JPS6132348B2 - - Google Patents

Info

Publication number
JPS6132348B2
JPS6132348B2 JP59013953A JP1395384A JPS6132348B2 JP S6132348 B2 JPS6132348 B2 JP S6132348B2 JP 59013953 A JP59013953 A JP 59013953A JP 1395384 A JP1395384 A JP 1395384A JP S6132348 B2 JPS6132348 B2 JP S6132348B2
Authority
JP
Japan
Prior art keywords
oxygen
iron powder
resin
film
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59013953A
Other languages
Japanese (ja)
Other versions
JPS60158257A (en
Inventor
Juji Etsuno
Toshuki Tsukada
Shozo Isobe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP1395384A priority Critical patent/JPS60158257A/en
Publication of JPS60158257A publication Critical patent/JPS60158257A/en
Publication of JPS6132348B2 publication Critical patent/JPS6132348B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 本発明は熱可塑性樹脂に、鉄粉および無機電解
質物質の粉末を均一に混合・充填した物質から成
る酸素吸収性樹脂組成物に関するものである。 一般に食品や薬品の中には、空気中の酸素と接
触して著しく変質するものがあり、その保存に当
つて酸素からの害を防止するため脱酸素剤を共存
させて保護する方法が用いられてきた。脱酸素剤
としては亜二チオン酸塩、スルホキシル酸塩など
の還元性有機化合物、または鉄などの遷移金属の
粉末または粒状物が一般に使用されていた。実際
の使用に当つてはこれらの物質が当該食品や薬品
に直接接触するのを防ぐため通気性のよいフイル
ムなどで包装するか、パルプシートに吸着させ
て、シート状にして密閉容器の中に並存させてい
た。それによつて該容器内の酸素分圧をさげてい
たのである。 しかるに、この方法ではその都度、脱酸素剤を
準備し、或いは交換する必要があり取扱上の不便
は免れない。もし、容器自体に脱酸素の効果に相
当する機能が具備されていたらばこの不便は取除
かれるであろう。この要求に応じて本願発明者は
種々検討し還元性ある無機物質を樹脂に混合させ
る方法に着眼した。 本発明は脱酸素剤として鉄粉および無機電解質
物質の粉末の混合体を使用すること、かつこれを
熱可塑性樹脂に均一に混合・充填することを骨子
とする。 脱酸素剤としては、機能および経済性を考慮し
て鉄粉が選ばれた。鉄粉は特に高純度である必要
はなく、酸素に対して相当の活性を有するもので
あればよい。鉄粉は雰囲気中の酸素を捕捉して酸
化される。この際、酸化を促進するため多少の水
分の存在が不可欠である。この水分は、雰囲気中
の水蒸気又は当該物質の付着水から供給される量
で充分と考えられる。この際、鉄粉と共存する無
機電解質物質は、これらの水分と反応し、電離
し、鉄粉の酸化反応を促進させる役割を果す。そ
れ故酸素の捕捉は、あくまで鉄粉によつて行われ
るが、同時に電解質物質の存在も不可欠と考えら
れる。 また、熱可塑性樹脂は、その性質上酸素ガスを
透過する性質を有するもの、例えばポリオレフイ
ン類が選ばれるべきである。酸素分子は当該樹脂
内を透過、拡散して内含される鉄粉に達し、そこ
で捕捉されるからである。 本発明において使用される鉄粉および無機電解
質物質は粒径が50メツシユ以上の細粒が望まし
い。充填量は樹脂100部に対して、鉄粉は50〜800
部、無機電解質物質は1〜160部、かつ、鉄粉と
無機電解質物質の比率は100:2〜100:20が望ま
しい。粉径および充填量に関するこれらの制限は
後に行なう成形時の加工性、加工後の成形品の機
械的強度および酸化効率の面から与えられる。 ここで、無機電解質物質としては周期表a、
a、b、b族のハロゲン化物、炭酸塩、硫
酸塩、硝酸塩、リン酸塩などが有効であるが、電
離の容易さから見ればハロゲン化物が望ましく、
しかも経済性という観点からは塩化ナトリウムが
最適と考えられる。 熱可塑性樹脂に、鉄粉および無機電解質物質の
粉末を均一混合する手段としては加温状態で、例
えば高速ミキサーで目的を達することができる。 本発明による樹脂はシート、フイルム或いは瓶
容器、積層物など熱可塑性樹脂本来のもつ賦形
性、機械的強度などの特質を充分活用した加工が
可能である。また、当該樹脂の耐水性も何ら損わ
れることもない。 本発明の樹脂を包装材料として使用するには例
えば積層構造として加工することが考えられる。
その際には外層として酸素不透過の合成樹脂、例
えばナイロン、ポリエステル、ポリ塩化ビニリデ
ン、又は金属箔を用いて大気雰囲気の酸素を遮断
する。そして内装として本発明の樹脂を用いると
よい。内容物が、当該樹脂と直接接触することを
防ぐ場合には更に最内層として酸素透過性の良好
なポリオレフインやシリコーンフイルムを採用す
るか、また通気性のある微多孔性フイルムを用い
ることも考えられる。この積層構造を一体成形す
ることも可能であり、瓶容器の如き複雑な成形加
工品もできる。 二次的加工法を採る場合には本発明の樹脂でフ
イルムを成形した上、その両面に所定の性質を具
備したフイルムを後加工により貼付する方法が考
えられる。 フイルム或いは瓶容器を問わず当該樹脂を包装
容器として使用した場合、内容物たる食品又は薬
品を化学的に変質させることは考えられない。 以下、本発明に基づく熱可塑性樹脂を用いて包
装容器を作り、容器内の酸素濃度の変化を実施例
をもつて具体的に説明する。 実施例 1 熱可塑性樹脂として、低密度ポリエチレン100
部、鉄粉(200メツシユ以上)250部及び塩化ナト
リウム(200メツシユ以上)30部を温度110℃でス
ーパーミキサーで混合し、押出機ペレタイザーで
ペレツトとし、このプレツトを押出型Tダイ成形
機で200μm厚さのシートとする。ガラス製200ml
の密閉容器内に2cm×3cmの該シート片と2gの
水を含む0.2gの綿布を入れる。容器内の酸素濃
度をガスクロマトグラフで経時的に追跡した結果
は付表の如くなつた。 実施例 2 実施例1と同じ組成からなる熱可塑性樹脂(A)、
ナイロン(東レCM5012)(B)、低密度ポリエチレ
ン(宇部ポリエチレンFC19)(C)を用い、(A)を中
間層、(B)を外層、(C)を内層としてなる3層構成の
インフレーシヨンフイルムを成形した。それぞれ
の層の平均厚みは(A)150μm、(B)20μm、(C)10μ
mとした。 このフイルムを用いて、縦20cm、横10cm、底部
の厚さ2cmからなる角底袋を作つた。この袋内に
2gの水を含む0.2gの綿布を入れ口部を密閉し
た。袋内の酸素濃度を実施例1と同様の方法で追
跡し付表の如き結果を得た。 実施例 3 実施例1で得た200μmの厚さのフイルムの一
面に20μmのアルミニウム箔を熱プレス成形で融
着し、他の面に120μmの多孔質フイルム(徳山
曹達NFシート)を酢酸ビニル系の粘着剤で貼着
し3層構成とした。 このフイルムを用いて縦20cm、横10cm、底部の
厚さ2cmからなる角底袋を作つた。この袋内に2
gの水を含む0.2gの綿布を入れ口部を密閉し
た。袋内の酸素濃度を実施例1と同様の方法で追
跡し付表の如き結果を得た。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxygen-absorbing resin composition comprising a thermoplastic resin uniformly mixed and filled with iron powder and inorganic electrolyte powder. In general, some foods and drugs deteriorate significantly when they come into contact with oxygen in the air, and when preserving them, methods are used to protect them by coexisting with oxygen scavengers to prevent harm from oxygen. It's here. As oxygen scavengers, reducing organic compounds such as dithionites and sulfoxylates, or powders or granules of transition metals such as iron have generally been used. In actual use, in order to prevent these substances from coming into direct contact with the food or medicine concerned, they should be wrapped in a breathable film, or adsorbed onto a pulp sheet, then shaped into a sheet and placed in an airtight container. They were allowed to coexist. This lowered the oxygen partial pressure within the container. However, with this method, it is necessary to prepare or replace the oxygen scavenger each time, which inevitably causes inconvenience in handling. This inconvenience would be eliminated if the container itself was equipped with a function equivalent to the effect of deoxidizing. In response to this demand, the inventors of the present invention conducted various studies and focused on a method of mixing a reducing inorganic substance with a resin. The gist of the present invention is to use a mixture of iron powder and inorganic electrolyte powder as an oxygen scavenger, and to uniformly mix and fill the thermoplastic resin with the mixture. Iron powder was selected as the oxygen scavenger considering its functionality and economy. The iron powder does not need to be of particularly high purity, as long as it has considerable activity toward oxygen. Iron powder captures oxygen in the atmosphere and becomes oxidized. At this time, the presence of some moisture is essential to promote oxidation. It is considered that the amount of water supplied from the water vapor in the atmosphere or the water adhering to the substance is sufficient. At this time, the inorganic electrolyte substance coexisting with the iron powder reacts with the moisture, ionizes it, and plays the role of promoting the oxidation reaction of the iron powder. Therefore, oxygen is captured only by iron powder, but at the same time, the presence of electrolyte substances is also considered essential. Further, as the thermoplastic resin, one should be selected that has the property of permeating oxygen gas, such as polyolefins. This is because oxygen molecules permeate and diffuse through the resin, reach the iron powder contained therein, and are captured there. The iron powder and inorganic electrolyte used in the present invention are preferably fine particles with a particle size of 50 mesh or more. Filling amount is 50 to 800 parts of iron powder per 100 parts of resin.
part, the inorganic electrolyte material is preferably 1 to 160 parts, and the ratio of the iron powder to the inorganic electrolyte material is preferably 100:2 to 100:20. These restrictions regarding the powder diameter and filling amount are given from the viewpoints of processability during subsequent molding, mechanical strength of the molded product after processing, and oxidation efficiency. Here, as inorganic electrolyte substances, periodic table a,
Halides, carbonates, sulfates, nitrates, phosphates, etc. of groups a, b, and b are effective, but halides are preferable from the viewpoint of ease of ionization.
Moreover, from the viewpoint of economic efficiency, sodium chloride is considered to be optimal. As a means for uniformly mixing the iron powder and the inorganic electrolyte powder with the thermoplastic resin, the purpose can be achieved in a heated state, for example, using a high-speed mixer. The resin according to the present invention can be processed into sheets, films, bottles, containers, laminates, etc. by making full use of the inherent properties of thermoplastic resins, such as formability and mechanical strength. Moreover, the water resistance of the resin is not impaired in any way. In order to use the resin of the present invention as a packaging material, it is conceivable to process it into a laminated structure, for example.
In this case, an oxygen-impermeable synthetic resin such as nylon, polyester, polyvinylidene chloride, or metal foil is used as the outer layer to block oxygen in the atmosphere. The resin of the present invention may also be used as the interior material. In order to prevent the contents from coming into direct contact with the resin, it is also possible to use polyolefin or silicone film with good oxygen permeability as the innermost layer, or use a microporous film with air permeability. . It is also possible to integrally mold this laminated structure, and complex molded products such as bottles and containers can also be produced. When using a secondary processing method, a method may be considered in which a film is formed using the resin of the present invention and then a film having predetermined properties is attached to both sides of the film by post-processing. When the resin is used as a packaging container, whether it is a film or a bottle, it is unlikely that the food or medicine content will be chemically altered. Hereinafter, a packaging container will be manufactured using the thermoplastic resin based on the present invention, and changes in oxygen concentration within the container will be specifically explained using examples. Example 1 Low density polyethylene 100 as thermoplastic resin
250 parts of iron powder (200 mesh or more) and 30 parts of sodium chloride (200 mesh or more) are mixed in a super mixer at a temperature of 110°C, made into pellets with an extruder pelletizer, and the pellets are made into 200 μm thick pellets with an extrusion type T-die molding machine. Make a thick sheet. Glass 200ml
A 2 cm x 3 cm sheet piece and 0.2 g of cotton cloth containing 2 g of water were placed in a sealed container. The oxygen concentration in the container was tracked over time using a gas chromatograph, and the results are shown in the attached table. Example 2 Thermoplastic resin (A) having the same composition as Example 1,
Inflation with a three-layer structure using nylon (Toray CM5012) (B) and low-density polyethylene (Ube polyethylene FC19) (C), with (A) as the middle layer, (B) as the outer layer, and (C) as the inner layer. A film was formed. The average thickness of each layer is (A) 150μm, (B) 20μm, (C) 10μm
It was set as m. Using this film, a square bottom bag was made that was 20 cm long, 10 cm wide, and 2 cm thick at the bottom. 0.2 g of cotton cloth containing 2 g of water was placed in this bag and the opening was sealed. The oxygen concentration in the bag was tracked in the same manner as in Example 1, and the results shown in the attached table were obtained. Example 3 A 20 μm aluminum foil was fused to one side of the 200 μm thick film obtained in Example 1 by hot press molding, and a 120 μm porous film (Tokuyama Soda NF sheet) was attached to the other side using vinyl acetate. It was attached with an adhesive to form a three-layer structure. Using this film, we made a square bottom bag with a length of 20 cm, a width of 10 cm, and a bottom thickness of 2 cm. There are 2 in this bag
0.2 g of cotton cloth containing 1 g of water was put in and the opening was sealed. The oxygen concentration in the bag was tracked in the same manner as in Example 1, and the results shown in the attached table were obtained. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 熱可塑性樹脂100部に対し50メツシユ以上の
微粉末鉄粉を50−400部、かつ、塩化ナトリウム
粉末を鉄粉に対して2−20%の重量部だけ加え、
これらを均一に混合・充填した物質からなる酸素
吸収性樹脂組成物。
1 Add 50-400 parts of finely powdered iron powder of 50 mesh or more to 100 parts of thermoplastic resin, and add 2-20% of sodium chloride powder by weight to the iron powder,
An oxygen-absorbing resin composition made of a uniform mixture and filling of these materials.
JP1395384A 1984-01-27 1984-01-27 Oxygen-absorbing resin composition Granted JPS60158257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1395384A JPS60158257A (en) 1984-01-27 1984-01-27 Oxygen-absorbing resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1395384A JPS60158257A (en) 1984-01-27 1984-01-27 Oxygen-absorbing resin composition

Publications (2)

Publication Number Publication Date
JPS60158257A JPS60158257A (en) 1985-08-19
JPS6132348B2 true JPS6132348B2 (en) 1986-07-26

Family

ID=11847570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1395384A Granted JPS60158257A (en) 1984-01-27 1984-01-27 Oxygen-absorbing resin composition

Country Status (1)

Country Link
JP (1) JPS60158257A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0781649A2 (en) 1995-12-28 1997-07-02 Mitsubishi Gas Chemical Company, Inc. Oxygen-Absorbing multi-layer film and method for preparing same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651396B2 (en) * 1986-11-29 1994-07-06 凸版印刷株式会社 Multi-layer structure
DE68914102T2 (en) * 1988-11-24 1994-07-07 Sumitomo Chemical Co Oxygen-absorbing thermoplastic synthetic resin film.
JPH0733475B2 (en) * 1989-05-23 1995-04-12 東洋製罐株式会社 Thermoformable oxygen-absorbing resin composition
JPH0657319B2 (en) * 1990-08-03 1994-08-03 東洋製罐株式会社 Oxygen absorber, resin composition using the oxygen absorber, film or sheet comprising the resin composition, and packaging container
AU664257B2 (en) * 1992-04-14 1995-11-09 Riso Kagaku Corporation Bar code
US6369148B2 (en) * 1993-07-16 2002-04-09 Ciba Specialty Chemicals Corporation Oxygen-scavenging compositions and articles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54438A (en) * 1977-06-01 1979-01-05 Kubota Ltd Underground water cultivator
JPS5590535A (en) * 1978-12-28 1980-07-09 Nippon Synthetic Chem Ind Co Ltd:The Membranous substance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54438A (en) * 1977-06-01 1979-01-05 Kubota Ltd Underground water cultivator
JPS5590535A (en) * 1978-12-28 1980-07-09 Nippon Synthetic Chem Ind Co Ltd:The Membranous substance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0781649A2 (en) 1995-12-28 1997-07-02 Mitsubishi Gas Chemical Company, Inc. Oxygen-Absorbing multi-layer film and method for preparing same

Also Published As

Publication number Publication date
JPS60158257A (en) 1985-08-19

Similar Documents

Publication Publication Date Title
US5820956A (en) Multi-layer structural body
EP2970647B1 (en) Agent for the formation of channels in an entrained polymer, entrained polymer containing such an agent, process for producing such an entrained polymer and product containing the same
JP3955626B2 (en) Oxygen scavenging composition
JPH0657319B2 (en) Oxygen absorber, resin composition using the oxygen absorber, film or sheet comprising the resin composition, and packaging container
KR101249532B1 (en) Oxygen absorber, oxygen absorbent resin composition, and oxygen absorbent film
KR20180121785A (en) Oxygen absorber compositions, oxygen-absorbing multilayer bodies, oxygen-absorbing packaging containers, and methods of preserving articles
JPS6132348B2 (en)
JP3496427B2 (en) Oxygen-absorbing resin composition and packaging material, multilayer packaging material, package, or packaging method using the same
JP2015007148A (en) Oxygen-absorbing resin composition
JP3362756B2 (en) Oxygen-absorbing resin composition and oxygen-absorbing laminate
JP4314848B2 (en) Oxygen-absorbing resin composition and method for producing the same
JP3166817B2 (en) Deoxidizing multilayer structure and package comprising the same
JP3781062B2 (en) Lid packing
JPH0490847A (en) Oxygen absorbing agent and resin composition using the same, and film, sheet, or wrapping container consisting of said resin composition
JP3962882B2 (en) Deoxidizing resin composition, sheet or film comprising the same, and packaging container
JP2002201360A (en) Oxygen-absorbing composition, film or sheet comprising the composition and oxygen-absorbing laminated film or sheet having layer comprising the composition, packaging container comprising the film or sheet
JP6690201B2 (en) Oxygen absorber composition and oxygen absorber
JP4085218B2 (en) Oxygen scavenger composition and storage method
JP3624522B2 (en) Oxygen-absorbing resin composition and method for producing the same
JP3788057B2 (en) Deoxygenated resin composition, deoxygenated packaging material, and dry oxygen storage method using these
JPS63214351A (en) Deoxidizer
JP2000186219A (en) Iron-based, oxygen-absorptive resin composition and packaging material and container using this
JP4544377B2 (en) Oxygen-absorbing multilayer
JPS63110186A (en) Freshness holding film for vegetable and fruit
JP2004099732A (en) Oxygen-absorbent resin composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees