JP3356465B2 - Method for manufacturing electrode for solid polymer electrolyte fuel cell - Google Patents

Method for manufacturing electrode for solid polymer electrolyte fuel cell

Info

Publication number
JP3356465B2
JP3356465B2 JP24991792A JP24991792A JP3356465B2 JP 3356465 B2 JP3356465 B2 JP 3356465B2 JP 24991792 A JP24991792 A JP 24991792A JP 24991792 A JP24991792 A JP 24991792A JP 3356465 B2 JP3356465 B2 JP 3356465B2
Authority
JP
Japan
Prior art keywords
water
fuel
polymer electrolyte
solid polymer
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24991792A
Other languages
Japanese (ja)
Other versions
JPH06103983A (en
Inventor
篤夫 宗内
雅子 川畑
信和 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24991792A priority Critical patent/JP3356465B2/en
Publication of JPH06103983A publication Critical patent/JPH06103983A/en
Application granted granted Critical
Publication of JP3356465B2 publication Critical patent/JP3356465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子電解質型燃
料電池およびその電極の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte fuel cell and a method for manufacturing an electrode thereof.

【0002】[0002]

【従来の技術】近年、高効率のエネルギ変換装置として
燃料電池が注目を集めている。燃料電池は、これに用い
る電解質の種類により、たとえばアルカリ性水溶液型,
固体高分子電解質型,リン酸型等の低温動作燃料電池
と、溶融炭酸塩型、固体酸化物電解質型等の高温動作燃
料電池とに大別される。
2. Description of the Related Art In recent years, fuel cells have attracted attention as high-efficiency energy conversion devices. Depending on the type of electrolyte used for the fuel cell, for example, an alkaline aqueous solution type,
Low-temperature operation fuel cells such as solid polymer electrolyte type and phosphoric acid type, and high-temperature operation fuel cells such as molten carbonate type and solid oxide electrolyte type are roughly classified.

【0003】これらの燃料電池のうち、電解質としてプ
ロトン伝導性を有する高分子膜を用いた固体高分子電解
質型燃料電池は、コンパクトな構造で高出力密度が得ら
れ、かつ簡単なシステムで運転できることから、宇宙用
や車両用等の移動用電源として注目されている。
[0003] Among these fuel cells, a solid polymer electrolyte fuel cell using a polymer membrane having proton conductivity as an electrolyte has a compact structure, a high output density, and can be operated by a simple system. Therefore, it has attracted attention as a power source for mobile use such as for space or vehicles.

【0004】高分子膜としては、スルホン酸基を持つポ
リスチレン系の陽イオン交換膜、フルオロカーボンスル
ホン酸とポリビニリデンフルオライドとの混合膜,フル
オロカーボンマトリックスにトリフルオロエチレンをグ
ラフト化したもの等が知られており、最近ではパーフル
オロカーボンスルホン酸膜(たとえばナフィオン:商品
名、デュポン社製)等が用いられている。
As the polymer membrane, a polystyrene cation exchange membrane having a sulfonic acid group, a mixed membrane of fluorocarbon sulfonic acid and polyvinylidene fluoride, and a trifluoroethylene grafted trifluoroethylene are known. Recently, a perfluorocarbon sulfonic acid membrane (for example, Nafion: trade name, manufactured by DuPont) or the like has been used.

【0005】このような高分子膜を用いた固体高分子電
解質型燃料電池は、ガス拡散層および触媒層としての機
能を有する一対の多孔質電極、つまり燃料極と酸化剤極
とで高分子膜を挾持するとともに、両極の外側に燃料室
および酸化剤室を形成する溝付きの集電体を配したもの
を単セルとし、このような単セルを冷却板等を介して複
数積層することによって構成される。ところで、プロト
ン伝導型燃料電池では、燃料極側から供給される水素ガ
スと、酸化剤極側から供給される酸素ガスとによって、 燃料極:H2 →2H+ +2e- 酸化剤極:1/2 O2 +2H+ +2e- →H2 O なる電気化学的な反応が生じる。上記反応式において、
電子は燃料極から外部回路を通して酸化剤極へ移動し、
プロトンは電解質膜中を移動する。
[0005] A solid polymer electrolyte using such a polymer membrane
Degraded fuel cells are used as gas diffusion layers and catalyst layers.
A pair of porous electrodes having the same function, that is, a fuel electrode and an oxidizer electrode
And sandwich the polymer membrane with the fuel chamber
And a current collector with a groove forming an oxidant chamber
Is a single cell, and such a single cell is
It is configured by stacking several times. By the way, the proto
In a fuel cell, the hydrogen gas supplied from the fuel electrode side
And the oxygen gas supplied from the oxidant electrode side, the fuel electrode: HTwo→ 2H+ + 2e-  Oxidizer electrode: 1/2 OTwo+ 2H+ + 2e- → HTwoAn electrochemical reaction O 2 occurs. In the above reaction formula,
Electrons move from the fuel electrode to the oxidizer electrode through an external circuit,
Protons move through the electrolyte membrane.

【0006】高分子膜中のプロトンの移動、すなわち膜
のイオン伝導度は膜の含水率に大きく依存し、含水率が
低下するにしたがってイオン抵抗が著しく大きくなる。
したがって、常に一定の含水率を保持できるように高分
子膜に水分を供給する必要がある。
[0006] The movement of protons in a polymer membrane, that is, the ionic conductivity of the membrane greatly depends on the water content of the membrane, and the ionic resistance increases significantly as the water content decreases.
Therefore, it is necessary to supply water to the polymer membrane so that a constant water content can be always maintained.

【0007】このようなことから、運転温度が80℃程度
の従来の固体高分子電解質型燃料電池では、たとえば特
開平3-269955号公報に示されているように、供給ガスを
加湿して高分子膜を乾燥させないようにしたり、特開平
1-309263号公報や特開平4-95357 号公報に示されている
ように、燃料極支持体側から高分子膜に水や水蒸気を供
給して膜に給水するなどの工夫がなされている。
For this reason, in a conventional solid polymer electrolyte fuel cell having an operating temperature of about 80 ° C., as shown in, for example, JP-A-3-269955, the supply gas is humidified to increase the operating temperature. Do not allow the molecular film to dry,
As disclosed in JP-A 1-309263 and JP-A-4-95357, various measures have been taken, such as supplying water or steam to the polymer membrane from the fuel electrode support side to supply water to the membrane.

【0008】しかしながら、上記のように構成された固
体高分子電解質型燃料電池にあっては、上記手段だけで
は高分子膜中に水を安定に保持させたり、高分子膜へ良
好に給水することが難しく、その結果として電池の動作
中に高分子膜のイオン抵抗が増加し、長期間運転を行え
ない問題があった。
[0008] However, in the solid polymer electrolyte fuel cell configured as described above, it is necessary to stably hold water in the polymer membrane or to supply water satisfactorily to the polymer membrane by using only the above means. And the ionic resistance of the polymer membrane increases during the operation of the battery.

【0009】[0009]

【発明が解決しようとする課題】上述の如く、従来の固
体高分子電解質型燃料電池にあっては、構造的に高分子
膜の保水性能が劣るばかりか、十分な給水も困難で、長
期に亘って安定した運転が困難であった。そこで本発明
は、上記のような不具合を解消できる固体高分子電解質
燃料電池用電極の製造方法を提供することを目的とす
る。
As described above, in the conventional solid polymer electrolyte fuel cell, not only the water retention performance of the polymer membrane is inferior structurally, but also it is difficult to supply sufficient water, and the It was difficult to operate stably throughout. Accordingly, an object of the present invention is to provide a method for manufacturing an electrode for a solid polymer electrolyte fuel cell, which can solve the above-mentioned problems .
You.

【0010】[0010]

【課題を解決するための手段】上記目的を達するため
に、請求項1に対応する発明は、ガス拡散層に撥水性を
有する領域と親水性を有する領域とを有した燃料極を製
造するに当り、加熱によって揮散する高分子材料で前記
ガス拡散層の親水性となるべき領域を予め被覆した後に
撥水処理液に浸漬し、その後に熱処理して親水性の領域
部分を露出させることを特徴とする。
Means for Solving the Problems In order to achieve the above object, the invention corresponding to claim 1 provides a gas diffusion layer with water repellency.
A fuel electrode having a region having
In manufacturing, the polymer material which volatilizes by heating
After pre-coating the area to be hydrophilic of the gas diffusion layer
Immerse in a water-repellent treatment solution, and then heat-treat
It is characterized in that a portion is exposed.

【0011】[0011]

【0012】[0012]

【0013】[0013]

【0014】[0014]

【0015】[0015]

【作用】請求項1に対応する発明によれば、複雑な工程
を伴わずに、燃料ガス供給機能と給水機能とを同時に発
揮する燃料極の製作が可能となる。
According to the invention corresponding to the first aspect, it is possible to manufacture a fuel electrode which simultaneously exhibits a fuel gas supply function and a water supply function without complicated steps.

【0016】[0016]

【実施例】【Example】

実施例1 Example 1

【0017】厚さ0.2mm のパーフルオロカーボンスルホ
ン酸膜をリン酸ジルコニウム化合物の水溶液中に室温で
1週間に亘って浸漬した。図1には未処理の膜とリン酸
ジルコニウム化合物Zr(O3 PCH2 SO3 H)2
浸漬処理した膜との示差走査熱量測定の結果が示されて
いる。この図1から判るように、処理膜中の水の蒸発
は、未処理膜に較べて高温側で起こり、80℃付近での蒸
発が抑制される。
A perfluorocarbon sulfonic acid membrane having a thickness of 0.2 mm was immersed in an aqueous solution of a zirconium phosphate compound at room temperature for one week. FIG. 1 shows the results of differential scanning calorimetry between the untreated film and the film immersed in the zirconium phosphate compound Zr (O 3 PCH 2 SO 3 H) 2 . As can be seen from FIG. 1, the evaporation of water in the treated film occurs at a higher temperature than in the untreated film, and the evaporation at around 80 ° C. is suppressed.

【0018】次に、処理膜を2枚の触媒担持カーボン電
極で挟み、180 ℃,20kg/cm 2 の圧力下で3 分間ホット
プレスし、処理膜と電極とが接合されてなる単位セルを
作製した。
Next, the treated film is sandwiched between two catalyst-carrying carbon electrodes, and is heated at 180 ° C. and 20 kg / cm 2. Hot pressing was performed for 3 minutes under the above pressure to produce a unit cell in which the treated film and the electrode were joined.

【0019】製作した単位セルを80℃の雰囲気で加湿
し、常圧下、60,80,100,140 ℃の各温度において電流密
度0.2A/cm 2 で100 時間運転した。運転開始から100 時
間後のそれぞれの温度に対する電圧特性を調べたとこ
ろ、図2に示す結果が得られた。この図から判るよう
に、処理膜を用いた単セルは、セル温度の高い範囲にお
いても未処理膜を用いた単セル(従来例)に較べて安定
した特性が得られた。 実施例2
The manufactured unit cell is humidified in an atmosphere of 80 ° C., and at a current density of 0.2 A / cm 2 at normal temperatures of 60, 80, 100 and 140 ° C. For 100 hours. When the voltage characteristics at each temperature after 100 hours from the start of the operation were examined, the results shown in FIG. 2 were obtained. As can be seen from the figure, the single cell using the treated film has more stable characteristics than the single cell using the untreated film (conventional example) even in a high cell temperature range. Example 2

【0020】リン酸基を持つ化合物として、H3 PO4
(85wt% )を用いた以外は実施例1と同様な方法で処理
膜を作製し、これを用いた単セルを組立てて同一の条件
で運転したところ、図2に示すように実施例1と同様な
安定した結果が得られた。 実施例3
As a compound having a phosphate group, H 3 PO 4
(85 wt%), a processing film was prepared in the same manner as in Example 1, and a single cell using this was assembled and operated under the same conditions. As shown in FIG. Similar stable results were obtained. Example 3

【0021】図3に示すように、気孔率75% のカーボン
ペーパー1にスクリーンパターンを用いて図中ハッチン
グ2で示すように、ポリビニールブチラール(P.V.B )
のアルコール溶液(20wt% )を塗布した。
As shown in FIG. 3, using a screen pattern on carbon paper 1 having a porosity of 75%, as shown by hatching 2 in the figure, polyvinyl butyral (PVB)
(20 wt%) was applied.

【0022】次に、これを 20wt%のポリテトラフルオロ
エチレン(P.T.F.E )の水溶液に浸漬した後に乾燥させ
た。次に、これを空気中において320 ℃,30分に亘って
熱処理した。処理後に撥水性を調べたところ、PTFEで処
理されたところは撥水性を示し、PVB で処理されたとこ
ろ(図中1中にハッチング2で示すところ)は親水性を
示していることが水滴の染み込む様子によって観察され
た。
Next, this was immersed in an aqueous solution of 20 wt% polytetrafluoroethylene (PTFE) and dried. Next, this was heat-treated in air at 320 ° C. for 30 minutes. When water repellency was examined after the treatment, it was found that the area treated with PTFE showed water repellency, and the area treated with PVB (indicated by hatching 2 in FIG. 1) showed hydrophilicity. Observed by seeping.

【0023】このカーボンペーパー1の表面にPTFEを10
wt% 含むカーボンブラックを30μmの厚みに塗布した。
この塗布に際しては、250 メッシュのスクリーン上にカ
ーボンブラックを含むスラリーを乗せ、ヘラで押し出す
スクリーン印刷法で行った。乾燥後にカーボン層の上
に、白金を担持したカーボン触媒をパーフルオロスルホ
ン酸を含む溶液に分散してなる溶液をスクリーン印刷法
によって20μmの厚さに塗布して固体高分子電解質型燃
料電池の燃料極を作製した。
PTFE is coated on the surface of the carbon paper 1 by 10
Carbon black containing wt% was applied to a thickness of 30 μm.
This coating was performed by a screen printing method in which a slurry containing carbon black was placed on a 250-mesh screen and extruded with a spatula. After drying, a solution obtained by dispersing a platinum-supported carbon catalyst in a solution containing perfluorosulfonic acid on the carbon layer is applied to a thickness of 20 μm by screen printing to obtain a solid polymer electrolyte fuel cell fuel. The pole was made.

【0024】次に、酸化剤極を以下の方法で作製した。
すなわち、予め撥水処理された気孔率75% のカーボンペ
ーパーに、カーボンブラック,PTFE,ポリエチレングリ
コールからなる水スラリーをスクリーン印刷法で30μm
の厚みに塗布し、乾燥後に320 ℃,30分に亘って熱処理
した。
Next, an oxidizer electrode was prepared by the following method.
That is, a water slurry composed of carbon black, PTFE, and polyethylene glycol is applied to a water-repellent carbon paper having a porosity of 75% by screen printing to a thickness of 30 μm.
After drying, it was heat-treated at 320 ° C. for 30 minutes.

【0025】次に、白金を担持したカーボン触媒をパー
フルオロスルホン酸を含む溶液に分散してなる溶液をス
クリーン印刷法によってカーボン層の上に10μm塗布し
て固体高分子電解質型燃料電池の酸化剤極を作製した。
Next, a solution prepared by dispersing a carbon catalyst carrying platinum in a solution containing perfluorosulfonic acid is applied to the carbon layer by 10 μm by screen printing to form an oxidizing agent for a solid polymer electrolyte fuel cell. The pole was made.

【0026】上記のようにして作製された酸化剤極と燃
料極とでパーフルオロスルホン酸膜を挟み、これに20kg
/cm 2 ,180 ℃,3 分の条件でホットプレスして接合
し、単セルを作製した。
A perfluorosulfonic acid membrane is sandwiched between the oxidizer electrode and the fuel electrode produced as described above, and a 20 kg
/ cm 2 A single cell was fabricated by hot pressing at 180 ° C for 3 minutes.

【0027】このようにして作製された単セルの燃料極
側にイオン交換水を供給しながら発電特性を測定した。
その結果、図4に示す特性が得られた。この図から判る
ように、従来のように燃料極側全体に撥水処理をしたも
の(破線)は、短時間で性能が劣化した。しかし、本実
施例のように部分的に撥水処理したものは長時間安定な
特性を示した。
The power generation characteristics were measured while supplying ion-exchanged water to the fuel electrode side of the single cell thus produced.
As a result, the characteristics shown in FIG. 4 were obtained. As can be seen from the figure, the performance of the conventional water-repellent treatment on the entire fuel electrode side (broken line) deteriorated in a short time. However, those partially treated for water repellency as in this example exhibited stable characteristics for a long time.

【0028】なお、本実施例では親水性領域を帯状に形
成しているが、アイランド状に形成してもよい。また、
親水性領域は、全面積の20〜80% であればよく、この範
囲以外では水の供給およびガスの供給が十分行われず、
良好な電池特性は得られない。また、親水性領域と撥水
性領域との繰返し単位を10mm角程度より大きくすると、
親水性領域を設けた効果が低下するので、上記値より小
さくする必要がある。また、親水性となる領域を予め被
覆する材料は、ポリビニルブチラールに限らず、撥水剤
(ポリテトラフルオロエレチレン)の熱処理温度より低
い温度で揮散し、常温では固体状のワックスやポリエチ
レンを用いてもよい。さらに、親水性領域を設定するた
めにスクリーンをマスクとして用いているが、表面に凹
凸パターンを有するローラの凹部または凸部にPVB のア
ルコール溶液を含ませ、それを転写することによって親
水性領域を設定してもよい。また、紫外線等で硬化する
樹脂の溶液に浸漬後、親水性を付与したい部分のみに紫
外線を照射して硬化させ、残部の樹脂を洗い流して親水
性領域を形成するようにしてもよい。
Although the hydrophilic region is formed in a band shape in this embodiment, it may be formed in an island shape. Also,
The hydrophilic region may be 20 to 80% of the entire area, and water and gas are not sufficiently supplied outside this range.
Good battery characteristics cannot be obtained. Also, when the repeating unit of the hydrophilic region and the water-repellent region is larger than about 10 mm square,
Since the effect of providing the hydrophilic region is reduced, the value needs to be smaller than the above value. In addition, the material for pre-coating the hydrophilic region is not limited to polyvinyl butyral, but volatilizes at a temperature lower than the heat treatment temperature of the water repellent (polytetrafluoroethylene). At room temperature, solid wax or polyethylene is used. You may. Furthermore, the screen is used as a mask to set the hydrophilic area, but the concave or convex part of the roller having the uneven pattern on the surface is made to contain the alcohol solution of PVB in the concave part or the convex part, and the hydrophilic area is transferred by transferring the alcohol solution. May be set. Alternatively, after immersion in a solution of a resin that cures with ultraviolet light or the like, only the portion to which hydrophilicity is to be imparted may be irradiated with ultraviolet light to be cured, and the remaining resin may be washed away to form a hydrophilic region.

【0029】また、実際に図5(a) に示すように単セル
を複数積層した積層電池10を構成する場合には、同図
(b) に示すように、緻密材で形成されたセパレータ11
に冷却水流路12を設け、この冷却水流路12に案内さ
れた冷却水を親水性材で形成された加湿水透過板13を
介して親水性材で形成された燃料配流板14の燃料流路
15に染み出させ、この燃料流路15に染み出した水を
電極・高分子膜一体板16の燃料極側に供給するように
すればよい。なお、図中17は、セパレータ11,加湿
水透過板13,燃料配流板14の周縁部に設けられて、
燃料,酸化材である空気,冷却水の案内供給用の通路に
供される孔を示している。
In the case where the stacked battery 10 in which a plurality of single cells are stacked as shown in FIG.
As shown in (b), the separator 11 formed of a dense material
A cooling water flow path 12 is provided in the cooling water flow path 12, and the cooling water guided to the cooling water flow path 12 is passed through a humidified water transmission plate 13 formed of a hydrophilic material through a fuel flow path of a fuel distribution plate 14 formed of a hydrophilic material. 15, and the water that seeps into the fuel channel 15 may be supplied to the fuel electrode side of the electrode / polymer membrane integrated plate 16. In the figure, reference numeral 17 is provided on the periphery of the separator 11, the humidified water permeable plate 13, and the fuel distribution plate 14,
A hole provided for a passage for guiding and supplying fuel, air as an oxidant, and cooling water is shown.

【0030】[0030]

【発明の効果】以上述べたように本発明によれば、複雑
な工程を伴わずに、燃料ガス供給機能と給水機能とを同
時に発揮し得る燃料極の製作が可能な固体高分子電解質
型燃料電池用電極の製造方法を提供できる。
As described above, according to the present invention, complicated
The fuel gas supply function and the water supply function without the need for complicated processes.
Solid polymer electrolyte capable of producing a fuel electrode that can sometimes be demonstrated
And a method for manufacturing an electrode for a fuel cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電解質である高分子膜をZr(O3 PCH2
3 H)2 水溶液に浸漬処理して得たものと未処理のも
のとの示差走査熱量測定による結果を示す図
FIG. 1 shows a polymer film as an electrolyte formed of Zr (O 3 PCH 2 S).
O 3 H) shows the result of differential scanning calorimetry with that of untreated and those obtained by dipping in 2 aqueous solution

【図2】浸漬処理された高分子膜を組込んだ単セルと未
処理の高分子膜を組込んだ単セルとの各温度での100 時
間運転後の電池特性を示す図
FIG. 2 is a graph showing battery characteristics of a single cell incorporating a polymer membrane subjected to immersion treatment and a single cell incorporating an untreated polymer membrane after operation at each temperature for 100 hours.

【図3】燃料極に対する親水性処理を説明するための図FIG. 3 is a diagram for explaining a hydrophilic treatment for a fuel electrode;

【図4】親水性領域と撥水性領域とを持つ燃料極を組込
んだ単セルと撥水性処理のみ施され燃料極を組込んだ単
セルとの電池特性を示す図
FIG. 4 is a diagram showing battery characteristics of a single cell incorporating a fuel electrode having a hydrophilic region and a water-repellent region and a single cell incorporating a fuel electrode subjected to only water-repellent treatment.

【図5】積層電地の構成例を説明するための図FIG. 5 is a diagram for explaining a configuration example of a laminated electric field;

【符号の説明】[Explanation of symbols]

1…カーボンペーパー 2…親水性領域 1: carbon paper 2: hydrophilic region

フロントページの続き (56)参考文献 特開 平5−242898(JP,A) 特開 平6−196016(JP,A) 特開 昭59−23473(JP,A) 特開 平3−182052(JP,A) 米国特許4664761(US,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/86 H01M 4/88 H01M 8/04 H01M 8/10 Continuation of the front page (56) References JP-A-5-242898 (JP, A) JP-A-6-196016 (JP, A) JP-A-59-23473 (JP, A) JP-A-3-182052 (JP U.S. Pat. No. 4,466,761 (US, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/86 H01M 4/88 H01M 8/04 H01M 8/10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ガス拡散層に撥水性を有する領域と親水
性を有する領域とを有した燃料極を製造するに当り、加
熱によって揮散する高分子材料で前記ガス拡散層の親水
性となるべき領域を予め被覆した後に撥水処理液に浸漬
し、その後に熱処理して親水性の領域部分を露出させる
工程を具備してなることを特徴とする固体高分子電解質
型燃料電池用電極の製造方法。
1. A water-repellent region and a hydrophilic region in a gas diffusion layer.
In producing an anode having a region having an
A polymer material that evaporates due to heat and is hydrophilic in the gas diffusion layer.
Immersed in water-repellent treatment liquid after pre-coating the area to be treated
And then heat-treated to expose the hydrophilic region
Solid polymer electrolyte characterized by comprising a process
For producing an electrode for a fuel cell.
JP24991792A 1992-09-18 1992-09-18 Method for manufacturing electrode for solid polymer electrolyte fuel cell Expired - Fee Related JP3356465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24991792A JP3356465B2 (en) 1992-09-18 1992-09-18 Method for manufacturing electrode for solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24991792A JP3356465B2 (en) 1992-09-18 1992-09-18 Method for manufacturing electrode for solid polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH06103983A JPH06103983A (en) 1994-04-15
JP3356465B2 true JP3356465B2 (en) 2002-12-16

Family

ID=17200116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24991792A Expired - Fee Related JP3356465B2 (en) 1992-09-18 1992-09-18 Method for manufacturing electrode for solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3356465B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2233575A1 (en) * 1995-10-06 1997-04-10 The Dow Chemical Company Flow field structures for membrane electrode assemblies of fuel cells
IT1319649B1 (en) * 2000-11-14 2003-10-23 Nuvera Fuel Cells Europ Srl MEMBRANE-ELECTRODE ASSEMBLY FOR MEMBRANE-POLYMER FUEL CELL.
JP2004536419A (en) * 2000-11-30 2004-12-02 エムティーアイ・マイクロフューエル・セルズ・インコーポレイテッド System with fuel cell membrane and integrated gas separation
US7582373B2 (en) 2001-11-15 2009-09-01 Jgc Catalysts And Chemicals Ltd. Electrolyte film and fuel cell
JP4979179B2 (en) * 2003-08-22 2012-07-18 株式会社豊田中央研究所 Solid polymer fuel cell and manufacturing method thereof
US8241818B2 (en) * 2004-08-06 2012-08-14 GM Global Technology Operations LLC Diffusion media with hydrophobic and hydrophilic properties
US7998638B2 (en) * 2004-11-03 2011-08-16 Samsung Sdi Co., Ltd. Electrode for fuel cell, and membrane-electrode assembly and fuel cell system comprising the same
JP2007273215A (en) * 2006-03-31 2007-10-18 Equos Research Co Ltd Manufacturing method of diffusion layer for fuel cell
JP2009037919A (en) * 2007-08-02 2009-02-19 Sharp Corp Fuel cell and its manufacturing method, and fuel-cell stack
JP4973396B2 (en) * 2007-09-03 2012-07-11 トヨタ自動車株式会社 Fuel cell and diffusion layer
JP2013008687A (en) * 2012-08-24 2013-01-10 Sharp Corp Fuel cell stack

Also Published As

Publication number Publication date
JPH06103983A (en) 1994-04-15

Similar Documents

Publication Publication Date Title
KR100513183B1 (en) Fuel cell
US8323848B2 (en) Membrane-electrode assembly for fuel cell, preparation method, and fuel cell comprising the same
WO2005124903A1 (en) Gas diffusion electrode and solid-state high-molecular electrolyte type fuel cell
KR20160008205A (en) Self-wetting membrane electrode unit and fuel cell having such a unit
JP2007173196A (en) Polymer electrolyte membrane, method of manufacturing same, and fuel cell
JP4956870B2 (en) Fuel cell and fuel cell manufacturing method
JP3356465B2 (en) Method for manufacturing electrode for solid polymer electrolyte fuel cell
JP3577402B2 (en) Polymer electrolyte fuel cell
JP3813406B2 (en) Fuel cell
JP2000003718A (en) Method for activating high molecular electrolyte fuel cell
KR101312262B1 (en) Polymer membrane, a method for preparing the polymer membrane and a fuel cell employing the same
JP2002164057A (en) Solid high molecular fuel cell and method of manufacturing the same
JP2001102059A (en) Proton-exchange membrane fuel cell system
JP4506164B2 (en) Membrane electrode assembly and method of using the same
JP2003197203A (en) Fuel cell
KR101326190B1 (en) Membrane Electrode Assembly for fuel cell and fuel cell using the same
JPH08106915A (en) Electrode of solid polymer fuel cell and manufacture of fuel cell
JP2814716B2 (en) Cell structure of solid polymer electrolyte fuel cell and method of supplying water and gas
JP2001185171A (en) Solid polymeric fuel cell and its manufacturing method
JP2000251901A (en) Cell for fuel cell and fuel cell using it
JP2004185900A (en) Electrode for fuel cell, film/catalyst layer junction, fuel cell, and manufacturing method of them
JPH05190184A (en) Electrode-electrolyte joint body, manufacture thereof, and fuel cell using thereof
JP2008234941A (en) Manufacturing method of porous catalyst layer, manufacturing method of membrane-electrode assembly, and manufacturing method of polymer electrolyte fuel cell
JP2003109629A (en) Method of manufacturing gas diffusion layer, and electrolyte film/electrode junction and polyelectrolyte fuel cell applying the same
JP3495668B2 (en) Fuel cell manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees