカリ土類金属酸化物含有率は0.1
〜5wt%が好ましい。アルカリ土類金属酸化物の含有
量は少なすぎると所期目的の保存性に十分な改良効果が
得られず、一方多すぎると使用時の酸素吸収性能に影響
を及ぼすようになるので、アルカリ土類金属酸化物の含
有量は上記の範囲に適当に選ぶ必要がある。
The content of metallic iron in the oxygen absorbing resin composition is 2 to 93% by weight, preferably 10 to 70% by weight. If the metallic iron content is lower than the above range, sufficient oxygen absorption performance cannot be obtained, and if it is too high, problems occur in the mechanical strength and moldability of the resin composition. The alkaline earth metal oxide content in the oxygen-absorbing resin composition is 0.1.
-5 wt% is preferable. The content of the alkaline earth metal oxide is too and no sufficient improving effect is obtained storability intended purpose small, whereas too much, since to affect oxygen absorption performance in use, an alkaline earth the content of metalloid oxides must be selected appropriately Te within the above range.

【0020】本発明の酸素吸収性樹脂組成物は、脱酸素
剤組成物及びアルカリ土類金属酸化物と熱可塑性樹脂と
を混練し、熱可塑性樹脂中に脱酸素剤組成物とアルカリ
土類金属酸化物とを十分に分散させることにより得られ
る。熱可塑性樹脂への脱酸素剤組成物とアルカリ土類金
属酸化物との混合、混練は、撹拌羽根型混合機、二軸押
出機等により行うことができる。この場合、脱酸素剤組
成物とアルカリ土類金属酸化物とは予め混合して加えて
も、別々に加えてもよい。また、マスターバッチ方式を
とり、熱可塑性樹脂に各々脱酸素剤組成物又はアルカリ
土類金属酸化物を配合した2種の樹脂組成物を調製し、
両者にさらに必要に応じて熱可塑性樹脂を加え、これら
をまとめて単軸押出機から押し出し、混練することも可
能である。本発明の酸素吸収性樹脂組成物おいては、上
記の方法で十分混練することにより、脱酸素剤組成物粒
子とアルカリ土類金属酸化物粒子とは十分に分散し、両
者が実質的に熱可塑性樹脂に隔てられた分散状態とな
る。ただし、脱酸素剤組成物とアルカリ土類金属酸化物
との混合物を用いる場合には、混合物を吸湿させないよ
う十分な注意が必要であり、また、脱酸素剤組成物及び
アルカリ土類金属酸化物の配合量に応じて、脱酸素剤組
成物とアルカリ土類金属酸化物とが熱可塑性樹脂中に十
分に分散するよう、適当な混合、混練方法を選択する必
要がある。
The oxygen-absorbing resin composition of the present invention is prepared by kneading a deoxidizer composition, an alkaline earth metal oxide and a thermoplastic resin, and adding the oxygen absorber composition and the alkaline earth metal into the thermoplastic resin. It is obtained by sufficiently dispersing the oxide. The mixing and kneading of the oxygen scavenger composition and the alkaline earth metal oxide to the thermoplastic resin can be performed by a stirring blade type mixer, a twin screw extruder, or the like. In this case, the oxygen scavenger composition and the alkaline earth metal oxide may be mixed in advance or added separately. In addition, a masterbatch method is used to prepare two resin compositions in which a deoxidizer composition or an alkaline earth metal oxide is mixed with a thermoplastic resin,
It is also possible to further add a thermoplastic resin to both of them, and to extrude them together from a single-screw extruder and knead them. In the oxygen-absorbing resin composition of the present invention, by sufficiently kneading by the above method, the oxygen absorber composition particles and the alkaline earth metal oxide particles are sufficiently dispersed, and both are substantially heated. It is in a dispersed state separated by the plastic resin. However, when a mixture of the oxygen scavenger composition and the alkaline earth metal oxide is used, sufficient care must be taken not to allow the mixture to absorb moisture, and the oxygen absorber composition and the alkaline earth metal oxide are also required. It is necessary to select an appropriate mixing and kneading method so that the oxygen absorber composition and the alkaline earth metal oxide are sufficiently dispersed in the thermoplastic resin, depending on the blending amount.

【0021】上記酸素吸収性樹脂組成物には、必要に応
じて、有機、無機系の染料、顔料等の着色剤、シラン
系、チタネート系等の分散剤、ポリアクリル酸系化合物
等の吸水剤、クレー、マイカ、シリカ、でんぷん等の充
填剤、ゼオライト、活性炭などのガス吸収剤等を添加す
ることができる。
If necessary, the oxygen-absorbing resin composition may include organic or inorganic dyes, colorants such as pigments, silane- or titanate-based dispersants, and polyacrylic acid-based water-absorbing agents. Fillers such as clay, mica, silica, and starch, and gas absorbents such as zeolite and activated carbon can be added.

【0022】本発明の酸素吸収性積層体は、上記酸素吸
収性樹脂組成物からなる酸素吸収性樹脂層を中間層と
し、これの両面に積層した隔離層の少なくとも一層が通
気性隔離層である積層体である。本発明の酸素吸収性積
層体(以下、単に積層体と言うことがある)は、用途に
応じ様々な積層構成とすることができ、大きくは、バリ
ア材料とノンバリア材料の二つに分けることができる。
バリア材料は、酸素吸収性樹脂層の一面にガスバリア性
隔離層、他面に通気性隔離層を形成したものである。ノ
ンバリア材料は、酸素吸収性樹脂層の両面に通気性隔離
層を形成したものである。
In the oxygen-absorbing laminate of the present invention, the oxygen-absorbing resin layer composed of the above-mentioned oxygen-absorbing resin composition is used as an intermediate layer, and at least one of the separating layers laminated on both sides thereof is a breathable separating layer. It is a laminated body. The oxygen-absorbing laminate of the present invention (hereinafter, may be simply referred to as a laminate) can have various laminated structures depending on the application, and can be roughly classified into a barrier material and a non-barrier material. it can.
The barrier material is one in which a gas barrier isolation layer is formed on one surface and an air permeable isolation layer is formed on the other surface. The non-barrier material is one in which a breathable isolation layer is formed on both surfaces of the oxygen-absorbing resin layer.

【0023】ガスバリア性隔離層は、その酸素透過度が
50cc/m2・day ・atm (23℃、100%RH)以下
であることが好ましい。ガスバリア性隔離層には、ポリ
エステル、ポリアミド、エチレン−ビニルアルコール共
重合体等の酸素透過性の低い熱可塑性樹脂、アルミ、ス
ズ等の金属箔を積層したフィルム、アルミ、シリカ等を
蒸着したフィルム等が用いられる。また、積層体のガス
バリア性隔離層側には、必要に応じ、積層体の強度を補
強するための補強層やリサイクル層、接着剤層を設ける
ことができる。
The gas barrier isolation layer preferably has an oxygen permeability of 50 cc / m 2 .day.atm (23 ° C., 100% RH) or less. For the gas barrier isolation layer, a thermoplastic resin having low oxygen permeability such as polyester, polyamide and ethylene-vinyl alcohol copolymer, a film laminated with metal foil such as aluminum and tin, a film deposited with aluminum, silica and the like, etc. Is used. If necessary, a reinforcing layer, a recycle layer, or an adhesive layer for reinforcing the strength of the laminate can be provided on the gas barrier isolation layer side of the laminate.

【0024】通気性隔離層としては、前記酸素吸収剤の
配合に用いられる各種の熱可塑性樹脂が使用でき、特に
酸素透過性に優れるものとして、ポリエチレン、ポリプ
ロピレン、ポリブテン、ポリメチルペンテン、各種のエ
チレン共重合体及びこれらの変性物が好適に用いられ
る。通気性隔離層は薄くなればなるほど通気性が向上す
るので、薄い方が望ましが、成形加工性、隠蔽性を確保
する上から、膜厚は10〜200μm、好ましくは10
〜100μmの範囲に選ばれる。また、通気性隔離層を
形成する樹脂層には、例えば、隠蔽や着色等のための染
料や顔料、ヒートシール性調節のための添加剤等を添加
することができる。
As the air-permeable isolation layer, various thermoplastic resins used for blending the oxygen absorbent can be used. Particularly, those having excellent oxygen permeability are polyethylene, polypropylene, polybutene, polymethylpentene and various ethylene. Copolymers and modified products thereof are preferably used. Since the air permeability of the air-permeable isolation layer becomes thinner, the air permeability is improved. Therefore, it is preferable that the air permeability isolation layer is thin. However, the film thickness is 10 to 200 μm, preferably 10 to ensure moldability and hiding property.
To 100 μm. Further, for example, a dye or pigment for concealing or coloring, an additive for controlling heat-sealing property, or the like can be added to the resin layer forming the air-permeable isolation layer.

【0025】ヒートシール性調節のための添加剤として
は、エチレン−プロピレンランダムコポリマー(ランダ
ムPPと略す)やエチレン−α−オレフィン共重合体
(各種LLDPEやエラストマー類)、エチレン−酸コ
ポリマー、アイオノマー、カルボキシル変性ポリオレフ
ィン、ポリスチレン、等の樹脂から1種または2種以上
を選ぶことができる。添加量は、樹脂層の10〜40重
量%の範囲に選ぶことが好ましい。
As additives for adjusting the heat-sealing property, ethylene-propylene random copolymer (abbreviated as random PP), ethylene-α-olefin copolymer (various LLDPE and elastomers), ethylene-acid copolymer, ionomer, One kind or two or more kinds can be selected from resins such as carboxyl-modified polyolefin and polystyrene. The addition amount is preferably selected in the range of 10 to 40% by weight of the resin layer.

【0026】上記通気性隔離層にポリメチルペンテンを
用いる場合、酸素透過性に非常に優れるが接着性に乏し
いポリメチルペンテンの欠点を補うために、ポリメチル
ペンテンとポリエチレン、ポリプロピレン等のポリオレ
フィンとの混合樹脂とすることができる。また用いるポ
リメチルペンテンは、他の樹脂を含むものであってもよ
い。ポリメチルペンテンとポリオレフィンとの混合樹脂
は、ポリメチルペンテン含量10〜80重量%の範囲で
は、ポリメチルペンテンとポリオレフィンとは相溶性が
乏しいためにマトリックスは海島構造をなし、このため
に他の樹脂を混合しても、ポリメチルペンテンの優れた
酸素透過性を生かすことができる。また混合樹脂は真珠
のような光沢を持ち、高級感のある外観を呈する。
When polymethylpentene is used for the breathable isolation layer, polymethylpentene and a polyolefin such as polyethylene or polypropylene are used in order to make up for the drawbacks of polymethylpentene, which is very excellent in oxygen permeability but poor in adhesiveness. It can be a mixed resin. Further, the polymethylpentene used may contain other resins. The mixed resin of polymethylpentene and polyolefin has a sea-island structure in the matrix because the polymethylpentene and polyolefin have poor compatibility in the range of polymethylpentene content of 10 to 80% by weight. The excellent oxygen permeability of polymethylpentene can be utilized even by mixing. In addition, the mixed resin has a pearly luster and has a high-class appearance.

【0027】したがって、通気性隔離層にポリメチルペ
ンテンを用いる場合は、酸素吸収性樹脂層との熱接着性
を確保する上から、酸素吸収性樹脂層に用いた樹脂と同
じ樹脂を混合するのがよく、ポリメチルペンテンの割合
は50重量%以下、好ましくは10〜40重量%がよ
い。この場合、酸素吸収性樹脂層を構成する樹脂は、ポ
リエチレンまたはポリプロピレンのいずれかを50%以
上、好ましくは60%以上含有するのがよい。これによ
って通気性隔離層と酸素吸収性樹脂層とは、共押出しや
熱圧着に際し良好な接着性が確保でき、酸素透過性が優
れ、かつ、外観に優れた通気性隔離層を有する積層体を
得ることができる。
Therefore, when polymethylpentene is used for the air-permeable isolation layer, the same resin as that used for the oxygen-absorbing resin layer is mixed in order to ensure thermal adhesiveness with the oxygen-absorbing resin layer. The content of polymethylpentene is 50% by weight or less, preferably 10 to 40% by weight. In this case, the resin forming the oxygen-absorbing resin layer should contain either polyethylene or polypropylene in an amount of 50% or more, preferably 60% or more. As a result, the breathable isolation layer and the oxygen-absorbing resin layer can secure good adhesion during coextrusion or thermocompression bonding, have excellent oxygen permeability, and have a laminate having a breathable isolation layer with an excellent appearance. Obtainable.

【0028】上記積層体の製造方法及び成形加工方法と
しては、公知の樹脂成形加工技術、例えば、Tダイ、サ
ーキュラーダイを用いた多層共押出し成形、真空成形、
圧空成形等のシート成形法、ダイレクトブロー、延伸ブ
ロー等の多層ブロー成形法、共射出、多色射出等の射出
成形法等、他に熱ラミネート、ドライラミネート、エク
ストルージョンラミネート、ホットメルトラミネート等
のラミネート法や各種のコート法など公知のコンバーテ
ィング技術、又はこれらを組み合わせて用いることがで
きる。
As the method for manufacturing and molding the above-mentioned laminate, known resin molding techniques such as multi-layer coextrusion molding using T-die and circular die, vacuum forming,
Sheet molding methods such as pressure molding, multi-layer blow molding methods such as direct blow and stretch blow, injection molding methods such as co-injection and multi-color injection, and heat lamination, dry lamination, extrusion lamination, hot melt lamination, etc. Known converting techniques such as a laminating method and various coating methods, or a combination thereof can be used.

【0029】本発明の積層体は、酸素吸収性のバリア材
料又はノンバリア材料として、包装材料、包装容器に用
いられる。バリア材料としては、フィルム、トレイ、カ
ップ、チューブ、ボトル等の形態をとり、包装容器の外
装材の一部又は全部に用いられ、また必要に応じ、一般
的なガスバリア性フィルムやクロージャー類と組み合わ
せて用いることができる。例えば、トレイやボトル等の
容器とし開口部を、図3〜図5に示すようにガスバリア
性部材で密封される。また、図6に示すような容器のト
ップシールフィルムとされる。ノンバリア材料として
は、主に台紙、中仕切り等のシート又はトレイ、ボトル
等の容器の形態をとり、前者は包装材料の一部として包
装容器の内部に挿入され、後者は、被保存物を収納した
後更にガスバリア性フィルム等に外包装して用いられ
る。
The laminate of the present invention is used as an oxygen-absorbing barrier material or non-barrier material in packaging materials and packaging containers. As the barrier material, a film, a tray, a cup, a tube, a bottle, or the like is used, and it is used as a part or all of the outer packaging material of the packaging container, and if necessary, combined with a general gas barrier film or closures. Can be used. For example, as a container such as a tray or a bottle, the opening is sealed with a gas barrier member as shown in FIGS. Further, it is a top seal film for a container as shown in FIG. The non-barrier material is mainly in the form of a sheet such as a mount, a partition or the like, a tray, a container such as a bottle, the former is inserted into the inside of the packaging container as a part of the packaging material, and the latter stores the preserved object. After that, it is further packaged and used in a gas barrier film or the like.

【0030】本発明の酸素吸収性樹脂組成物、積層体及
びこれからなる製品は、製造工程、流通過程また使用に
際して大気中で簡便に取り扱うことができる。しかし、
その保管には簡単な防湿包装をすることが望ましく、長
期に亘る場合には防湿包装をすることが好ましい。
The oxygen-absorbing resin composition, the laminate and the product comprising the same of the present invention can be easily handled in the atmosphere during the production process, distribution process and use. But,
It is desirable to use simple moisture-proof packaging for storage, and moisture-proof packaging is preferable for long-term storage.

【0031】[0031]

【実施例】次に本発明の一様態の実施例及び比較例を示
し、本発明の効果を具体的に説明する。本発明は以下の
実施例に限定されるものではない。 実施例1 平均粒径30μmの還元鉄粉100kgを加熱ジャケッ
ト付き真空混合乾燥機中に投入し、10mmHgの減圧
下140℃で加熱しつつ、塩化カルシウム20重量%水
溶液7Kgを噴霧、乾燥した後、篩分けして300メッ
シュオーバーの粗粒を除き、粒状の脱酸素剤組成物を得
た。次に、ベント付き45mmφ同方向回転二軸押出機
と定量フィーダーからなる押出し装置を用い、エチレン
−プロピレン共重合体と上記脱酸素剤組成物とを重量比
2:3で混練し、ストランドダイから押し出した後、空
冷、破砕してマスターバッチAを得た。同様に上記の押
出し装置を用い、平均粒径20μmの酸化カルシウムと
エチレンーαオレフィン共重合体とを重量比1:1で混
練し、マスターバッチBを得た。
EXAMPLES The effects of the present invention will be specifically described by showing Examples and Comparative Examples of one embodiment of the present invention. The present invention is not limited to the examples below. Example 1 100 kg of reduced iron powder having an average particle diameter of 30 μm was put into a vacuum mixing dryer with a heating jacket, and while heating at 140 ° C. under reduced pressure of 10 mmHg, 7 kg of a 20 wt% calcium chloride aqueous solution was sprayed and dried, The particles were sieved to remove coarse particles of 300 mesh over to obtain a granular oxygen absorber composition. Next, an ethylene-propylene copolymer and the above oxygen scavenger composition were kneaded at a weight ratio of 2: 3 using an extruder including a vented 45 mmφ co-rotating twin-screw extruder and a constant-volume feeder, and then extruded from a strand die. After extruding, it was air-cooled and crushed to obtain a masterbatch A. Similarly, using the above-described extruder, calcium oxide having an average particle size of 20 μm and an ethylene-α-olefin copolymer were kneaded at a weight ratio of 1: 1 to obtain a masterbatch B.

【0032】次いで、第1〜第5押出機、フィードブロ
ック、Tダイ、冷却ロール、引取り装置、スリッター、
ワインダーからなる5種6層多層シート成形装置装置を
用い、第1〜第5押出機から、それぞれ、表1に示す樹
脂組成物を押し出し、図1に示す、層3/層2/層13
/層14/層15/層16の順に積層構成した積層シー
ト(幅650mm)を製造した。得られた積層シートの
表面は全く平滑で良好なものであった。なお、上記積層
シートの各層は、層3;通気性隔離層(60μm)、層
2;酸素吸収性樹脂層(140μm)、層13;接着剤
層(15μm)、層14;ガスバリア層(20μm)、
層15;接着剤層(15μm)、層16;強度保持層
(250μm)の役割をなす(()内は膜厚を示
す。)。上記に製造された積層シートは塩化ビニル製パ
イプ(内径3インチ)に50m単位で巻き取り、これを
アルミ箔積層ポリプロピレンからなる防湿フィルムで包
装し保存に備えた。
Next, the first to fifth extruders, feed blocks, T dies, cooling rolls, take-up devices, slitters,
The resin composition shown in Table 1 was extruded from each of the first to fifth extruders using a 5 type 6-layer multi-layer sheet forming apparatus composed of a winder, and layer 3 / layer 2 / layer 13 shown in FIG.
/ Layer 14 / Layer 15 / Layer 16 was laminated to form a laminated sheet (width: 650 mm). The surface of the obtained laminated sheet was quite smooth and good. In addition, each layer of the above-mentioned laminated sheet includes layer 3; breathable isolation layer (60 μm), layer 2; oxygen-absorbing resin layer (140 μm), layer 13; adhesive layer (15 μm), layer 14; gas barrier layer (20 μm). ,
The layer 15 serves as an adhesive layer (15 μm) and the layer 16 serves as a strength retaining layer (250 μm) (the thickness in () indicates the film thickness). The laminated sheet produced above was wound around a vinyl chloride pipe (inner diameter: 3 inches) in units of 50 m, and wrapped with a moisture-proof film made of aluminum foil laminated polypropylene for storage.

【0033】[0033]

【表1】 [Table 1]

【0034】比較例1 実施例1の第2押出機から押し出す組成物のうち、マス
ターバッチBに係る組成物は使用せずエチレン−プロピ
レン共重合体2重量%に変更したこと以外、実施例1と
同様にして積層シートを製造した。得られた積層シート
を観察したところ、層3(通気性隔離層)の表面に凹凸
が発生して平滑性が失われ、また、層2(酸素吸収性樹
脂層)には、気泡が発生していた。
Comparative Example 1 Of the compositions extruded from the second extruder of Example 1, the composition according to Masterbatch B was not used, but the ethylene-propylene copolymer was changed to 2% by weight, and Example 1 was used. A laminated sheet was manufactured in the same manner as in. When the obtained laminated sheet was observed, unevenness was generated on the surface of the layer 3 (air-permeable isolation layer) and smoothness was lost, and bubbles were generated in the layer 2 (oxygen-absorbing resin layer). Was there.

【0035】比較例2 実施例1におけるマスターバッチAの調製に際し、事前
に脱酸素剤組成物を電気炉を用いて窒素ガス雰囲気下で
300℃にて1時間乾燥して予め乾燥処理した脱酸素剤
組成物をマスターバッチAに使用したこと以外は比較例
1と同様にして、積層シートを製造した。得られた積層
シートを観察したところ、シートの表面は実施例1のも
のと同様平滑で良好であった。
Comparative Example 2 In the preparation of the masterbatch A in Example 1, the oxygen scavenger composition was previously dried by using an electric furnace in a nitrogen gas atmosphere at 300 ° C. for 1 hour to perform a drying treatment in advance. A laminated sheet was produced in the same manner as in Comparative Example 1 except that the agent composition was used in Masterbatch A. When the obtained laminated sheet was observed, the surface of the sheet was smooth and good as in Example 1.

【0036】実施例2 実施例1で50m単位に巻き取りアルミ箔積層ポリプロ
ピレンフィルムで簡便に防湿包装した積層シートの包装
体を2か月後に開封し、真空成形機(トレイ型15個取
り)を用い実施例1の積層シートの層3(通気性隔離
層)側を内側にして温度185℃でトレイ状容器(縦1
30×横90mm×深さ25mm、内容積270cc)に成形
した。以下、トレイ状容器を単にトレイと称す。得られ
たトレイの成形状態を観察したところ極めて良好であっ
た。
Example 2 A package of a laminated sheet which was wound in 50 m units in Example 1 and was simply moisture-proof packaged with an aluminum foil laminated polypropylene film was opened 2 months later, and a vacuum forming machine (15 tray types) was opened. Using the laminated sheet of Example 1 with the layer 3 (breathable isolation layer) side inside, a tray-shaped container (vertical 1
It was molded into 30 × width 90 mm × depth 25 mm, internal volume 270 cc). Hereinafter, the tray-shaped container is simply referred to as a tray. When the molding state of the obtained tray was observed, it was extremely good.

【0037】比較例3 比較例2で製造した積層シートを、実施例1の積層シー
トと同様にパイプに巻き取り、アルミ箔積層ポリプロピ
レンからなる防湿フィルムで包装してテープ止めした
後、これを更に塩化ビニリデンコートナイロン/ポリエ
チレン積層フィルム袋に入れ袋口をヒートシールして密
封し、二重包装形態で保存した。2カ月間二重包装して
保存した比較例2の積層シートを開封し、直ちにこの積
層シートを実施例2と同様の条件で真空成形しトレイに
成形した。得られたトレイの成形状態を観察したとこ
ろ、トレイに発泡が起こり美観を損なうばかりでなく、
部分的に隔離層(層3)が破れて酸素吸収性樹脂層(層
2)が露出し、トレイとして使用できないものであっ
た。
Comparative Example 3 The laminated sheet produced in Comparative Example 2 was wound on a pipe in the same manner as the laminated sheet of Example 1, wrapped with a moisture-proof film made of aluminum foil laminated polypropylene and taped, and this was further It was put in a vinylidene chloride-coated nylon / polyethylene laminated film bag, and the bag mouth was heat-sealed and sealed, and stored in a double-wrapped form. The laminated sheet of Comparative Example 2 that had been double-wrapped and stored for 2 months was opened, and immediately, this laminated sheet was vacuum-formed under the same conditions as in Example 2 and formed into a tray. When the molded state of the obtained tray was observed, not only was the tray foamed and spoiled its aesthetic appearance,
The isolation layer (layer 3) was partially broken and the oxygen-absorbing resin layer (layer 2) was exposed, and it could not be used as a tray.

【0038】実施例3 実施例2で得られた成形トレイに赤飯180gを入れ、
この成形トレイの開口部にポリエステル/アルミ箔/ポ
リプロピレンを積層したトップフィルムをヒートシール
し密封した。密封したトレイを室温に放置し、それぞ
れ、4日後、10日後及び2カ月後のトレイ内の酸素濃
度をガスクロマトグラフィーにより分析した。この結果
を表2に示す。
Example 3 180 g of red rice was placed in the molding tray obtained in Example 2,
A top film in which polyester / aluminum foil / polypropylene was laminated was heat-sealed and hermetically sealed in the opening of the molding tray. The sealed tray was left at room temperature, and the oxygen concentration in the tray was analyzed by gas chromatography after 4 days, 10 days, and 2 months, respectively. The results are shown in Table 2.

【0039】比較例4 比較例2で製造した積層シートを直ちにトレイに真空成
形し、得られた成形トレイに赤飯を入れ、実施例3と同
様にしてトレイ内の酸素濃度測定を行った。この結果を
表2に示す。
Comparative Example 4 The laminated sheet produced in Comparative Example 2 was immediately vacuum formed into a tray, red rice was placed in the obtained forming tray, and the oxygen concentration in the tray was measured in the same manner as in Example 3. The results are shown in Table 2.

【0040】[0040]

【表2】 [Table 2]

【0041】実施例4 実施例2で製造した成形トレイを、一旦、袋口を輪ゴム
止めにしたナイロン積層ポリエチレン製の袋に2カ月間
保存した後、このトレイに赤飯を入れ、実施例3と同様
にしてトレイ内の酸素濃度測定を行った。この結果を表
2に示す。
Example 4 The molding tray manufactured in Example 2 was once stored in a nylon laminated polyethylene bag having a bag mouth closed with a rubber band for two months, and then red rice was placed in this tray. Similarly, the oxygen concentration in the tray was measured. The results are shown in Table 2.

【0042】比較例5 比較例4に製造した成形トレイを直ちに、実施例4と同
様、袋口を輪ゴム止めにしたナイロン積層ポリエチレン
製の袋に2カ月間保存した後、このトレイに赤飯を入
れ、実施例3と同様にしてトレイ内の酸素濃度測定を行
った。この結果を表2に示す。
Comparative Example 5 As in Example 4, the molding tray produced in Comparative Example 4 was immediately stored in a nylon laminated polyethylene bag having a bag mouth closed with a rubber band, and then red rice was placed in this tray. The oxygen concentration in the tray was measured in the same manner as in Example 3. The results are shown in Table 2.

【0043】実施例5 平均粒径35μmの還元鉄粉100kgを加熱ジャケッ
ト付き真空混合乾燥機中に投入し、130℃、10mm
Hgの減圧下で加熱しつつ、鉄粉100重量部に対し、
塩化カルシウム:塩化ナトリウム:水=0.5:0.
5:2.5(各重量部)の混合水溶液を噴霧、十分に乾
燥した後、篩分けして300メッシュオーバーの微粉を
除き、粒状の脱酸素剤組成物を得た。次に、ベント付き
45mmφ同方向回転二軸押出機と定量フィーダーから
なる押出し装置を用い、ポリプロピレン:上記脱酸素剤
組成物=2:3重量比で混練し、ブロワ付きネットベル
トで冷却後、ペレタイザーを経て酸素吸収性樹脂組成物
のペレットを得た。実施例1の5種6層多層シート成形
装置を用い、第1〜第5押出機から、それぞれ、表3に
示す樹脂組成物を押し出し、図1に示す、層3/層2/
層13/層14/層15/層16の順に積層構成した積
層シート(幅650mm)を製造した。ここでは、第1
押出機から白色顔料添加ポリプロピレン/ポリメチルペ
ンテン/ポリエチレン=60/30/10(重量比)か
らなる組成物を押し出し、層3;通気性隔離層を形成し
た。(白色顔料添加ポリプロピレン;ポリプロピレン/
酸化チタン=80/20重量比の組成物、ポリメチルペ
ンテン;三井石油化学製TPX) 積層シートの各層の膜厚は次のとおり。層3(通気性隔
離層);50μm、層2(酸素吸収性樹脂層);120
μm、層13及び層15(接着剤層);15μm、層1
4(ガスバリア層);20μm、層16(強度保持
層);300μm次に、真空成形機を用い上記の積層シ
ートの層3(通気性隔離層)側を内側にして温度185
℃でプラグアシスト成形し、カップ(口径60mm×深さ
35mm、内容積約90cc)を得た。カップの成形状態は
良好であった。得られたトレイに熱湯80ccを入れ、次
にカップシーラーを用い、PET(12μm)/アルミ
ニウム(40μm)/PE(28μm)の積層されたト
ップフィルムをヒートシールして密封した。密封したこ
のカップを室温に放置し、3日後と10日後のカップ内
の酸素濃度をガスクロマトグラフィーにより分析した。
結果を表4に示す。
Example 5 100 kg of reduced iron powder having an average particle size of 35 μm was put into a vacuum mixing dryer having a heating jacket, and the temperature was 130 ° C. and 10 mm.
While heating under reduced pressure of Hg, to 100 parts by weight of iron powder,
Calcium chloride: sodium chloride: water = 0.5: 0.
A mixed aqueous solution of 5: 2.5 (each part by weight) was sprayed, sufficiently dried, and then sieved to remove fine powder of 300 mesh over to obtain a granular oxygen scavenger composition. Next, using an extrusion device consisting of a 45 mmφ co-rotating twin-screw extruder with a vent and a quantitative feeder, the kneading was carried out at a polypropylene: oxygen scavenger composition = 2: 3 weight ratio, followed by cooling with a net belt with a blower, and then a pelletizer. To obtain pellets of the oxygen-absorbing resin composition. Using the 5-kind 6-layer multilayer sheet molding apparatus of Example 1, the resin compositions shown in Table 3 were extruded from the first to fifth extruders, respectively, and shown in FIG.
A laminated sheet (width 650 mm) was manufactured by laminating layers 13 / layer 14 / layer 15 / layer 16 in this order. Here, the first
A composition comprising white pigment-added polypropylene / polymethylpentene / polyethylene = 60/30/10 (weight ratio) was extruded from the extruder to form Layer 3; a breathable isolation layer. (Polypropylene with white pigment; polypropylene /
Titanium oxide = 80/20 weight ratio of composition, polymethylpentene; TPX manufactured by Mitsui Petrochemical) The film thickness of each layer of the laminated sheet is as follows. Layer 3 (breathable isolation layer); 50 μm, Layer 2 (oxygen absorbing resin layer); 120
μm, layer 13 and layer 15 (adhesive layer); 15 μm, layer 1
4 (gas barrier layer); 20 μm, layer 16 (strength retaining layer); 300 μm Next, using a vacuum forming machine, the layer 3 (breathable isolation layer) side of the above laminated sheet is placed inside and the temperature is 185.
Plug-assisted molding was carried out at ℃ to obtain a cup (diameter 60 mm × depth 35 mm, internal volume about 90 cc). The molding condition of the cup was good. 80 cc of hot water was put into the obtained tray, and then the top film laminated with PET (12 μm) / aluminum (40 μm) / PE (28 μm) was heat-sealed using a cup sealer. The sealed cup was left at room temperature, and the oxygen concentration in the cup after 3 days and 10 days was analyzed by gas chromatography.
The results are shown in Table 4.

【0044】[0044]

【表3】 注)白色顔料添加PP:ホ゜リフ゜ロヒ゜レン /酸化チタン =80/20(重量比)[Table 3] Note) White pigment added PP: Polypropylene / Titanium oxide = 80/20 (weight ratio)

【0045】比較例6 実施例5において第1押出機から押し出す層3の樹脂組
成物を白色顔料添加ポリプロピレン(ポリプロピレン/
酸化チタン=80/20重量比の組成物)に変えたこと
以外、全く実施例5と同様にして積層シートを製造し
た。次いで得られた積層シートを実施例5と同様にして
カップに成形し、このカップに熱湯を入れトップフィル
ムでヒートシールした。密封したカップを室温に放置し
て7日後と14日後のカップ内の酸素濃度をガスクロマ
トグラフィーにより分析した。結果を表4に示す。
Comparative Example 6 The resin composition of Layer 3 extruded from the first extruder in Example 5 was used as a white pigment-added polypropylene (polypropylene /
A laminated sheet was produced in exactly the same manner as in Example 5 except that the composition was changed to titanium oxide = 80/20 weight ratio). Then, the obtained laminated sheet was formed into a cup in the same manner as in Example 5, hot water was put into this cup, and heat sealing was performed with a top film. The oxygen concentration in the cup after 7 days and 14 days after leaving the sealed cup at room temperature was analyzed by gas chromatography. The results are shown in Table 4.

【0046】[0046]

【表4】 [Table 4]

【0047】実施例6 実施例5に5種6層多層シート成形装置を用いて製造す
る多層シートにおいて、第1押出機から押し出す樹脂組
成物を変え、実施例5と同様の方法で多層シートを製造
した。なお、第1押出機から押し出す樹脂組成物は、A
成分;白色顔料添加ポリプロピレンとB成分とからな
り、B成分を表5に示すように変え、5種の多層シート
を得た。表5にA:Bの割合は、重量比で示す。得られ
た5種の多層シートをカップに成形し、次いでカップシ
ーラーを用い、それぞれ、カップの口部にナイロン/エ
チレンビニルアルコール共重合体/ポリエチレンからな
るトップフィルムを180℃でヒートシールした。ヒー
トシールしたカップのトップフィルムに、円形の真中を
中心に径方向に15mm幅で周縁のシール部まで切れ目
を入れ、真中で切り出した15mm幅の短冊状のトップ
フィルムの一端をプッシュプルゲージを用いて、カップ
からシール部を剥がした時のシール強度を測定した。結
果を表5に示す。
Example 6 In the multilayer sheet produced by using the 5-type 6-layer multilayer sheet molding apparatus in Example 5, the resin composition extruded from the first extruder was changed, and the multilayer sheet was prepared in the same manner as in Example 5. Manufactured. The resin composition extruded from the first extruder is A
Components: White pigment-added polypropylene and B component were used. The B component was changed as shown in Table 5 to obtain 5 kinds of multilayer sheets. In Table 5, the ratio of A: B is shown by weight ratio. The obtained five kinds of multilayer sheets were formed into a cup, and then, using a cup sealer, a top film made of nylon / ethylene vinyl alcohol copolymer / polyethylene was heat-sealed at 180 ° C. at the mouth of each cup. The top film of the heat-sealed cup is cut into 15 mm width in the radial direction centering around the center of the circle to the peripheral seal part, and one end of the 15 mm wide strip-shaped top film cut out in the middle is used with a push-pull gauge. Then, the seal strength when the seal portion was peeled from the cup was measured. The results are shown in Table 5.

【0048】[0048]

【表5】 [Table 5]

【0049】[0049]

【発明の効果】本発明においては、酸素吸収性樹脂にア
ルカリ土類金属酸化物を配合、分散させたことにより前
記第一課題を解決して、酸素吸収性能に優れた酸素吸収
性樹脂組成物、これからなる積層体及びこの成形品が簡
便な防湿包装で、その酸素吸収性能を損なうことなく長
期保存が可能となり、大幅に保存性を改良することがで
きた。本発明によれば、酸素吸収性樹脂組成物又は積層
体の原料、中間製品段階での吸湿を防止することがで
き、もって酸素吸収能力の失効がなく、成形時に発泡等
の問題がなく成形加工性に優れたものとすることがで
き、実用上、製造工程や保管に取り扱い易いものとな
る。さらに成形加工された製品についても同様に、酸素
吸収能力の失効がなく容易に保存ができる。また本発明
によれば、ポリメチルペンテンとポリオレフィンとの混
合樹脂を通気性隔離層とすることにより前記第二課題を
解決して、ポリメチルペンテンの接着性に乏しい点を補
い、酸素透過性を生かした優れた通気性隔離層を有する
酸素吸収性積層体とすることができ、もって酸素吸収性
に優れた包装材料、包装容器が得られる。
EFFECTS OF THE INVENTION In the present invention, an oxygen-absorbing resin composition excellent in oxygen-absorbing performance is obtained by solving the first problem by blending and dispersing an alkaline earth metal oxide in an oxygen-absorbing resin. The laminated body and the molded product made of the same can be stored in a simple moisture-proof package for a long period of time without impairing the oxygen absorption performance, and the storage property can be improved significantly. According to the present invention, the oxygen-absorbing resin composition or the raw material of the laminate, it is possible to prevent moisture absorption in the intermediate product stage, there is no expiration of the oxygen absorption capacity, there is no problem such as foaming during molding It has excellent properties, and is practically easy to handle in the manufacturing process and storage. Further, similarly, the molded product can be easily stored without deteriorating the oxygen absorption capacity. Further, according to the present invention, the second problem is solved by using a mixed resin of polymethylpentene and polyolefin as an air-permeable isolation layer, and the poor adhesiveness of polymethylpentene is compensated for, and oxygen permeability is improved. It is possible to obtain an oxygen-absorbing laminate having an excellent air-permeable separating layer, and thus a packaging material and a packaging container having excellent oxygen-absorbing properties can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る酸素吸収性積層体(バリア材料)
の一例の断面図である。
FIG. 1 is an oxygen-absorbing laminate (barrier material) according to the present invention.
It is sectional drawing of an example.

【図2】本発明に係る酸素吸収性積層体(ノンバリア材
料)の一例の断面図である。
FIG. 2 is a sectional view of an example of an oxygen-absorbing laminate (non-barrier material) according to the present invention.

【図3】本発明に係る酸素吸収性積層体からなる容器の
断面図である。
FIG. 3 is a cross-sectional view of a container including the oxygen-absorbing laminate according to the present invention.

【図4】本発明に係る酸素吸収性積層体からなる広口ボ
トルの断面図である。
FIG. 4 is a cross-sectional view of a wide-mouth bottle made of an oxygen-absorbing laminate according to the present invention.

【図5】本発明に係る酸素吸収性積層体からなる他の広
口ボトルの断面図である。
FIG. 5 is a sectional view of another wide-mouth bottle including the oxygen-absorbing laminate according to the present invention.

【図6】本発明に係る酸素吸収性積層体からなる蓋を容
器に被せた状態を示す断面図である。
FIG. 6 is a cross-sectional view showing a state in which a lid made of an oxygen-absorbing laminate according to the present invention is put on a container.

【符号の説明】[Explanation of symbols]

1 ガスバリア性隔離層 2 酸素吸収性樹脂層 3 通気性隔離層 3’ 通気性隔離層 13 接着層 14 バリヤ性層 15 接着層 16 補強層 20 容器 30 蓋 40 トップシール 1 Gas barrier isolation layer 2 Oxygen absorbing resin layer 3 Breathable isolation layer 3'breathable isolation layer 13 Adhesive layer 14 barrier layer 15 Adhesive layer 16 Reinforcing layer 20 containers 30 lid 40 Top seal

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B32B 27/32 103 B32B 27/32 103 B65D 81/26 B65D 81/26 R C08K 3/22 C08K 3/22 C08L 23/02 C08L 23/02 (56)参考文献 特開 平1−278335(JP,A) 特開 平7−82445(JP,A) 特開 平4−173868(JP,A) 特開 昭63−168348(JP,A) 特開 昭63−137838(JP,A) 特開 昭60−158257(JP,A) 特開 昭55−90535(JP,A) 特開 平4−90848(JP,A) 特開 平1−278344(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08L 1/00 - 101/16 C08K 3/00 - 13/08 B32B 7/00 B32B 9/00 B32B 27/32 B65D 81/26 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI B32B 27/32 103 B32B 27/32 103 B65D 81/26 B65D 81/26 R C08K 3/22 C08K 3/22 C08L 23/02 C08L 23/02 (56) Reference JP-A-1-278335 (JP, A) JP-A-7-82445 (JP, A) JP-A-4-173868 (JP, A) JP-A-63-168348 (JP, A) JP 63-137838 (JP, A) JP 60-158257 (JP, A) JP 55-90535 (JP, A) JP 4-90848 (JP, A) JP 1 −278344 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) C08L 1/00-101/16 C08K 3/00-13/08 B32B 7/00 B32B 9/00 B32B 27 / 32 B65D 81/26

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸素透過係数200cc・0.1mm/m2・day・atm
(23℃、100%RH)以上である酸素透過性に優れる熱可塑性
樹脂中に 水分を得て酸素吸収反応を生起する金属鉄を主剤とする
脱酸素剤組成物とアルカリ土類金属酸化物とが、酸素吸
収性樹脂組成物における金属鉄含有率が2〜93重量
%、酸素吸収性樹脂組成物におけるアルカリ土類金属酸
化物含有率が0.1〜5重量%にて十分分散された樹脂
組成物であって、 前記アルカリ土類金属酸化物は前記脱酸素剤組成物とは
前記熱可塑性樹脂により隔離された状態にあることを特
徴とする酸素吸収性樹脂組成物。
1. Oxygen permeability coefficient of 200 cc / 0.1 mm / m 2 / day / atm
(23 ° C, 100% RH) Deoxidizer composition and alkaline earth metal oxide mainly composed of metallic iron that obtains water to cause oxygen absorption reaction in a thermoplastic resin having excellent oxygen permeability that is not less than 23 ° C But oxygen absorption
The iron content in the compatability resin composition is from 2 to 93% by weight.
%, Alkaline earth metal acid in oxygen-absorbing resin composition
A resin composition in which the oxide content is 0.1 to 5 wt% and the alkaline earth metal oxide is separated from the oxygen scavenger composition by the thermoplastic resin. An oxygen-absorbing resin composition characterized by being present.
【請求項2】酸素透過性に優れる熱可塑性樹脂に各々脱
酸素剤組成物又はアルカリ土類金属酸化物を配合した2
種の樹脂組成物を調製し、これら樹脂組成物をまとめて
押し出し、混練してなることを特徴とする請求項1記載
の酸素吸収性樹脂組成物。
2. A deoxidizer composition or an alkaline earth metal oxide is added to a thermoplastic resin having excellent oxygen permeability, respectively.
The oxygen-absorbing resin composition according to claim 1, which is prepared by preparing a resin composition of one kind, extruding the resin composition together, and kneading the resin composition.
【請求項3】水分を得て酸素吸収反応を生起する金属鉄
を主剤とする脱酸素剤組成物が、金属鉄100重量部あ
たりハロゲン化金属0.1〜5重量部を予め混合して添
加して成る脱酸素剤組成物であることを特徴とする請求
項1記載の酸素吸収性樹脂組成物。
3. An oxygen scavenger composition containing metallic iron as a main component, which obtains water and causes an oxygen absorption reaction, is added by previously mixing 0.1 to 5 parts by weight of metal halide per 100 parts by weight of metallic iron. The oxygen-absorbing resin composition according to claim 1, which is a deoxidizer composition obtained by
【請求項4】請求項1記載の酸素吸収性樹脂組成物から
なる中間層、及びこれの両面に積層した隔離層の少なく
とも一層が通気性隔離層である酸素吸収性積層体。
4. An oxygen-absorbing laminate, wherein at least one of the intermediate layer made of the oxygen-absorbing resin composition according to claim 1 and the separating layer laminated on both surfaces thereof is a breathable separating layer.
【請求項5】酸素透過係数200cc・0.1mm/m2・day・atm
(23℃、100%RH)以上である酸素透過性に優れる熱可塑性
樹脂中に、各々水分を得て酸素吸収反応を生起する金属
鉄を主剤とする脱酸素剤組成物又はアルカリ土類金属酸
化物を配合して2種の樹脂組成物を調製する工程、及
び、これら樹脂組成物をまとめて押し出し、混練する工
程からなる酸素吸収性樹脂組成物の製造方法。
5. Oxygen permeability coefficient 200 cc / 0.1 mm / m 2 day / atm
(23 ℃, 100% RH) or more in a thermoplastic resin having excellent oxygen permeability, oxygen scavenger composition or alkaline earth metal oxidation mainly composed of metallic iron that obtains water to cause oxygen absorption reaction A method for producing an oxygen-absorbing resin composition, which comprises a step of mixing two materials to prepare two resin compositions, and a step of extruding and kneading the resin compositions together.
【請求項6】酸素吸収性樹脂組成物における金属鉄含有
率が2〜93重量%、酸素吸収性樹脂組成物におけるア
ルカリ土類金属酸化物含有率が0.1〜5重量%である
請求項5記載の製造方法。
6. Oxygen-absorbing resin composition containing metallic iron
2 to 93% by weight in the oxygen-absorbing resin composition.
Lucari earth metal oxide content is 0.1-5% by weight
The manufacturing method according to claim 5.
JP33503495A 1995-12-22 1995-12-22 Oxygen-absorbing resin composition and oxygen-absorbing laminate Expired - Lifetime JP3362756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33503495A JP3362756B2 (en) 1995-12-22 1995-12-22 Oxygen-absorbing resin composition and oxygen-absorbing laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33503495A JP3362756B2 (en) 1995-12-22 1995-12-22 Oxygen-absorbing resin composition and oxygen-absorbing laminate

Publications (2)

Publication Number Publication Date
JPH09176499A JPH09176499A (en) 1997-07-08
JP3362756B2 true JP3362756B2 (en) 2003-01-07

Family

ID=18284006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33503495A Expired - Lifetime JP3362756B2 (en) 1995-12-22 1995-12-22 Oxygen-absorbing resin composition and oxygen-absorbing laminate

Country Status (1)

Country Link
JP (1) JP3362756B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102517590B1 (en) * 2022-04-18 2023-04-05 한국식품연구원 Food packaging composition having gas control ability and food packaging material using same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4029239B2 (en) * 1999-01-22 2008-01-09 三菱瓦斯化学株式会社 Oxygen-absorbing multilayer film
WO2002018140A1 (en) * 2000-08-28 2002-03-07 Mitsubishi Gas Chemical Company, Inc. Multilayered deoxidizer and production process
JP4548566B2 (en) * 2000-08-28 2010-09-22 三菱瓦斯化学株式会社 Deoxygenated multilayer body
CA2535183C (en) * 2003-08-14 2008-12-16 Toyo Seikan Kaisha, Ltd. Packing container
JP4600987B2 (en) * 2005-03-04 2010-12-22 中央化学株式会社 Oxygen-absorbing container
EP1982829A1 (en) * 2007-04-20 2008-10-22 Aisapack Holding SA Container for wine or a similar beverage
JP4737649B2 (en) * 2008-06-02 2011-08-03 東洋製罐株式会社 Multilayer molded container excellent in oxygen absorption and shielding, multilayer molding sheet, and method for producing multilayer molding sheet
JP2012171666A (en) * 2011-02-23 2012-09-10 Mitsubishi Gas Chemical Co Inc Oxygen-absorptive package container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102517590B1 (en) * 2022-04-18 2023-04-05 한국식품연구원 Food packaging composition having gas control ability and food packaging material using same

Also Published As

Publication number Publication date
JPH09176499A (en) 1997-07-08

Similar Documents

Publication Publication Date Title
US5820956A (en) Multi-layer structural body
JP3955626B2 (en) Oxygen scavenging composition
EP0400460B1 (en) Moisture-absorbent compositions
US5908676A (en) Oxygen absorbing resin, deoxidizing multi-layer structure using resin, and packaging container
JPH09234832A (en) Oxygen absorbing multi-layer film and its manufacture
JP3362756B2 (en) Oxygen-absorbing resin composition and oxygen-absorbing laminate
JPH03109917A (en) Formed desiccant
JP2003088344A (en) Oxygen and carbon dioxide-adsorbing multilayer body
JP3460789B2 (en) Deoxidizing multilayer film
JPH10120913A (en) Oxygen-absorbing composition, packaging vessel and its production
JP3166817B2 (en) Deoxidizing multilayer structure and package comprising the same
JP3781062B2 (en) Lid packing
JPH1180555A (en) Oxygen-absorbing resin composition and packaging container
JPH0490847A (en) Oxygen absorbing agent and resin composition using the same, and film, sheet, or wrapping container consisting of said resin composition
JP3962882B2 (en) Deoxidizing resin composition, sheet or film comprising the same, and packaging container
JPS6132348B2 (en)
EP0863181B1 (en) Deoxidizing resin composition sheet or film comprising same, and packaging container
JP2002052655A (en) Oxygen absorbable multilayered material and method for preserving article containing low moisture content using the same
JP4139924B2 (en) Deoxygenating film and method for producing the same
JP2000318091A (en) Deoxidative multilayer sheet and container
JP4544377B2 (en) Oxygen-absorbing multilayer
JPH1076590A (en) Deoxidative multilayer structure and packaging container
JP3424734B2 (en) Oxygen-absorbing packaging bag
JP3460801B2 (en) Deoxidizing multilayer or method for food heating
US20030180519A1 (en) Multilayered deoxidizer and production process

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121025

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121025

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131025

Year of fee payment: 11

EXPY Cancellation because of completion of term