JP3355739B2 - Accelerometer - Google Patents

Accelerometer

Info

Publication number
JP3355739B2
JP3355739B2 JP32904793A JP32904793A JP3355739B2 JP 3355739 B2 JP3355739 B2 JP 3355739B2 JP 32904793 A JP32904793 A JP 32904793A JP 32904793 A JP32904793 A JP 32904793A JP 3355739 B2 JP3355739 B2 JP 3355739B2
Authority
JP
Japan
Prior art keywords
resonator
acceleration
unit
vibration
support beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32904793A
Other languages
Japanese (ja)
Other versions
JPH07191052A (en
Inventor
眞芳 三浦
利幸 岩澤
健夫 佐藤
新一郎 青木
勝吾 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP32904793A priority Critical patent/JP3355739B2/en
Publication of JPH07191052A publication Critical patent/JPH07191052A/en
Application granted granted Critical
Publication of JP3355739B2 publication Critical patent/JP3355739B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Landscapes

  • Micromachines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は車両等の加速度を検出ま
たは測定する加速度センサーに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor for detecting or measuring acceleration of a vehicle or the like.

【0002】[0002]

【従来の技術】近年、加速度センサーの開発が盛んであ
り、圧電型、静電容量型、抵抗歪型等種々の方式がある
が、比較的感度が良く簡単な構造のものに圧電型があ
る。図3、図4は特開昭62−24154号公報に記載
された従来の圧電型加速度センサーを示すものである。
図3は中心固定型ディスク状センサーで、8は振動板、
11は圧電セラミックである。また、図4はバイモルフ
型の矩形状圧電セラミックを片持梁式に構成したもの
で、中央部にコの字形のスリット11aを入れ片持梁を
形成している。
2. Description of the Related Art In recent years, acceleration sensors have been actively developed, and there are various types such as a piezoelectric type, a capacitance type, and a resistance strain type. . 3 and 4 show a conventional piezoelectric acceleration sensor described in Japanese Patent Application Laid-Open No. 62-24154.
FIG. 3 shows a fixed center disk type sensor, 8 is a diaphragm,
11 is a piezoelectric ceramic. FIG. 4 shows a cantilever type bimorph-type rectangular piezoelectric ceramic having a U-shaped slit 11a in the center to form a cantilever.

【0003】以上のように構成された加速度センサー
は、図3は円盤状で図4は矩形状と形状は異なるが、い
ずれも、加速度が印加された際に、圧電素子の歪に起因
して発生する電荷を電圧に変換して、加速度を測定する
ものである。この方式は、構造が簡単であり、感度や加
速度測定範囲等の点で優れた方式である。
The acceleration sensor configured as described above has a disk shape in FIG. 3 and a rectangular shape in FIG. 4, but each of them has a shape due to distortion of the piezoelectric element when acceleration is applied. The generated charge is converted into a voltage and the acceleration is measured. This method has a simple structure and is excellent in sensitivity, acceleration measurement range, and the like.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では、圧電素子に発生する電荷を長時間保持で
きないため、直流成分の加速度を測定することが困難で
あった。また、圧電素子を小さくすると、静電容量が小
さくなり低周波数域でのインピーダンスが大きくなり、
自動車用などに必要とされる0.2〜200Hz付近の
低い周波数の加速度の検出が困難となるため、小型化が
難しいという課題を有していた。
However, in the above-mentioned conventional configuration, it is difficult to measure the acceleration of the DC component because the charge generated in the piezoelectric element cannot be held for a long time. Also, when the piezoelectric element is made smaller, the capacitance becomes smaller and the impedance in the low frequency range becomes larger,
Since it is difficult to detect acceleration at a low frequency of about 0.2 to 200 Hz required for an automobile or the like, there is a problem that downsizing is difficult.

【0005】本発明は上記従来技術の課題を解決するも
ので、直流成分の加速度が検出でき、小型化の可能な加
速度センサーを提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide an acceleration sensor capable of detecting acceleration of a DC component and capable of being downsized.

【0006】[0006]

【課題を解決するための手段】本発明は、加速度により
移動可能な慣性体と、前記慣性体を支持し慣性体の移動
時に変形する支持梁と、前記支持梁上に設置された共振
体を備え、前記共振体は共振体を励振する励振部と振動
状態を検知する受信部と振動を励振部から受信部に伝搬
する伝搬部とよりなり、加速度が印加された際、支持梁
の梁振動が共振体の伸縮に変換され、共振体に張力が作
用するよう構成され、共振体の振動状態の変化を、前記
励振部への入力信号と受信部よりの出力信号により検出
して印加された加速度を測定する加速度センサーであ
る。
According to the present invention, there is provided an inertial body movable by acceleration, a support beam that supports the inertial body and deforms when the inertial body moves, and a resonator installed on the support beam. wherein the resonator is made more propagation unit that propagates to the receiving unit and vibration receiving section for detecting the vibration state and the excitation unit for exciting the resonator from the excitation portion, when the acceleration is applied, the support beams
Beam vibration is converted into expansion and contraction of the resonator, creating tension in the resonator.
Is configured to use, the change in the vibration state of the resonator, an acceleration sensor for measuring acceleration applied to the detection by the input signal and the output signal from the receiving unit to the excitation portion.

【0007】また、本発明は、共振体の共振周波数の変
化を、励振部への入力信号と受信部よりの出力信号によ
り検出して印加された加速度を測定する加速度センサー
である。
Further, the present invention is an acceleration sensor for detecting a change in a resonance frequency of a resonator based on an input signal to an excitation unit and an output signal from a reception unit, and measuring the applied acceleration.

【0008】また、本発明は、励振部および受信部が圧
電素子により構成された加速度センサーである。
Further, the present invention is an acceleration sensor in which the excitation unit and the reception unit are constituted by piezoelectric elements.

【0009】[0009]

【0010】[0010]

【作用】本発明は上記構成によって、加速度が印加され
た際、支持梁の梁振動が共振体の伸縮に変換され、共振
体に張力が作用するよう構成され、共振体の共振周波数
の変化を、前記励振部への入力信号と受信部よりの出力
信号により検出して印加された加速度を測定するもので
あり、共振周波数を検出する方式のため、直流成分の加
速度にも追随でき、また共振体の共振点を高くすること
によって、どの様な加速度印加時にも感度の良い検出が
可能となり、小型化した際の困難が解消する。
According to the present invention, when the acceleration is applied, the beam vibration of the supporting beam is converted into the expansion and contraction of the resonator, and the resonance occurs.
A tension is applied to the body, a change in the resonance frequency of the resonator is detected by an input signal to the excitation unit and an output signal from the reception unit, and the applied acceleration is measured. Detection method, it can follow the acceleration of the DC component, and by increasing the resonance point of the resonator, it is possible to detect with high sensitivity regardless of the acceleration applied. To eliminate.

【0011】[0011]

【実施例】以下、本発明の実施例について、図面を参照
しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1(a),(b)は本発明の一実施例に
おける加速度センサーの平面図および断面図である。図
1において、1は慣性体、2は支持梁、3は共振体であ
り、共振体は励振部4、伝搬部5、受信部6より構成さ
れている。
FIGS. 1A and 1B are a plan view and a sectional view of an acceleration sensor according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes an inertia body, 2 denotes a support beam, and 3 denotes a resonator. The resonator includes an excitation unit 4, a propagation unit 5, and a reception unit 6.

【0013】図1において、加速度が印加されると慣性
体1が上下し、支持梁2がたわむと共に共振体3は伸び
縮みする。そのため、加速度が変化した際には、共振体
の共振周波数が変化することになり、この周波数変化を
検出することにより加速度を測定することができる。例
えば、共振体の振動が糸の振動と仮定できるとすると、
共振周波数fは f=n/2□(S/ρ)1/2・・・・・(1) と表される。但し□は糸の長さ、Sは糸の張力、ρは糸
の単位長さ当りの質量、nは振動の次数を示す。(1)
式によれば、共振周波数fは糸の張力の平方根に比例し
て変化し、加速度が印加された際に、共振体の張力が変
化する構造であれば加速度が測定できることが分かる。
In FIG. 1, when an acceleration is applied, the inertial body 1 moves up and down, the support beam 2 bends, and the resonator 3 expands and contracts. Therefore, when the acceleration changes, the resonance frequency of the resonator changes, and the acceleration can be measured by detecting the change in the frequency. For example, assuming that the vibration of the resonator is the vibration of the yarn,
The resonance frequency f is expressed as f = n / 2 □ (S / ρ) 1/2 (1) Where □ indicates the length of the yarn, S indicates the tension of the yarn, ρ indicates the mass per unit length of the yarn, and n indicates the order of vibration. (1)
According to the equation, it can be seen that the resonance frequency f changes in proportion to the square root of the tension of the yarn, and the acceleration can be measured if the tension of the resonator changes when the acceleration is applied.

【0014】図2は図1の構成に於ける特性図である。
縦軸は共振体の共振周波数fであり、横軸は印加された
加速度を示す。これによると、加速度0のときの共振周
波数は22kHzであるが、120Gの加速度が印加さ
れた場合には27kHzに上昇する。1Gあたり約40
Hzの変化があり、変化率で言うと0.2%/Gで且つ
図にみられるように非常に大きな加速度まで測定でき、
ダイナミックレンジの広い加速度センサーが実現でき
た。なお、図1の構造では、慣性体の質量と支持梁部の
質量の比により感度が異なるが、図2のデータの場合慣
性体が支持梁部の7倍の構造のものであり、比較的微小
な支持梁のたわみが、共振体への大きな張力となって作
用し、大きな感度を出力することができたと考えられ
る。
FIG. 2 is a characteristic diagram in the configuration of FIG.
The vertical axis represents the resonance frequency f of the resonator, and the horizontal axis represents the applied acceleration. According to this, the resonance frequency at an acceleration of 0 is 22 kHz, but increases to 27 kHz when an acceleration of 120 G is applied. About 40 per 1G
There is a change in Hz, and it can be measured at a rate of change of 0.2% / G and a very large acceleration as shown in the figure.
An acceleration sensor with a wide dynamic range was realized. In the structure of FIG. 1, the sensitivity varies depending on the ratio of the mass of the inertial body to the mass of the support beam, but in the case of the data of FIG. 2, the inertial body has a structure seven times as large as the support beam. It is considered that the small bending of the support beam acts as a large tension on the resonator, and a large sensitivity can be output.

【0015】本発明の構造的な特徴の1つは、共振体の
構造であり、励振部、伝搬部、受信部により構成されて
いる点である。一般に、圧電セラミックを共振させた場
合、圧電セラミック自体の厚み振動等の場合には、圧電
セラミック自体のインピーダンス変化を検出して共振点
を知る方法がある。しかしながら、本発明のように、共
振体が圧電セラミックと他の構造部材との接合体の場合
には、接合体の共振周波数において、必ずしも大きなイ
ンピーダンス変化があるとは限らず、感度良く共振点を
検出できない場合が多い。それに、比較して、本発明で
は前記接合体である共振体の振動を直接受信部で検出し
ているため、共振体の持つあらゆる振動を正確に検出す
ることが可能となり、適切な共振体構造の設計におい
て、寸法的な自由度が非常に大きなものとなる。
One of the structural features of the present invention is the structure of the resonator, which is constituted by an excitation unit, a propagation unit, and a reception unit. In general, when the piezoelectric ceramic is resonated, or when the thickness of the piezoelectric ceramic itself is vibrated, there is a method of detecting the impedance change of the piezoelectric ceramic itself to know the resonance point. However, when the resonator is a bonded body of the piezoelectric ceramic and another structural member as in the present invention, there is not always a large impedance change at the resonance frequency of the bonded body, and the resonance point is detected with high sensitivity. Often cannot be detected. In comparison, in the present invention, since the vibration of the resonator as the bonded body is directly detected by the receiving unit, it is possible to accurately detect any vibration of the resonator, and to obtain an appropriate resonator structure. In this design, the degree of freedom in dimension becomes very large.

【0016】また、上記にも触れたように、本発明のも
う一つの特徴は、支持梁のたわみや捻りが、共振体の伸
縮に変換される点である。共振体の伸縮は当然共振体の
張力と関連しており、共振体の材料や寸法としては支持
梁の変形に対応して、伸縮する必要はあるが、小さな伸
縮により、大きな張力を発生させる金属やシリコン等が
選択される。
As mentioned above, another feature of the present invention is that bending or twisting of the support beam is converted into expansion and contraction of the resonator. The expansion and contraction of the resonator is naturally related to the tension of the resonator, and the material and dimensions of the resonator need to expand and contract in accordance with the deformation of the support beam. Or silicon is selected.

【0017】以上説明のように、本発明の構成では、共
振体が常時一定の周波数で励振された状態であるので、
直流成分の加速度を測定することができ、また、常時高
い共振周波数で励振されているため、従来方式のよう
に、低周波数域でのインピーダンスを考慮する必要がな
く小型化が容易となる。
As described above, in the configuration of the present invention, since the resonator is always excited at a constant frequency,
Since the acceleration of the DC component can be measured, and the excitation is always performed at a high resonance frequency, it is not necessary to consider the impedance in a low frequency range as in the conventional method, and the size can be easily reduced.

【0018】なお、上記説明では、共振体の振動状態の
変化を共振周波数の変化で検出したが、共振体が伸び縮
みすることにより、共振体の振動の伝搬速度が変化しそ
れが共振周波数の変化となって現れることを意味してい
る。したがって、他の検出方法として、特に共振周波数
を選択しなくても、励振部と受信部の振動の時間遅れ
(位相差)の検出を行っても、加速度センサーとして動
作させることができる。ただ、受信部から信号を精度良
く出力させるという点では、共振周波数での振動の方
が、振幅が大きく出力信号を大きくできることになる。
In the above description, the change in the vibration state of the resonator is detected by the change in the resonance frequency. However, when the resonator expands and contracts, the propagation speed of the vibration of the resonator changes, which changes the resonance frequency. It means that it appears as a change. Therefore, as another detection method, even if the resonance frequency is not selected and the time delay (phase difference) between the vibration of the excitation unit and the reception unit is detected, the acceleration sensor can be operated. However, in terms of accurately outputting a signal from the receiving unit, the vibration at the resonance frequency has a larger amplitude and can increase the output signal.

【0019】さらに、本発明の共振体の構造は、何らか
の物体の変形を検出する素子であると考えられ、加速度
センサーばかりではなく、圧力センサーや、温度センサ
ー、等の他のセンサーにも適用できる。そして、複数個
の共振体を設けることにより、1方向だけではなく、2
方向、3方向の多軸センサーも可能である。この場合
は、例えば、慣性体を複数の支持梁で支え、各々の支持
梁に共振体が設置されたような構造が想定される。
Further, the structure of the resonator according to the present invention is considered to be an element for detecting deformation of any object, and is applicable not only to an acceleration sensor but also to other sensors such as a pressure sensor and a temperature sensor. . By providing a plurality of resonators, not only one direction but also two
A three-way multi-axis sensor is also possible. In this case, for example, a structure in which the inertial body is supported by a plurality of support beams and a resonator is installed on each support beam is assumed.

【0020】[0020]

【発明の効果】以上のように本発明は、加速度により移
動可能な慣性体と、慣性体を支持し慣性体の移動時に変
形する支持梁と、支持梁上に設置された共振体を備え、
前記共振体は共振体を励振する励振部と振動状態を検知
する受信部と振動を励振部から受信部に伝搬する伝搬部
とよりなり、加速度が印加され際、支持梁の梁振動が
共振体の伸縮に変換され、共振体に張力が作用するよう
構成され、共振体の振動状態変化を、前記励振部への
入力信号と受信部よりの出力信号により検出して印加さ
れた加速度を測定するものであり、直流成分の加速度を
検出でき、且つ小型化が可能な優れた加速度センサーを
実現できるものである。
As described above, the present invention comprises an inertial body movable by acceleration, a support beam supporting the inertial body and deforming when the inertial body moves, and a resonator installed on the support beam.
The resonator is made more propagation unit that propagates to the receiving unit and vibration receiving section for detecting the vibration state and the excitation unit for exciting the resonator from the excitation portion, when the acceleration is applied, the beam oscillation of the support beam
Converted to expansion and contraction of the resonator, so that tension acts on the resonator
It is configured to measure the applied acceleration by detecting a change in the vibration state of the resonator by an input signal to the excitation unit and an output signal from the reception unit, and detect a DC component acceleration, and An excellent acceleration sensor that can be miniaturized can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)本発明の第1の実施例における加速度セ
ンサーの平面図 (b)同断面図
FIG. 1A is a plan view of an acceleration sensor according to a first embodiment of the present invention, and FIG.

【図2】本発明の第1の実施例における加速度センサー
の特性図
FIG. 2 is a characteristic diagram of the acceleration sensor according to the first embodiment of the present invention.

【図3】従来の加速度センサーの断面図FIG. 3 is a cross-sectional view of a conventional acceleration sensor.

【図4】従来の加速度センサーの外形図FIG. 4 is an external view of a conventional acceleration sensor.

【符号の説明】[Explanation of symbols]

1 慣性体 2 支持梁 3 共振体 4 励振部 5 伝搬部 6 受信部 DESCRIPTION OF SYMBOLS 1 Inertial body 2 Support beam 3 Resonator 4 Exciting part 5 Propagation part 6 Receiving part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青木 新一郎 神奈川県川崎市多摩区東三田3丁目10番 1号 松下技研株式会社内 (72)発明者 浅野 勝吾 神奈川県横浜市港北区綱島東四丁目3番 1号 松下通信工業株式会社内 (56)参考文献 特開 平2−248865(JP,A) 特表 平8−504512(JP,A) 独国特許出願公開4213135(DE,A 1) (58)調査した分野(Int.Cl.7,DB名) G01P 15/09 G01P 15/10 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shinichiro Aoki 3-10-1, Higashi-Mita, Tama-ku, Kawasaki City, Kanagawa Prefecture Inside Matsushita Giken Co., Ltd. No. 3 No. 1 Matsushita Communication Industrial Co., Ltd. (56) References JP-A-2-248865 (JP, A) JP-A-8-504512 (JP, A) German Patent Application Publication 4213135 (DE, A1) ( 58) Field surveyed (Int.Cl. 7 , DB name) G01P 15/09 G01P 15/10

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 加速度により移動可能な慣性体と、前記
慣性体を支持し慣性体の移動時に変形する支持梁と、前
記支持梁上に設置された共振体を備え、前記共振体は共
振体を励振する励振部と振動状態を検知する受信部と振
動を励振部から受信部に伝搬する伝搬部とよりなり、加
速度が印加された際、支持梁の梁振動が共振体の伸縮に
変換され、共振体に張力が作用するよう構成され、共振
体の振動状態の変化を、前記励振部への入力信号と受信
部よりの出力信号により検出して印加された加速度を測
定することを特徴とする加速度センサー。
1. An inertial body movable by acceleration, a support beam that supports the inertial body and deforms when the inertial body moves, and a resonator installed on the support beam, wherein the resonator is a resonator An excitation unit that excites the vibration, a reception unit that detects the vibration state, and a propagation unit that propagates the vibration from the excitation unit to the reception unit. When acceleration is applied, the beam vibration of the support beam causes the expansion and contraction of the resonator.
Converted, the tension is applied to the resonator, and the change in the vibration state of the resonator is detected by an input signal to the excitation unit and an output signal from the reception unit to measure the applied acceleration. Acceleration sensor featuring.
【請求項2】 共振体の共振周波数の変化を、励振部へ
の入力信号と受信部よりの出力信号により検出して印加
された加速度を測定することを特徴とする請求1記載の
加速度センサー。
2. The acceleration sensor according to claim 1, wherein a change in the resonance frequency of the resonator is detected based on an input signal to the excitation unit and an output signal from the reception unit, and the applied acceleration is measured.
【請求項3】 励振部および受信部が圧電素子により構
成された請求項1記載の加速度センサー。
3. The acceleration sensor according to claim 1, wherein the excitation section and the reception section are constituted by piezoelectric elements.
JP32904793A 1993-12-24 1993-12-24 Accelerometer Expired - Fee Related JP3355739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32904793A JP3355739B2 (en) 1993-12-24 1993-12-24 Accelerometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32904793A JP3355739B2 (en) 1993-12-24 1993-12-24 Accelerometer

Publications (2)

Publication Number Publication Date
JPH07191052A JPH07191052A (en) 1995-07-28
JP3355739B2 true JP3355739B2 (en) 2002-12-09

Family

ID=18217022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32904793A Expired - Fee Related JP3355739B2 (en) 1993-12-24 1993-12-24 Accelerometer

Country Status (1)

Country Link
JP (1) JP3355739B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097707A (en) 1998-09-18 2000-04-07 Fujitsu Ltd Acceleration sensor
US7802475B2 (en) 2006-10-13 2010-09-28 Seiko Epson Corporation Acceleration sensor
JP2008197031A (en) * 2007-02-15 2008-08-28 Epson Toyocom Corp Acceleration detecting unit and acceleration sensor

Also Published As

Publication number Publication date
JPH07191052A (en) 1995-07-28

Similar Documents

Publication Publication Date Title
US11614463B2 (en) High performance micro-electro-mechanical systems accelerometer
US4805456A (en) Resonant accelerometer
Yu et al. System modeling of microaccelerometer using piezoelectric thin films
EP2643702B1 (en) Resonant biaxial accelerometer structure of the microelectromechanical type
US4851080A (en) Resonant accelerometer
US8297121B2 (en) Micro-machined accelerometer
US20150226762A1 (en) Dual and Triple Axis Inertial Sensors and Methods of Inertial Sensing
EP0900385B1 (en) Electrostatic drive for accelerometer
EP1352252A2 (en) Accelerometer whose seismic mass is shaped as whiffletree
JP2010127763A (en) Semiconductor mechanical quantity detection sensor and controller using the same
KR20030097874A (en) Accelerometer strain relief structure
US11604207B2 (en) High performance micro-electro-mechanical systems accelerometer with suspended sensor arrangement
US6453744B2 (en) Low radiation capture cross-section electrode material for prompt radiation environments
US20140238132A1 (en) Mems resonant accelerometer
WO2005085876A1 (en) Vibration piezoelectric acceleration sensor
JPH02248865A (en) Acceleration detector
JP3355739B2 (en) Accelerometer
EP0706030A1 (en) Bearing and distance sensor
Tabata et al. Two-axis detection resonant accelerometer based on rigidity change
JP3503213B2 (en) Force sensor
JP3368744B2 (en) Vibration acceleration sensor
US5092173A (en) Secondary accelerometer pickoff
JP3129022B2 (en) Acceleration sensor
KR100211025B1 (en) Vibratory microgyroscope
Patra et al. Sensitivity Enhancement of Capacitive MEMS Accelerometer by Design of the Device Geometry

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees