JPH06103983A - Solid highpolymer electrolyte type fuel cell and manufacture of electrode - Google Patents

Solid highpolymer electrolyte type fuel cell and manufacture of electrode

Info

Publication number
JPH06103983A
JPH06103983A JP4249917A JP24991792A JPH06103983A JP H06103983 A JPH06103983 A JP H06103983A JP 4249917 A JP4249917 A JP 4249917A JP 24991792 A JP24991792 A JP 24991792A JP H06103983 A JPH06103983 A JP H06103983A
Authority
JP
Japan
Prior art keywords
film
water
fuel cell
electrode
unit cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4249917A
Other languages
Japanese (ja)
Other versions
JP3356465B2 (en
Inventor
Atsuo Muneuchi
篤夫 宗内
Masako Kawabata
雅子 川畑
Nobukazu Suzuki
信和 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24991792A priority Critical patent/JP3356465B2/en
Publication of JPH06103983A publication Critical patent/JPH06103983A/en
Application granted granted Critical
Publication of JP3356465B2 publication Critical patent/JP3356465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To let a film exhibit excellent water retaining property even at operating temperature equal to or more than 80 deg.C, and thereby enable conductivity to be kept on for a long time by letting a high polymer film composed of solid electrolyte contain compounds having phospholic group. CONSTITUTION:A perfluorocarbonsulohonic acid film as thin as 0.2mm is immersed in zirconium compound phosphate for a week. As a result of measurement by a differential scanning calorimeter between an untreated film and a treated film, water evaporation out of the treated film takes place at high temperature as compared with that of the untreated film, but it is restrained on or about 80 deg.C. The treated film is held by catalyst holding carbon electrodes, and is hot-pressed at 180 deg.C under the pressure of 20kg/cm<2> for three minutes, so that an unit cell is formed. After the unit cell humidified under the environment of 80 deg.C, has been operated at respective temperature up to 140 deg.C under normal atmospheric pressure for one hundred hours while being subjected to the current density of 0.2A/cm<2>, the voltage characteristics obtained of the unit cell is atable even in a range of high temperature as compared with that of the unit cell employing the untreated film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子電解質型燃
料電池およびその電極の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte fuel cell and a method for manufacturing the electrode thereof.

【0002】[0002]

【従来の技術】近年、高効率のエネルギ変換装置として
燃料電池が注目を集めている。燃料電池は、これに用い
る電解質の種類により、たとえばアルカリ性水溶液型,
固体高分子電解質型,リン酸型等の低温動作燃料電池
と、溶融炭酸塩型、固体酸化物電解質型等の高温動作燃
料電池とに大別される。
2. Description of the Related Art In recent years, fuel cells have been attracting attention as a highly efficient energy conversion device. Depending on the type of electrolyte used for the fuel cell, for example, an alkaline aqueous solution type
It is roughly classified into low temperature operating fuel cells such as solid polymer electrolyte type and phosphoric acid type, and high temperature operating fuel cells such as molten carbonate type and solid oxide electrolyte type.

【0003】これらの燃料電池のうち、電解質としてプ
ロトン伝導性を有する高分子膜を用いた固体高分子電解
質型燃料電池は、コンパクトな構造で高出力密度が得ら
れ、かつ簡単なシステムで運転できることから、宇宙用
や車両用等の移動用電源として注目されている。
Among these fuel cells, a solid polymer electrolyte fuel cell using a polymer membrane having proton conductivity as an electrolyte is capable of obtaining a high output density with a compact structure and operating with a simple system. Therefore, it is attracting attention as a mobile power source for space and vehicles.

【0004】高分子膜としては、スルホン酸基を持つポ
リスチレン系の陽イオン交換膜、フルオロカーボンスル
ホン酸とポリビニリデンフルオライドとの混合膜,フル
オロカーボンマトリックスにトリフルオロエチレンをグ
ラフト化したもの等が知られており、最近ではパーフル
オロカーボンスルホン酸膜(たとえばナフィオン:商品
名、デュポン社製)等が用いられている。
Known polymer membranes include polystyrene cation exchange membranes having sulfonic acid groups, mixed membranes of fluorocarbon sulfonic acid and polyvinylidene fluoride, and grafted fluorocarbon matrix with trifluoroethylene. Recently, perfluorocarbon sulfonic acid membranes (for example, Nafion: trade name, manufactured by DuPont) are used.

【0005】このような高分子膜を用いた固体高分子電
解質型燃料電池は、ガス拡散層および触媒層としての機
能を有する一対の多孔質電極、つまり燃料極と酸化剤極
とで高分子膜を挾持するとともに、両極の外側に燃料室
および酸化剤室を形成する溝付きの集電体を配したもの
を単セルとし、このような単セルを冷却板等を介して複
数積層することによって構成される。ところで、プロト
ン伝導型燃料電池では、燃料極側から供給される水素ガ
スと、酸化剤極側から供給される酸素ガスとによって、 燃料極:H2 →2H+ +2e- 酸化剤極:1/2 O2 +2H+ +2e- →H2 O なる電気化学的な反応が生じる。上記反応式において、
電子は燃料極から外部回路を通して酸化剤極へ移動し、
プロトンは電解質膜中を移動する。
A solid polymer electrolyte using such a polymer film
The degradable fuel cell is used as a gas diffusion layer and a catalyst layer.
Pair of porous electrodes, that is, fuel electrode and oxidizer electrode
Hold the polymer membrane with and hold the fuel chamber outside the electrodes.
And a current collector with a groove that forms an oxidant chamber
Is a single cell, and such a single cell is
It is constructed by stacking several layers. By the way, Proto
In a hydrogen-conducting fuel cell, the hydrogen gas supplied from the fuel electrode side
And the oxygen gas supplied from the oxidizer electrode side, the fuel electrode: H2→ 2H+ + 2e-  Oxidizer electrode: 1/2 O2+ 2H+ + 2e- → H2An electrochemical reaction of O 2 occurs. In the above reaction formula,
The electrons move from the fuel electrode through the external circuit to the oxidant electrode,
Protons move in the electrolyte membrane.

【0006】高分子膜中のプロトンの移動、すなわち膜
のイオン伝導度は膜の含水率に大きく依存し、含水率が
低下するにしたがってイオン抵抗が著しく大きくなる。
したがって、常に一定の含水率を保持できるように高分
子膜に水分を供給する必要がある。
The movement of protons in the polymer membrane, that is, the ionic conductivity of the membrane, depends largely on the water content of the membrane, and the ionic resistance increases remarkably as the water content decreases.
Therefore, it is necessary to supply water to the polymer membrane so that the water content can always be kept constant.

【0007】このようなことから、運転温度が80℃程度
の従来の固体高分子電解質型燃料電池では、たとえば特
開平3-269955号公報に示されているように、供給ガスを
加湿して高分子膜を乾燥させないようにしたり、特開平
1-309263号公報や特開平4-95357 号公報に示されている
ように、燃料極支持体側から高分子膜に水や水蒸気を供
給して膜に給水するなどの工夫がなされている。
Therefore, in the conventional solid polymer electrolyte fuel cell having an operating temperature of about 80 ° C., as shown in, for example, Japanese Patent Laid-Open No. 3-269955, the feed gas is humidified to a high temperature. To prevent the molecular film from drying,
As shown in 1-309263 and Japanese Patent Laid-Open No. 4-95357, measures such as supplying water or steam to the polymer membrane from the side of the fuel electrode support to supply water to the membrane have been devised.

【0008】しかしながら、上記のように構成された固
体高分子電解質型燃料電池にあっては、上記手段だけで
は高分子膜中に水を安定に保持させたり、高分子膜へ良
好に給水することが難しく、その結果として電池の動作
中に高分子膜のイオン抵抗が増加し、長期間運転を行え
ない問題があった。
However, in the solid polymer electrolyte fuel cell constructed as described above, water can be stably retained in the polymer membrane or water can be satisfactorily supplied to the polymer membrane only by the above means. However, as a result, the ionic resistance of the polymer membrane increases during the operation of the battery, and there is a problem that it cannot be operated for a long time.

【0009】[0009]

【発明が解決しようとする課題】上述の如く、従来の固
体高分子電解質型燃料電池にあっては、構造的に高分子
膜の保水性能が劣るばかりか、十分な給水も困難で、長
期に亘って安定した運転が困難であった。そこで本発明
は、上記不具合を解消できる固体高分子電解質型燃料電
池およびその電極の製造方法を提供することを目的にし
ている。
As described above, in the conventional solid polymer electrolyte fuel cell, not only the water retention performance of the polymer membrane is structurally inferior, but also sufficient water supply is difficult and long-term Stable operation was difficult over the entire period. Therefore, an object of the present invention is to provide a solid polymer electrolyte fuel cell and a method for manufacturing the electrode thereof, which can solve the above-mentioned problems.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明の第1の例では、電解質として用いられる高
分子膜の保水性を向上させている。すなわち、80℃ある
いはそれ以上の運転温度においても高分子膜に良好な保
水性能を発揮させるために、高分子膜にリン酸基を持つ
化合物を含有させている。
In order to achieve the above object, in the first example of the present invention, the water retention of the polymer membrane used as the electrolyte is improved. That is, the polymer membrane contains a compound having a phosphate group in order to allow the polymer membrane to exhibit good water retention performance even at an operating temperature of 80 ° C. or higher.

【0011】リン酸基を持つ化合物としては、H3 PO
4 を代表とするリン酸化合物(H3PO2 ,H3
3 ,H4 2 5 ,HPO2 ,H4 2 6 ,H4
2 7 ,HPO3 ,H4 3 10,H3 PO5 ,H4
2 8 等)を用いることができる。また、リン酸ジルコ
ニウム化合物、Zr(O3 PCH)2 およびその誘導体
を用いることもできる。その中でも高イオン交換容量を
持つZr(O3 PCH)2・H2 O,Zr(O3 PCH
2 COOH)2 ,Zr(O3 PC2 4 COOH)2
Zr(O3 PCH2 SO3 H)2 ,およびその誘導体が
好ましい。そして、高分子膜を処理する際に、膜を膨潤
させ上記化合物を含浸し易くするためにも水溶液を形成
できることが望ましい。
As the compound having a phosphoric acid group, H 3 PO
Phosphoric acid compounds represented by 4 (H 3 PO 2 , H 3 P
O 3 , H 4 P 2 O 5 , HPO 2 , H 4 P 2 O 6 , H 4 P
2 O 7 , HPO 3 , H 4 P 3 O 10 , H 3 PO 5 , H 4 P
2 O 8 etc.) can be used. Further, a zirconium phosphate compound, Zr (O 3 PCH) 2 and its derivative can also be used. Among them, Zr (O 3 PCH) 2 · H 2 O and Zr (O 3 PCH) having high ion exchange capacity
2 COOH) 2 , Zr (O 3 PC 2 H 4 COOH) 2 ,
Zr (O 3 PCH 2 SO 3 H) 2 and its derivatives are preferred. Then, when treating the polymer membrane, it is desirable to be able to form an aqueous solution in order to swell the membrane and facilitate impregnation with the above compound.

【0012】また、上記目的を達成するために、本発明
の第2の例では、高分子膜への給水を安定に行うために
燃料極に工夫が施されている。すなわち、燃料極のガス
拡散層に撥水性を有する領域と親水性を有する領域とを
交互に隣接して設け、燃料極を介して燃料ガスの供給と
水の供給とを同時に行えるようにしている。
Further, in order to achieve the above object, in the second example of the present invention, the fuel electrode is devised in order to stably supply water to the polymer membrane. That is, regions having water repellency and regions having hydrophilicity are alternately and adjacently provided in the gas diffusion layer of the fuel electrode so that the fuel gas and the water can be simultaneously supplied through the fuel electrode. .

【0013】また、上記目的を達成するために、本発明
の第3の例では、ガス拡散層に撥水性を有する領域と親
水性を有する領域とを有した燃料極を製造するに当り、
加熱によって揮散する高分子材料でガス拡散層の親水性
となるべき領域を予め被覆した後に撥水処理液に浸漬
し、その後に熱処理して親水性の領域部分を露出させる
ようにしている。
In order to achieve the above object, in the third example of the present invention, in manufacturing a fuel electrode having a water-repellent region and a hydrophilic region in the gas diffusion layer,
A region of the gas diffusion layer that is to be hydrophilic is previously coated with a polymer material that is volatilized by heating, is immersed in a water repellent treatment solution, and is then heat-treated to expose the hydrophilic region portion.

【0014】[0014]

【作用】本発明の第1の例においては、高分子膜にリン
酸基を持つ化合物を含有させているので、膜中に拘束さ
れる水の量を多くできる。すなわち、高分子膜としてパ
ーフルオロカーボンスルホン酸膜を例にとると、この膜
が水を保持できるのは強酸性を示すスルホン基によるも
のである。膜中の水のうち、スルホン基に束縛されない
分は蒸発し易い。プロトンはこれらの水を介してイオン
伝導性を示す。第1の例ではスルホン基が存在する以外
に、さらに水分子と水和可能なリン酸基を持つ化合物を
膜中に混在しているので、水分子がリン酸基と水和し、
より多くの拘束された水分子が存在するようになる。こ
れにより膜中の固定イオン基に拘束された水分子が増
え、通常の拘束されない自由水とは異なって蒸発が抑制
されることになる。したがって、80℃より高温での膜の
含水率の低下を抑制することが可能となる。
In the first example of the present invention, since the polymer film contains a compound having a phosphate group, the amount of water bound in the film can be increased. That is, when a perfluorocarbon sulfonic acid membrane is taken as an example of the polymer membrane, this membrane can retain water because of the sulfonic acid group having strong acidity. Of the water in the film, the part that is not bound by the sulfone group is likely to evaporate. Protons show ionic conductivity through these waters. In the first example, in addition to the presence of a sulfone group, a water molecule and a compound having a hydratable phosphate group are mixed in the film, so that the water molecule hydrates with the phosphate group,
There will be more bound water molecules. As a result, the number of water molecules bound by the fixed ionic groups in the membrane increases, and evaporation is suppressed unlike the ordinary unbound free water. Therefore, it becomes possible to suppress a decrease in the water content of the membrane at a temperature higher than 80 ° C.

【0015】また、本発明の第2の例では、燃料極を介
して燃料ガスの供給と水の供給とを同時に行えるので、
構成の複雑化を招くことなく高分子膜に安定に給水する
ことが可能となる。また、本発明の第3の例において
は、複雑な工程を伴なわずに、燃料ガス供給機能と給水
機能とを同時に発揮する燃料極の製作が可能となる。
Further, in the second example of the present invention, since the fuel gas and the water can be supplied simultaneously through the fuel electrode,
It is possible to stably supply water to the polymer membrane without complicating the structure. In addition, in the third example of the present invention, it is possible to manufacture a fuel electrode that simultaneously exhibits the fuel gas supply function and the water supply function without involving complicated steps.

【0016】[0016]

【実施例】【Example】

実施例1 Example 1

【0017】厚さ0.2mm のパーフルオロカーボンスルホ
ン酸膜をリン酸ジルコニウム化合物の水溶液中に室温で
1週間に亘って浸漬した。図1には未処理の膜とリン酸
ジルコニウム化合物Zr(O3 PCH2 SO3 H)2
浸漬処理した膜との示差走査熱量測定の結果が示されて
いる。この図1から判るように、処理膜中の水の蒸発
は、未処理膜に較べて高温側で起こり、80℃付近での蒸
発が抑制される。
A perfluorocarbon sulfonic acid membrane having a thickness of 0.2 mm was immersed in an aqueous solution of a zirconium phosphate compound at room temperature for 1 week. FIG. 1 shows the results of differential scanning calorimetry between the untreated film and the film dipped in the zirconium phosphate compound Zr (O 3 PCH 2 SO 3 H) 2 . As can be seen from FIG. 1, the evaporation of water in the treated film occurs on the high temperature side as compared with the untreated film, and the evaporation at around 80 ° C. is suppressed.

【0018】次に、処理膜を2枚の触媒担持カーボン電
極で挟み、180 ℃,20kg/cm 2 の圧力下で3 分間ホット
プレスし、処理膜と電極とが接合されてなる単位セルを
作製した。
Next, the treated membrane was sandwiched between two catalyst-supporting carbon electrodes, and the temperature was kept at 180 ° C. and 20 kg / cm 2. It was hot-pressed for 3 minutes under pressure to prepare a unit cell in which the treated film and the electrode were joined.

【0019】製作した単位セルを80℃の雰囲気で加湿
し、常圧下、60,80,100,140 ℃の各温度において電流密
度0.2A/cm 2 で100 時間運転した。運転開始から100 時
間後のそれぞれの温度に対する電圧特性を調べたとこ
ろ、図2に示す結果が得られた。この図から判るよう
に、処理膜を用いた単セルは、セル温度の高い範囲にお
いても未処理膜を用いた単セル(従来例)に較べて安定
した特性が得られた。 実施例2
The manufactured unit cell is humidified in an atmosphere of 80 ° C., and the current density is 0.2 A / cm 2 at each temperature of 60, 80, 100, 140 ° C. under normal pressure. I drove for 100 hours. When the voltage characteristics with respect to each temperature were examined 100 hours after the start of operation, the results shown in Fig. 2 were obtained. As can be seen from this figure, the single cell using the treated film obtained more stable characteristics than the single cell using the untreated film (conventional example) even in the high cell temperature range. Example 2

【0020】リン酸基を持つ化合物として、H3 PO4
(85wt% )を用いた以外は実施例1と同様な方法で処理
膜を作製し、これを用いた単セルを組立てて同一の条件
で運転したところ、図2に示すように実施例1と同様な
安定した結果が得られた。 実施例3
As a compound having a phosphoric acid group, H 3 PO 4
A treated membrane was prepared in the same manner as in Example 1 except that (85 wt%) was used, and a single cell using this was assembled and operated under the same conditions. As shown in FIG. Similar stable results were obtained. Example 3

【0021】図3に示すように、気孔率75% のカーボン
ペーパー1にスクリーンパターンを用いて図中ハッチン
グ2で示すように、ポリビニールブチラール(P.V.B )
のアルコール溶液(20wt% )を塗布した。
As shown in FIG. 3, using a screen pattern on carbon paper 1 having a porosity of 75%, as indicated by hatching 2 in the figure, polyvinyl butyral (PVB) is used.
Alcohol solution (20 wt%) was applied.

【0022】次に、これを 20wt%のポリテトラフルオロ
エチレン(P.T.F.E )の水溶液に浸漬した後に乾燥させ
た。次に、これを空気中において320 ℃,30分に亘って
熱処理した。処理後に撥水性を調べたところ、PTFEで処
理されたところは撥水性を示し、PVB で処理されたとこ
ろ(図中1中にハッチング2で示すところ)は親水性を
示していることが水滴の染み込む様子によって観察され
た。
Next, this was immersed in an aqueous solution of 20 wt% polytetrafluoroethylene (PTFE) and then dried. Next, this was heat-treated in air at 320 ° C. for 30 minutes. When the water repellency was examined after the treatment, it was found that the portion treated with PTFE showed water repellency and the portion treated with PVB (shown with hatching 2 in FIG. 1) showed hydrophilicity. Observed by the appearance of soaking.

【0023】このカーボンペーパー1の表面にPTFEを10
wt% 含むカーボンブラックを30μmの厚みに塗布した。
この塗布に際しては、250 メッシュのスクリーン上にカ
ーボンブラックを含むスラリーを乗せ、ヘラで押し出す
スクリーン印刷法で行った。乾燥後にカーボン層の上
に、白金を担持したカーボン触媒をパーフルオロスルホ
ン酸を含む溶液に分散してなる溶液をスクリーン印刷法
によって20μmの厚さに塗布して固体高分子電解質型燃
料電池の燃料極を作製した。
10% PTFE was applied to the surface of the carbon paper 1.
Carbon black containing wt% was applied to a thickness of 30 μm.
This coating was carried out by a screen printing method in which a slurry containing carbon black was placed on a 250 mesh screen and extruded with a spatula. After drying, a solution of a carbon catalyst supporting platinum on a carbon layer dispersed in a solution containing perfluorosulfonic acid is applied by a screen printing method to a thickness of 20 μm, and the solid polymer electrolyte fuel cell fuel is used. The pole was made.

【0024】次に、酸化剤極を以下の方法で作製した。
すなわち、予め撥水処理された気孔率75% のカーボンペ
ーパーに、カーボンブラック,PTFE,ポリエチレングリ
コールからなる水スラリーをスクリーン印刷法で30μm
の厚みに塗布し、乾燥後に320 ℃,30分に亘って熱処理
した。
Next, an oxidizer electrode was prepared by the following method.
That is, a water slurry consisting of carbon black, PTFE, and polyethylene glycol was applied to a water-repellent carbon paper with a porosity of 75% by screen-printing method at a thickness of 30 μm.
After being dried, it was heat-treated at 320 ° C for 30 minutes.

【0025】次に、白金を担持したカーボン触媒をパー
フルオロスルホン酸を含む溶液に分散してなる溶液をス
クリーン印刷法によってカーボン層の上に10μm塗布し
て固体高分子電解質型燃料電池の酸化剤極を作製した。
Next, a solution prepared by dispersing a platinum-supported carbon catalyst in a solution containing perfluorosulfonic acid is applied on the carbon layer by screen printing to a thickness of 10 μm to form an oxidizing agent for a solid polymer electrolyte fuel cell. The pole was made.

【0026】上記のようにして作製された酸化剤極と燃
料極とでパーフルオロスルホン酸膜を挟み、これに20kg
/cm 2 ,180 ℃,3 分の条件でホットプレスして接合
し、単セルを作製した。
A perfluorosulfonic acid film was sandwiched between the oxidizer electrode and the fuel electrode manufactured as described above, and 20 kg
/ cm 2 A single cell was prepared by hot pressing and joining at 180 ° C for 3 minutes.

【0027】このようにして作製された単セルの燃料極
側にイオン交換水を供給しながら発電特性を測定した。
その結果、図4に示す特性が得られた。この図から判る
ように、従来のように燃料極側全体に撥水処理をしたも
の(破線)は、短時間で性能が劣化した。しかし、本実
施例のように部分的に撥水処理したものは長時間安定な
特性を示した。
The power generation characteristics were measured while supplying ion-exchanged water to the fuel electrode side of the single cell thus manufactured.
As a result, the characteristics shown in FIG. 4 were obtained. As can be seen from this figure, the performance of the conventional one in which the entire fuel electrode side was subjected to water repellent treatment (broken line) deteriorated in a short time. However, those partially subjected to the water repellent treatment as in this example showed stable characteristics for a long time.

【0028】なお、本実施例では親水性領域を帯状に形
成しているが、アイランド状に形成してもよい。また、
親水性領域は、全面積の20〜80% であればよく、この範
囲以外では水の供給およびガスの供給が十分行われず、
良好な電池特性は得られない。また、親水性領域と撥水
性領域との繰返し単位を10mm角程度より大きくすると、
親水性領域を設けた効果が低下するので、上記値より小
さくする必要がある。また、親水性となる領域を予め被
覆する材料は、ポリビニルブチラールに限らず、撥水剤
(ポリテトラフルオロエレチレン)の熱処理温度より低
い温度で揮散し、常温では固体状のワックスやポリエチ
レンを用いてもよい。さらに、親水性領域を設定するた
めにスクリーンをマスクとして用いているが、表面に凹
凸パターンを有するローラの凹部または凸部にPVB のア
ルコール溶液を含ませ、それを転写することによって親
水性領域を設定してもよい。また、紫外線等で硬化する
樹脂の溶液に浸漬後、親水性を付与したい部分のみに紫
外線を照射して硬化させ、残部の樹脂を洗い流して親水
性領域を形成するようにしてもよい。
Although the hydrophilic region is formed in a strip shape in this embodiment, it may be formed in an island shape. Also,
The hydrophilic area may be 20 to 80% of the total area, and water and gas are not sufficiently supplied outside this range.
Good battery characteristics cannot be obtained. If the repeating unit of the hydrophilic region and the water-repellent region is larger than about 10 mm square,
Since the effect of providing the hydrophilic region decreases, it is necessary to make the value smaller than the above value. Further, the material for preliminarily coating the hydrophilic region is not limited to polyvinyl butyral, but a wax or polyethylene which is solid at room temperature and vaporizes at a temperature lower than the heat treatment temperature of the water repellent (polytetrafluoroethylene) is used. May be. Furthermore, although the screen is used as a mask to set the hydrophilic area, PVB alcohol solution is included in the concave or convex part of the roller having an uneven pattern on the surface, and the hydrophilic area is formed by transferring it. You may set it. Alternatively, after immersing in a solution of a resin that cures with ultraviolet rays or the like, only the portion to which hydrophilicity is to be imparted may be irradiated with ultraviolet rays to be cured, and the remaining resin may be washed away to form a hydrophilic region.

【0029】また、実際に図5(a) に示すように単セル
を複数積層した積層電池10を構成する場合には、同図
(b) に示すように、緻密材で形成されたセパレータ11
に冷却水流路12を設け、この冷却水流路12に案内さ
れた冷却水を親水性材で形成された加湿水透過板13を
介して親水性材で形成された燃料配流板14の燃料流路
15に染み出させ、この燃料流路15に染み出した水を
電極・高分子膜一体板16の燃料極側に供給するように
すればよい。なお、図中17は、セパレータ11,加湿
水透過板13,燃料配流板14の周縁部に設けられて、
燃料,酸化材である空気,冷却水の案内供給用の通路に
供される孔を示している。
Further, when actually forming a laminated battery 10 in which a plurality of unit cells are laminated as shown in FIG.
As shown in (b), the separator 11 formed of a dense material
A cooling water flow path 12 is provided in the cooling water flow path 12, and the cooling water guided in the cooling water flow path 12 is passed through a humidifying water permeable plate 13 formed of a hydrophilic material and a fuel flow path of a fuel distribution plate 14 formed of a hydrophilic material. It suffices that the water leaks into the fuel flow path 15 and is supplied to the fuel electrode side of the electrode / polymer film integrated plate 16. In addition, 17 in the figure is provided in the peripheral portion of the separator 11, the humidifying water permeable plate 13, and the fuel distribution plate 14,
The holes provided for the passages for the guide supply of fuel, air that is an oxidant, and cooling water are shown.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
電解質である高分子膜の保水性を向上させたり、あるい
は高分子膜に良好に給水できるので、長期に亘る安定し
た発電性能の発揮に寄与できる。
As described above, according to the present invention,
Since the water retention of the polymer membrane, which is the electrolyte, can be improved or water can be satisfactorily supplied to the polymer membrane, it is possible to contribute to exhibiting stable power generation performance for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】電解質である高分子膜をZr(O3 PCH2
3 H)2 水溶液に浸漬処理して得たものと未処理のも
のとの示差走査熱量測定による結果を示す図
FIG. 1 shows a polymer film as an electrolyte, which is formed of Zr (O 3 PCH 2 S
O 3 H) shows the result of differential scanning calorimetry with that of untreated and those obtained by dipping in 2 aqueous solution

【図2】浸漬処理された高分子膜を組込んだ単セルと未
処理の高分子膜を組込んだ単セルとの各温度での100 時
間運転後の電池特性を示す図
FIG. 2 is a diagram showing battery characteristics after 100 hours of operation at each temperature of a single cell incorporating a polymer film that has been subjected to immersion treatment and a single cell incorporating an untreated polymer film.

【図3】燃料極に対する親水性処理を説明するための図FIG. 3 is a diagram for explaining hydrophilic treatment on a fuel electrode.

【図4】親水性領域と撥水性領域とを持つ燃料極を組込
んだ単セルと撥水性処理のみ施され燃料極を組込んだ単
セルとの電池特性を示す図
FIG. 4 is a diagram showing cell characteristics of a single cell incorporating a fuel electrode having a hydrophilic region and a water repellent region and a single cell incorporating only a water repellent treatment.

【図5】積層電地の構成例を説明するための図FIG. 5 is a diagram for explaining a configuration example of a laminated electric field.

【符号の説明】[Explanation of symbols]

1…カーボンペーパー 2…親水性領域 1 ... Carbon paper 2 ... Hydrophilic region

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電解質である高分子膜がリン酸基を持つ化
合物を含有してなることを特徴とする固体高分子電解質
型燃料電池。
1. A solid polymer electrolyte fuel cell characterized in that a polymer membrane as an electrolyte contains a compound having a phosphoric acid group.
【請求項2】燃料極側から高分子電解質膜へ向けて水ま
たは水蒸気を供給できる機構を備えた固体高分子電解質
型燃料電池において、燃料極のガス拡散層に撥水性を有
する領域と親水性を有する領域とが交互に隣接して設け
られてなることを特徴とする固体高分子電解質型燃料電
池。
2. A solid polymer electrolyte fuel cell having a mechanism capable of supplying water or water vapor from a fuel electrode side to a polymer electrolyte membrane, wherein a gas diffusion layer of a fuel electrode has hydrophilicity and a hydrophilic region. The polymer electrolyte fuel cell is characterized in that the regions having the are alternately provided adjacent to each other.
【請求項3】ガス拡散層に撥水性を有する領域と親水性
を有する領域とを有した燃料極を製造するに当り、加熱
によって揮散する高分子材料で前記ガス拡散層の親水性
となるべき領域を予め被覆した後に撥水処理液に浸漬
し、その後に熱処理して親水性の領域部分を露出させる
工程を具備してなることを特徴とする固体高分子電解質
型燃料電池用電極の製造方法。
3. When manufacturing a fuel electrode having a region having water repellency and a region having hydrophilicity in the gas diffusion layer, a polymer material that is volatilized by heating should make the gas diffusion layer hydrophilic. A method for producing an electrode for a solid polymer electrolyte fuel cell, comprising a step of pre-coating a region, dipping it in a water-repellent treatment liquid, and then subjecting it to heat treatment to expose a hydrophilic region portion. .
JP24991792A 1992-09-18 1992-09-18 Method for manufacturing electrode for solid polymer electrolyte fuel cell Expired - Fee Related JP3356465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24991792A JP3356465B2 (en) 1992-09-18 1992-09-18 Method for manufacturing electrode for solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24991792A JP3356465B2 (en) 1992-09-18 1992-09-18 Method for manufacturing electrode for solid polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH06103983A true JPH06103983A (en) 1994-04-15
JP3356465B2 JP3356465B2 (en) 2002-12-16

Family

ID=17200116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24991792A Expired - Fee Related JP3356465B2 (en) 1992-09-18 1992-09-18 Method for manufacturing electrode for solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3356465B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185158A (en) * 1995-10-06 2001-07-06 Dow Chem Co:The Membrane electrode assembly for fuel cell
JP2002203575A (en) * 2000-11-14 2002-07-19 Nuvera Fuel Cells Europ Srl Film electrode assembly for high polymer film fuel cell
JP2004536419A (en) * 2000-11-30 2004-12-02 エムティーアイ・マイクロフューエル・セルズ・インコーポレイテッド System with fuel cell membrane and integrated gas separation
JP2006134886A (en) * 2004-11-03 2006-05-25 Samsung Sdi Co Ltd Electrode for fuel cell, its manufacturing method, membrane-electrode assembly comprising the same and and fuel cell system comprising the same
EP1662595A1 (en) * 2003-08-22 2006-05-31 Kabushiki Kaisha Toyota Chuo Kenkyusho Solid polymer fuel cell
JP2007273215A (en) * 2006-03-31 2007-10-18 Equos Research Co Ltd Manufacturing method of diffusion layer for fuel cell
JP2008010433A (en) * 2007-09-03 2008-01-17 Toyota Motor Corp Fuel cell and diffusion layer
JP2008509521A (en) * 2004-08-06 2008-03-27 ゼネラル・モーターズ・コーポレーション Hydrophobic and hydrophilic diffusion media
JP2009037919A (en) * 2007-08-02 2009-02-19 Sharp Corp Fuel cell and its manufacturing method, and fuel-cell stack
US7582373B2 (en) 2001-11-15 2009-09-01 Jgc Catalysts And Chemicals Ltd. Electrolyte film and fuel cell
JP2013008687A (en) * 2012-08-24 2013-01-10 Sharp Corp Fuel cell stack

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185158A (en) * 1995-10-06 2001-07-06 Dow Chem Co:The Membrane electrode assembly for fuel cell
JP2002203575A (en) * 2000-11-14 2002-07-19 Nuvera Fuel Cells Europ Srl Film electrode assembly for high polymer film fuel cell
JP2004536419A (en) * 2000-11-30 2004-12-02 エムティーアイ・マイクロフューエル・セルズ・インコーポレイテッド System with fuel cell membrane and integrated gas separation
US7125620B2 (en) * 2000-11-30 2006-10-24 Mti Microfuel Cells, Inc. Fuel cell membrane and fuel cell system with integrated gas separation
US7582373B2 (en) 2001-11-15 2009-09-01 Jgc Catalysts And Chemicals Ltd. Electrolyte film and fuel cell
EP1662595A4 (en) * 2003-08-22 2009-01-21 Toyota Chuo Kenkyusho Kk Solid polymer fuel cell
EP1662595A1 (en) * 2003-08-22 2006-05-31 Kabushiki Kaisha Toyota Chuo Kenkyusho Solid polymer fuel cell
JP4860616B2 (en) * 2004-08-06 2012-01-25 ゼネラル・モーターズ・コーポレーション Hydrophobic and hydrophilic diffusion media
JP2008509521A (en) * 2004-08-06 2008-03-27 ゼネラル・モーターズ・コーポレーション Hydrophobic and hydrophilic diffusion media
JP2006134886A (en) * 2004-11-03 2006-05-25 Samsung Sdi Co Ltd Electrode for fuel cell, its manufacturing method, membrane-electrode assembly comprising the same and and fuel cell system comprising the same
US7998638B2 (en) 2004-11-03 2011-08-16 Samsung Sdi Co., Ltd. Electrode for fuel cell, and membrane-electrode assembly and fuel cell system comprising the same
JP2007273215A (en) * 2006-03-31 2007-10-18 Equos Research Co Ltd Manufacturing method of diffusion layer for fuel cell
JP2009037919A (en) * 2007-08-02 2009-02-19 Sharp Corp Fuel cell and its manufacturing method, and fuel-cell stack
JP2008010433A (en) * 2007-09-03 2008-01-17 Toyota Motor Corp Fuel cell and diffusion layer
JP2013008687A (en) * 2012-08-24 2013-01-10 Sharp Corp Fuel cell stack

Also Published As

Publication number Publication date
JP3356465B2 (en) 2002-12-16

Similar Documents

Publication Publication Date Title
US7183017B2 (en) Composite polymer electrolytes for proton exchange membrane fuel cells
JP4233208B2 (en) Fuel cell
KR100343209B1 (en) Reinforced compositie ion conducting polymer membrane and fuel cell adopting the same
KR101947863B1 (en) Self-wetting membrane electrode unit and fuel cell having such a unit
US8323848B2 (en) Membrane-electrode assembly for fuel cell, preparation method, and fuel cell comprising the same
US7803495B2 (en) Polymer electrolyte membrane for fuel cell, method for preparing the same, and fuel cell system comprising the same
JP4979243B2 (en) Polymer electrolyte membrane, method for producing the same, and fuel cell
JP2000285933A (en) Fuel cell
JPH05283094A (en) Fuel cell
JP3356465B2 (en) Method for manufacturing electrode for solid polymer electrolyte fuel cell
JP2008521168A (en) Preconditioning of fuel cell membrane electrode assembly
JP2001006708A (en) Solid high polymer fuel cell
JP2002343369A (en) Manufacturing method of electrode for fuel cell, and fuel cell
JP3813406B2 (en) Fuel cell
JP7045998B2 (en) Membranes, Membrane Electrode Assembly, Fuel Cell, and Methods for Manufacturing Membranes
JP3425405B2 (en) Ion conductive membrane, method for producing the same, and fuel cell using the same
KR100645832B1 (en) Membrane electrode assembly for pemfc, method for preparing the same, and fuel cell using the same
JP2000003718A (en) Method for activating high molecular electrolyte fuel cell
JP2002164057A (en) Solid high molecular fuel cell and method of manufacturing the same
KR101312262B1 (en) Polymer membrane, a method for preparing the polymer membrane and a fuel cell employing the same
JPH10334922A (en) Solid high polymer fuel cell and its manufacture
JP4506164B2 (en) Membrane electrode assembly and method of using the same
JP4672165B2 (en) Polymer electrolyte fuel cell
JP2001093544A (en) Electrode of fuel cell, method for manufacturing and fuel cell
JP2001185171A (en) Solid polymeric fuel cell and its manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees