JP3355531B2 - Calculation method of impurity concentration in silicon substrate - Google Patents

Calculation method of impurity concentration in silicon substrate

Info

Publication number
JP3355531B2
JP3355531B2 JP27201192A JP27201192A JP3355531B2 JP 3355531 B2 JP3355531 B2 JP 3355531B2 JP 27201192 A JP27201192 A JP 27201192A JP 27201192 A JP27201192 A JP 27201192A JP 3355531 B2 JP3355531 B2 JP 3355531B2
Authority
JP
Japan
Prior art keywords
oxide film
segregation
impurity
impurity concentration
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27201192A
Other languages
Japanese (ja)
Other versions
JPH06124988A (en
Inventor
芳之 佐藤
和雄 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP27201192A priority Critical patent/JP3355531B2/en
Publication of JPH06124988A publication Critical patent/JPH06124988A/en
Application granted granted Critical
Publication of JP3355531B2 publication Critical patent/JP3355531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、シリコン基板中の不純
物濃度計算方法に係り、特に、シリコン半導体装置の製
造工程中のn型不純物濃度の正確な計算を行なうための
シリコン基板中の不純物濃度計算方法に関する。
The present invention relates to a impurity in the silicon substrate
More specifically, the present invention relates to a method for calculating an n-type impurity concentration accurately during a manufacturing process of a silicon semiconductor device.
The present invention relates to a method for calculating an impurity concentration in a silicon substrate .

【0002】[0002]

【従来の技術】シリコン半導体装置は、半導体中に含ま
れる不純物濃度により半導体の性能が決定されるため、
不純物濃度の設定は半導体製造における重要な条件であ
る。このため、半導体中の不純物濃度は、実験的に求め
る方法と共に、半導体製造工程における熱処理や酸化膜
の形成を考慮した計算に基づいたシミュレーションによ
り求める方法が既に実施されている。シミュレーション
により正確な不純物濃度を求めることが可能であれば、
実験的に求める場合と比較して、時間が短縮されるだけ
でなく、実験に使用する種々の材料費の節減になり、全
体として効率化と経済化が達成できる。しかし、従来、
シリコン半導体中のn型不純物濃度の計算においては、
正確な計算方法が提案されていないため、これらの効率
化を阻害している。
2. Description of the Related Art In a silicon semiconductor device, the performance of a semiconductor is determined by the concentration of impurities contained in the semiconductor.
Setting the impurity concentration is an important condition in semiconductor manufacturing. For this reason, the method of determining the impurity concentration in the semiconductor by a simulation based on a calculation in consideration of the heat treatment and the formation of an oxide film in the semiconductor manufacturing process has been already implemented in addition to the method of determining the impurity concentration in the semiconductor. If it is possible to obtain an accurate impurity concentration by simulation,
Compared with the case where it is determined experimentally, not only the time is shortened, but also the cost of various materials used in the experiment is reduced, and efficiency and economy can be achieved as a whole. However, conventionally,
In the calculation of the n-type impurity concentration in the silicon semiconductor,
Since an accurate calculation method has not been proposed, the efficiency has been hindered.

【0003】この例をシリコン半導体における代表的な
n型不純物である燐の場合を例として説明する。
[0003] This example will be described by taking as an example the case of phosphorus which is a typical n-type impurity in a silicon semiconductor.

【0004】燐を含むシリコンの表面にシリコン酸化膜
が形成された場合、シリコンと酸化膜の境界部で、燐は
両者の熱力学的な性質によって決定される偏析係数によ
り分配されるとともに、シリコンと酸化膜の境界部の狭
い領域に少量が偏析することが知られている。
When a silicon oxide film is formed on the surface of silicon containing phosphorus, phosphorus is distributed at the boundary between the silicon and the oxide film according to a segregation coefficient determined by the thermodynamic properties of the silicon and the silicon. It is known that a small amount segregates in a narrow region at the boundary between the oxide film and the oxide film.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来、
シリコンと酸化膜の境界部の領域の微少な偏析は、シリ
コン側にあるとされていたために、半導体製造工程中に
おいて実施される酸化膜の除去工程では偏析した不純物
は除去されないとして、不純物濃度計算が実施されてい
る。このため、酸化膜の除去工程を含む工程を実施した
場合には計算値と実験値に大きな相違が生じる結果とな
っている。
However, conventionally,
Since the fine segregation in the boundary region between the silicon and the oxide film was considered to be on the silicon side, it was assumed that the segregated impurities would not be removed in the oxide film removal process performed during the semiconductor manufacturing process. Has been implemented. Therefore, when a process including an oxide film removing process is performed, a large difference occurs between the calculated value and the experimental value.

【0006】本発明は上記の点に鑑みなされたもので、
不純物濃度の計算結果の精度を向上させ、実験により求
めていた最適濃度が効率よく設定できるシリコン基板中
の不純物濃度計算方法を提供することを目的とする。
[0006] The present invention has been made in view of the above points,
Improves the accuracy of the impurity concentration calculation results and allows the optimum concentration determined by experiment to be set efficiently in a silicon substrate
It is an object of the present invention to provide a method for calculating an impurity concentration .

【0007】[0007]

【課題を解決するための手段】本発明のシリコン基板中
の不純物濃度計算方法は、酸化膜を直上に形成したシリ
コン基板にn型不純物を導入し、さらに、熱処理を施し
た後に、該酸化膜を除去する工程を含む処理過程でのシ
リコン基板中の不純物濃度計算方法において、拡散方程
式により熱処理後の不純物濃度分布を求め、不純物濃度
分布より算定したシリコン表面の不純物濃度を指数関数
に基づく偏析量算出式により演算処理することにより酸
化膜側での不純物偏析量を算出し、不純物偏析量を酸化
物を積層させたシリコン基板中の不純物分布より平均的
に差し引くことにより、酸化膜除去後のシリコン基板中
の不純物分布を知る
SUMMARY OF THE INVENTION In the silicon substrate of the present invention ,
The method for calculating the impurity concentration of
Introduce n-type impurities into the substrate and heat-treat
After the etching, a process step including a step of removing the oxide film is performed.
In the calculation method of impurity concentration in the recon substrate, the diffusion method
Calculate the impurity concentration distribution after heat treatment by the formula
Exponential function of impurity concentration on silicon surface calculated from distribution
Is calculated by the segregation amount calculation formula based on
Calculates the amount of impurity segregation on the film side and oxidizes the amount of impurity segregation
Average than impurity distribution in silicon substrate
In the silicon substrate after removing the oxide film
Know the impurity distribution of .

【0008】[0008]

【0009】[0009]

【0010】[0010]

【作用】本発明は、n型不純物の偏析がシリコン基板の
表面にシリコン酸化膜が形成され、その境界部に偏析す
る。従来、この偏析はシリコン側に起こるとされていた
が、実際には酸化膜側に偏析が起こることを見出したこ
とにより、n型不純物の偏析層が酸化膜除去工程におい
て除去されることを不純物濃度の計算方法に導入するこ
とができる。これにより、半導体基板中の不純物濃度の
計算結果の精度が向上する。
According to the present invention, segregation of n-type impurities forms a silicon oxide film on the surface of the silicon substrate and segregates at the boundary. Conventionally, this segregation was thought to occur on the silicon side. However, since it was found that segregation actually occurred on the oxide film side, it was confirmed that the segregation layer of the n-type impurity was removed in the oxide film removing step. It can be introduced into the method of calculating the concentration. Thereby, the accuracy of the calculation result of the impurity concentration in the semiconductor substrate is improved.

【0011】[0011]

【実施例】本発明は、n型不純物のシリコン・酸化膜界
面での偏析現象における新規な知見に基づいて提案され
たものである。偏析現象における新規な知見とは偏析現
象がシリコン側ではなく、酸化膜側に起こることであ
り、以下に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention has been proposed based on a novel finding on the segregation phenomenon of n-type impurities at the interface between silicon and an oxide film. The new knowledge of the segregation phenomenon is that the segregation phenomenon occurs not on the silicon side but on the oxide film side, which will be described below.

【0012】図1は本発明の前提条件について説明する
ための図である。同図中、グラフの左側にはそれぞれの
工程を示す。同図はシリコン表面に酸化膜を形成した試
料に燐をイオン注入し、酸化膜を形成したまま熱処理
し、その後、酸化膜を部分的に除去した後、熱酸化処理
した試料(a)と熱処理を実施せずに酸化膜を部分的に
除去した後、熱酸化処理した試料(b)の不純物層のシ
ート抵抗を測定したものである。
FIG. 1 is a diagram for explaining preconditions of the present invention. In the figure, each step is shown on the left side of the graph. The figure shows that a sample in which an oxide film is formed on a silicon surface is ion-implanted with phosphorus, and heat treatment is performed with the oxide film formed. The sheet resistance of the impurity layer of the sample (b) subjected to the thermal oxidation treatment after partially removing the oxide film without performing the step was measured.

【0013】酸化膜を形成したままで熱処理した試料
(a)では、その後に実施した酸化膜の部分的な除去の
時間(15秒〜27秒)によってシート抵抗が上昇して
いる。一方、熱処理なしで酸化膜の部分的な除去を実施
した試料(b)では、シート抵抗の変化はないことが明
らかである。
In the sample (a) heat-treated with the oxide film formed, the sheet resistance increases due to the time (15 seconds to 27 seconds) of the partial removal of the oxide film performed thereafter. On the other hand, in the sample (b) in which the oxide film was partially removed without the heat treatment, it is apparent that the sheet resistance did not change.

【0014】この結果より、シリコン酸化膜界面の燐の
偏析が酸化膜側に生じていることがわかる。即ち、イオ
ン注入された燐の一部が熱処理によって酸化膜側に偏析
し、酸化膜の部分的な除去工程において共に除去された
ために、熱処理を実施していない試料(b)よりシリコ
ン中の燐の濃度が低下し、このためにシート抵抗が上昇
したと考えられる。しかし、従来考えられていたように
燐の偏析がシリコン側であるとすると、シリコン中の燐
の濃度は、上記の試料(a),(b)間で差はなく、実
験結果を説明することができない。
From this result, it can be seen that phosphorus segregation at the interface of the silicon oxide film occurs on the oxide film side. That is, since a part of the ion-implanted phosphorus is segregated to the oxide film side by the heat treatment and is removed together in the step of partially removing the oxide film, the phosphorus in the silicon from the sample (b) not subjected to the heat treatment is reduced. It is considered that the sheet resistance increased due to the decrease in the density of the sheet. However, assuming that the segregation of phosphorus is on the silicon side as conventionally thought, the concentration of phosphorus in silicon does not differ between the above samples (a) and (b), and the experimental results should be explained. Can not.

【0015】本発明は、以上の新規な知見に基づいてn
型不純物濃度の計算を実施する場合、酸化膜除去工程を
含む工程に、その工程で燐の偏析の相当する濃度を除去
する工程を導入することを提案するものである。
The present invention has been developed based on the above-described novel findings.
When calculating the type impurity concentration, it is proposed to introduce a step of removing a concentration corresponding to the segregation of phosphorus in the step including the oxide film removing step.

【0016】図2は本発明の一実施例の半導体基板中の
不純物濃度計算装置の構成を示す。同図において、n型
不純物濃度計算装置は、濃度分布記憶部10、熱処理条
件入力部11、濃度分布計算部12、偏析量計算部1
3、出力部14により構成される。
FIG. 2 shows the configuration of an apparatus for calculating the impurity concentration in a semiconductor substrate according to one embodiment of the present invention. In the figure, an n-type impurity concentration calculation device includes a concentration distribution storage unit 10, a heat treatment condition input unit 11, a concentration distribution calculation unit 12, and a segregation amount calculation unit 1.
3. It is composed of the output unit 14.

【0017】n型不純物濃度計算装置の変化前濃度分布
記憶部10は、シリコン基板中の表面からの深さに対応
させて、基板表面からの深さでの不純物濃度を記憶させ
る計算機のメモリであり、熱処理工程前の濃度分布、及
び熱処理後の濃度分布とともに記憶する。また、濃度分
布の情報は工程の進行に伴って書き換えられる。熱処理
条件入力部11は、熱処理温度と熱処理時間と熱処理パ
ラメータを入力する。
The pre-change concentration distribution storage unit 10 of the n-type impurity concentration calculator is a computer memory for storing the impurity concentration at the depth from the substrate surface in correspondence with the depth from the surface in the silicon substrate. Yes, it is stored together with the concentration distribution before the heat treatment step and the concentration distribution after the heat treatment. The information on the concentration distribution is rewritten as the process proceeds. The heat treatment condition input unit 11 inputs a heat treatment temperature, a heat treatment time, and a heat treatment parameter.

【0018】濃度分布計算部12では、濃度分布記憶部
10に記憶されている熱処理前の不純物濃度を出発点
に、熱処理条件入力部11で入力した条件に基づいて、
拡散方程式より熱処理後の不純物濃度分布を計算し、再
度、濃度分布記憶部10に記憶する。また、偏析量計算
部13で得られた表面不純物濃度分布から以下に示す式
により偏析量を計算する。 Ne=5.7E−9×Cs×exp(0.70eu/k
T) 但し、Ne(cm-2)は基板と酸化膜間の界面の酸化膜
側へのn型不純物偏析量を示し、Cs(cm-3)は基板
表面の不純物濃度である。Tは熱処理時の絶対温度であ
る。
In the concentration distribution calculation section 12, starting from the impurity concentration before the heat treatment stored in the concentration distribution storage section 10, based on the condition input by the heat treatment condition input section 11,
The impurity concentration distribution after the heat treatment is calculated from the diffusion equation and stored in the concentration distribution storage unit 10 again. Further, the segregation amount is calculated from the surface impurity concentration distribution obtained by the segregation amount calculation unit 13 by the following equation. Ne = 5.7E-9 × Cs × exp (0.70 eu / k
T) where Ne (cm −2 ) indicates the amount of n-type impurity segregation toward the oxide film at the interface between the substrate and the oxide film, and Cs (cm −3 ) indicates the impurity concentration on the substrate surface. T is the absolute temperature during the heat treatment.

【0019】さらに、偏析量計算部13では濃度分布記
憶部10に記憶された基板中の不純物濃度分布から偏析
量を差し引いた上で、変化後の不純物分布を記憶する。
即ち、不純物の総量が偏析量の分だけ増加してしまうの
を防止するために偏析量を基板中の不純物分布から平均
的に差し引く処理を行う。具体的には、 {1−(偏析量/偏析量計算後の基板中の不純物の総
量)} * (偏析量計算後の基板中の各深さでの不純物濃度) の計算を行い、その結果を濃度分布記憶部10に再度記
憶させる。さらに、出力部14は、上記のデータを視認
により確認できる形式に編集してプリンタ、CRTディ
スプレイ等に出力できる状態にする。
Further, the segregation amount calculation unit 13 subtracts the segregation amount from the impurity concentration distribution in the substrate stored in the concentration distribution storage unit 10 and stores the changed impurity distribution.
That is, in order to prevent the total amount of impurities from increasing by the amount of segregation, a process of averagely subtracting the amount of segregation from the impurity distribution in the substrate is performed. Specifically, {1- (amount of segregation / total amount of impurities in the substrate after calculation of the amount of segregation)} * (impurity concentration at each depth in the substrate after calculation of the amount of segregation) was calculated, and the result was calculated. Is stored in the density distribution storage unit 10 again. Further, the output unit 14 edits the data into a format that can be visually confirmed, and puts the data into a state in which the data can be output to a printer, a CRT display, or the like.

【0020】図3は本発明の一実施例の酸化膜除去工程
のアルゴリズムを示す。 ステップ1:n型不純物導入後、熱処理を行う等の前処
理を行う。 ステップ2:酸化膜除去処理を行うかを判定し、行わな
い場合には次工程の処理に移行する。 ステップ3:ステップ2において酸化膜除去処理を行う
場合には、ステップ2以前の処理として熱処理工程があ
るかを判定して、前処理に熱処理工程がある場合には酸
化膜及び偏析層不純物除去を行う。 ステップ4:前処理に熱処理工程がない場合には酸化膜
を除去する処理のみを行う。
FIG. 3 shows an algorithm of an oxide film removing step according to one embodiment of the present invention. Step 1: After the n-type impurity is introduced, a pretreatment such as a heat treatment is performed. Step 2: It is determined whether or not to perform the oxide film removing process. If not, the process proceeds to the next process. Step 3: If an oxide film removal process is performed in step 2, it is determined whether or not a heat treatment process is performed as a process before step 2, and if a heat treatment process is included in the pretreatment, oxide film and segregation layer impurities are removed. Do. Step 4: If there is no heat treatment step in the pretreatment, only the treatment for removing the oxide film is performed.

【0021】上記のアルゴリズムはシリコン酸化膜界面
の偏析が酸化膜側に生じていることによりn型不純物濃
度の計算を実施する場合に酸化膜除去工程を含む工程に
ついては、燐の偏析に相当する濃度を除去する工程を導
入するものである。
In the above algorithm, when the calculation of the n-type impurity concentration is performed because the segregation at the silicon oxide film interface occurs on the oxide film side, the step including the oxide film removing step corresponds to the segregation of phosphorus. A step of removing the concentration is introduced.

【0022】上記はアルゴリズム処理について示した
が、偏析層がシリコン側にあるとして計算した従来のシ
ミュレーション結果を実工程に生かすためには、製造工
程として次のような工程を採用すればよい。即ち、シリ
コンにn型不純物を導入し、その後、所定の熱処理と酸
化膜除去工程を実施する場合には、先に説明した偏析量
に相当する分の工程中に喪失されているn型不純物を補
償する量のイオン注入工程を加える。
Although the above description has been given of the algorithm processing, in order to make use of the conventional simulation result calculated on the assumption that the segregation layer is on the silicon side in an actual process, the following process may be employed as a manufacturing process. That is, when an n-type impurity is introduced into silicon and then a predetermined heat treatment and an oxide film removing step are performed, the n-type impurity lost during the step corresponding to the segregation amount described above is removed. A compensating amount of ion implantation is added.

【0023】図4は本発明の一実施例のCMOS工程に
おけるNウェルの濃度の変化を示す。同図に示す工程
は、ドライ酸化処理(950°C)、燐イオンの注入処
理(100kev,2E13cm-2)、アニール処理
(900°C、30分)を行った後、アニール処理(1
100°C,360分)を施した工程p,アニール処理
(900°C、30分)を行った後、酸化膜を除去し、
ドライ酸化(950°C,55分)、アニール処理(1
100°C、360分)の工程q1,q2,q3,同様
にアニール処理(900°C、30分)を行った後、酸
化膜を除去し、ドライ酸化処理(1000°C,60
分)の工程r1,r2、rの処理の後にアニール処理
(850°C,15分、950°C,390分)の工程
s1、s2,s3、sの処理に酸化膜除去処理、ドライ
酸化(950°C,55分)、アニール(850°C、
30分)を行う工程t1,t2,t3とする。
FIG. 4 shows a change in the concentration of the N well in the CMOS process according to one embodiment of the present invention. The process shown in the figure includes a dry oxidation process (950 ° C.), a phosphorus ion implantation process (100 keV, 2E13 cm −2 ), an annealing process (900 ° C., 30 minutes), and then an annealing process (1).
(P. 100 ° C., 360 minutes), annealing step (900 ° C., 30 minutes), and then removing the oxide film.
Dry oxidation (950 ° C, 55 minutes), annealing (1
Steps q1, q2, q3 of 100 ° C., 360 minutes) are similarly annealed (900 ° C., 30 minutes), then the oxide film is removed, and dry oxidation is performed (1000 ° C., 60 minutes).
), Oxidizing film removal treatment, dry oxidation (annealing (850 ° C, 15 minutes, 950 ° C, 390 minutes) processes s1, s2, s3, and s). 950 ° C, 55 minutes), annealing (850 ° C,
(T. 30 minutes).

【0024】同図は、上記の各工程に沿ってCMOS工
程でのNウェルの濃度の変化を実験値と計算値を比較し
ているものであり、左端に示した工程での濃度を100
%として規格化している。
FIG. 4 shows the comparison between the experimental value and the calculated value of the change in the concentration of the N-well in the CMOS process along each of the above-mentioned steps.
%.

【0025】Aは実験的に求めた規格化濃度であり、工
程を経るに従って低下している。Bは本発明により実施
させた計算値であり、実験的に求めた値とよく一致して
いる。しかし、Cに示す従来の方法では濃度の低下が僅
かであり、最終工程では実験値と大きな相違を示してい
る。
A is an experimentally determined standardized concentration, which decreases as the process proceeds. B is a calculated value performed according to the present invention, and is in good agreement with a value obtained experimentally. However, in the conventional method shown in C, the concentration was slightly reduced, and the final step showed a large difference from the experimental value.

【0026】図5は、本発明の一実施例の基板中の不純
物濃度計算の相違を示す概念図である。
FIG. 5 is a conceptual diagram showing a difference in calculation of an impurity concentration in a substrate according to one embodiment of the present invention.

【0027】同図中左側は、本発明によるn型不純物偏
析が酸化膜側にある場合を示し、右側は従来の例で不純
物偏析がシリコン基板側にある場合を示す。横に引かれ
ている線はn型不純物の濃度のレベルを示す。
In the figure, the left side shows the case where the n-type impurity segregation according to the present invention is on the oxide film side, and the right side shows the conventional example where the impurity segregation is on the silicon substrate side. The horizontal line indicates the concentration level of the n-type impurity.

【0028】同図は工程前を示しており、n型不純物
を含むシリコン基板を示している。の工程は酸化の工
程を示し、偏析層は酸化膜側に発生し、従来の場合には
シリコン基板側に設定されている。の工程は、酸化膜
除去工程である。この状態で、酸化膜側にあった酸化膜
の偏析層が消えるが、従来の基板側にある偏析層はその
まま残る。さらにの工程は酸化の工程である。本発明
による酸化側には新たな偏析層が出現しており、従来技
術による基板側では偏析層はそのままの状態となる。偏
析層が基板側と酸化膜側のいずれかに出現することによ
り濃度差が生じる。従って、本発明における偏析層が酸
化膜側にある場合と、従来の技術におけるシリコン基板
側にある場合では計算される基板中の不純物濃度が異な
るために濃度差が発生する。
FIG. 2 shows a state before the process, and shows a silicon substrate containing an n-type impurity. Indicates a step of oxidation. The segregation layer is generated on the oxide film side, and is set on the silicon substrate side in the conventional case. Is an oxide film removing step. In this state, the oxide segregation layer on the oxide film side disappears, but the conventional segregation layer on the substrate side remains as it is. A further step is an oxidation step. A new segregation layer appears on the oxidation side according to the present invention, and the segregation layer remains as it is on the substrate side according to the prior art. The concentration difference occurs when the segregation layer appears on either the substrate side or the oxide film side. Therefore, when the segregation layer in the present invention is on the oxide film side and when it is on the silicon substrate side in the prior art, the calculated impurity concentration in the substrate is different, so that a concentration difference occurs.

【0029】[0029]

【発明の効果】上述のように、本発明によれば、シリコ
ン・酸化膜界面に存在するn型不純物の偏析層が酸化膜
の除去工程において、除去されることを不純物濃度の計
算方法に導入することにより計算結果の精度向上に寄与
できる。これにより従来多くの実験によって求めていた
濃度の最適設定の効率が向上し、半導体製造装置開発の
高効率化、低コスト化に大きく貢献できる。
As described above, according to the present invention, the fact that the segregation layer of the n-type impurity present at the interface between the silicon and the oxide film is removed in the step of removing the oxide film is introduced into the method for calculating the impurity concentration. By doing so, it is possible to contribute to improving the accuracy of the calculation result. As a result, the efficiency of the optimal setting of the concentration, which has been conventionally obtained through many experiments, is improved, which can greatly contribute to higher efficiency and lower cost of semiconductor manufacturing apparatus development.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の前提条件について説明するための図で
ある。
FIG. 1 is a diagram for explaining preconditions of the present invention.

【図2】本発明の一実施例の半導体基板中の不純物濃度
計算装置の構成図である。
FIG. 2 is a configuration diagram of an apparatus for calculating an impurity concentration in a semiconductor substrate according to one embodiment of the present invention.

【図3】本発明の一実施例の酸化膜除去工程のアルゴリ
ズムである。
FIG. 3 is an algorithm of an oxide film removing step according to one embodiment of the present invention.

【図4】本発明の一実施例のCMOS工程におけるNウ
ェルの濃度の変化を示す図である。
FIG. 4 is a diagram showing a change in the concentration of an N well in a CMOS process according to one embodiment of the present invention.

【図5】本発明の一実施例の基板中の不純物濃度の計算
の相違を示す概念図である。
FIG. 5 is a conceptual diagram showing a difference in calculation of an impurity concentration in a substrate according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 濃度分布記憶部 11 熱処理条件入力部 12 濃度分布計算部 13 偏析量計算部 14 出力部 Reference Signs List 10 Concentration distribution storage unit 11 Heat treatment condition input unit 12 Concentration distribution calculation unit 13 Segregation amount calculation unit 14 Output unit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 Applied Physics L etters,Vol.24,No.4, p.200−202,米国,1974年 IEEE TRANSACTIONS ON ELECTRON DEVIC ES,米国,1983年,VOL.ED− 30,Vol.11,p.1438−1453 西沢潤一編「半導体研究19巻 超LS I技術6−半導体プロセスその2」株式 会社工業調査会(1982) (58)調査した分野(Int.Cl.7,DB名) H01L 21/265 H01L 21/223 ──────────────────────────────────────────────────続 き Continued on the front page (56) References Applied Physics Letters, Vol. 24, No. 4, p. 200-202, USA, 1974 IEEE TRANSACTIONS ON ELECTRON DEVIC ES, USA, 1983, VOL. ED-30, Vol. 11, p. 1438-1453 Junichi Nishizawa, “Semiconductor Research Vol. 19, Super LSI Technology 6-Semiconductor Process Part 2”, Industrial Research Committee, Inc. (1982) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/265 H01L 21/223

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化膜を直上に形成したシリコン基板に
n型不純物を導入し、さらに、熱処理を施した後に、該
酸化膜を除去する工程を含む処理過程でのシリコン基板
中の不純物濃度計算方法において、 拡散方程式により熱処理後の不純物濃度分布を求め、 前記不純物濃度分布より算定したシリコン表面の不純物
濃度を指数関数に基づく偏析量算出式により演算処理す
ることにより酸化膜側での不純物偏析量を算出し、 前記不純物偏析量を前記酸化物を積層させたシリコン基
板中の不純物分布より平均的に差し引くことにより、酸
化膜除去後のシリコン基板中の不純物分布を知ることを
特徴とするシリコン基板中の不純物濃度計算方法。
(1)On a silicon substrate with an oxide film formed directly on it
After introducing an n-type impurity and further performing a heat treatment,
Silicon substrate in process including process of removing oxide film
In the method of calculating the impurity concentration in Find the impurity concentration distribution after heat treatment by the diffusion equation, Impurities on the silicon surface calculated from the impurity concentration distribution
The concentration is calculated using the segregation amount calculation formula based on the exponential function.
By calculating the amount of impurity segregation on the oxide film side, The amount of impurity segregation is determined based on the silicon
By subtracting the average from the impurity distribution in the plate,
To know the impurity distribution in the silicon substrate after removing the oxide film
Characteristic method for calculating impurity concentration in a silicon substrate.
JP27201192A 1992-10-09 1992-10-09 Calculation method of impurity concentration in silicon substrate Expired - Fee Related JP3355531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27201192A JP3355531B2 (en) 1992-10-09 1992-10-09 Calculation method of impurity concentration in silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27201192A JP3355531B2 (en) 1992-10-09 1992-10-09 Calculation method of impurity concentration in silicon substrate

Publications (2)

Publication Number Publication Date
JPH06124988A JPH06124988A (en) 1994-05-06
JP3355531B2 true JP3355531B2 (en) 2002-12-09

Family

ID=17507893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27201192A Expired - Fee Related JP3355531B2 (en) 1992-10-09 1992-10-09 Calculation method of impurity concentration in silicon substrate

Country Status (1)

Country Link
JP (1) JP3355531B2 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Applied Physics Letters,Vol.24,No.4,p.200−202,米国,1974年
IEEE TRANSACTIONS ON ELECTRON DEVICES,米国,1983年,VOL.ED−30,Vol.11,p.1438−1453
西沢潤一編「半導体研究19巻 超LSI技術6−半導体プロセスその2」株式会社工業調査会(1982)

Also Published As

Publication number Publication date
JPH06124988A (en) 1994-05-06

Similar Documents

Publication Publication Date Title
US4231809A (en) Method of removing impurity metals from semiconductor devices
JPH07248264A (en) Method and equipment for thermometry using ion implantation wafer
Prince et al. Diffusion of boron from implanted sources under oxidizing conditions
JP3355531B2 (en) Calculation method of impurity concentration in silicon substrate
JP3279527B2 (en) Method for evaluating IG capability in semiconductor silicon substrate and method for manufacturing semiconductor silicon substrate
SG190500A1 (en) Method and apparatus to reduce thermal variations within an integrated circuit die using thermal proximity correction
TWI246195B (en) Semiconductor device and method of manufacturing the same
JP3050290B2 (en) Amorphized area determination method
JP2838444B2 (en) Method of forming buried insulating film in silicon substrate
JP3016385B2 (en) Process simulation method
Skarlatos et al. Oxidation of nitrogen-implanted silicon: Energy dependence of oxide growth and defect characterization of the silicon substrate
Marchiando et al. Boron diffusion in silicon
JPS6223452B2 (en)
TW442897B (en) Process for modified oxidation of a semiconductor substrate using chlorine plasma
JP3738110B2 (en) Oxidation simulation method
JP3535416B2 (en) Manufacturing process control device, manufacturing process control method, computer-readable recording medium storing manufacturing process control program, and semiconductor device
JPH0878352A (en) Treatment method of substrate
JP2005064197A (en) Method for ashing resist film, its ashing condition calculating system and device for ashing the resist film
JP2685401B2 (en) Method for forming silicon oxide isolation region
JPS593869B2 (en) Method for manufacturing silicon gate field effect semiconductor device
JPH06196459A (en) Manufacture of semiconductor silicon wafer
JPH0656846B2 (en) Method for treating semiconductor substrate
JPH0393233A (en) Manufacture of semiconductor device
JPH11162863A (en) Semiconductor simulation method
JPS60233824A (en) Treating method for semiconductor substrate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees