JP3354217B2 - 気体中の塵埃粒子の質量濃度を測定する方法 - Google Patents

気体中の塵埃粒子の質量濃度を測定する方法

Info

Publication number
JP3354217B2
JP3354217B2 JP18948393A JP18948393A JP3354217B2 JP 3354217 B2 JP3354217 B2 JP 3354217B2 JP 18948393 A JP18948393 A JP 18948393A JP 18948393 A JP18948393 A JP 18948393A JP 3354217 B2 JP3354217 B2 JP 3354217B2
Authority
JP
Japan
Prior art keywords
gas
vibrator
filter paper
dust particles
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18948393A
Other languages
English (en)
Other versions
JPH0743283A (ja
Inventor
典夫 諌早
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sibata Scientific Tech Ltd
Original Assignee
Sibata Scientific Tech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sibata Scientific Tech Ltd filed Critical Sibata Scientific Tech Ltd
Priority to JP18948393A priority Critical patent/JP3354217B2/ja
Priority to US08/283,525 priority patent/US5604335A/en
Publication of JPH0743283A publication Critical patent/JPH0743283A/ja
Application granted granted Critical
Publication of JP3354217B2 publication Critical patent/JP3354217B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2205Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling with filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G3/00Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances
    • G01G3/12Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing
    • G01G3/16Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing measuring variations of frequency of oscillations of the body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N2001/222Other features
    • G01N2001/2223Other features aerosol sampling devices

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は主として種々の作業・
生産・生活等の諸環境あるいは固定および移動発生源に
おいて、空気、大気あるいは排ガス中の浮遊塵埃粒子等
の質量濃度を近リアルタイムで連続計測できる、取り扱
いが簡便で、比較的、安価なモニターを提供し、高度の
環境・労働衛生管理あるいは生産工程における品質管理
等を可能にするものである。
【0002】
【従来の技術とその問題点】従来、このような分野で、
種々の環境空気中あるいは排ガス中の浮遊塵埃粒子の質
量濃度を計測する代表的な方法として、 (1)濾紙法 (2)β線減衰法(以下、BAM法と略称する) (3)水晶振動子質量マイクロ・バランス法(以下、Q
CM法と略称する) (4)テーパー状片持梁振動子マイクロ・バランス法
(以下、TEOM法と略称する)(米国特許No.4,
391,338,Jul.5,1983および日本特許
出願公告、平1−45569、平成1年10月4日)等
が主として用いられている。 (1)の濾紙法は濾紙に大気あるいはガス中の浮遊塵埃
粒子を濾過採取した後、その重量増加を天秤で秤量して
質量濃度を算出するもので基準測定法としては優れてい
るが、採取と秤量に時間と人手を要し、連続的なリアル
タイム自動計測は不可能な欠点がある。(2)のBAM
法はロール・テープ状濾紙に浮遊塵埃粒子を濾過採取し
た後、それにβ線を照射しその減衰率の変化を計測し質
量濃度を算出するもので、3カ月程度の長期モニターが
可能であるが、安全性を考慮して放射性同位元素C14等
の低放射線線量(一般に約100μCi以下)の封線源
が使用されるので、一般にサンプリング時間を約1.0
時間と長く設定しないと、必要な測定精度のβ線減衰率
を得るための濾紙への浮遊塵埃の捕集量が得られないこ
と、および減衰率の放射線計測時間を数分間以上かけな
いと統計的計測誤差が大きくなるという理由のため、
1.0時間程度の長い採取時間の平均濃度を間欠的に自
動計測することは可能であるが、質量濃度のこれより短
い時間的変動を近リアルタイムで連続計測することは難
しいという欠点がある。また、β線の減衰率の変化を極
力、大きくして測定精度を向上させるためには、濾過面
積を小さくして(一般には、1cm2前後)、そこに採
取気体を集中的に高速濾過させる(一般には、15 l/
min程度)必要があるために、その気体濾過速度が公
式適正濾過速度の10〜30cm/sの10倍程度に達
してしまい、濾紙の圧力損失が異常に高くなり、その結
果、採取気体のバイパス漏洩や粉塵の濾紙からの吹き抜
け等の異常現象による測定誤差が生じ易い欠点がある。
(3)のQCM法はATカットの円板状水晶振動子の厚
みすべり振動モードを利用し、その固有振動数が電気集
塵法によりその電極面上に静電的に付着させた浮遊塵埃
の質量増加により変化するので、これを検出してその質
量濃度を算出するものである。ただし、この測定法の原
理が正しく成立するためには、塵埃粒子の電極面上への
付着層の厚さが均一な薄膜状になることが前提になって
いるが、実際には電気集塵法を利用しているために、塵
埃の粒子径分布や電気抵抗率等の物性の変動によりその
付着層の厚さが不均一になったり、水晶振動子の高周波
振動(数MHZ)加速度が常時、付着層に作用している
ため剥離再飛散が発生する等により大きな測定誤差が生
ずる欠点がある。また、電極への付着塵埃量の上限(ホ
ールデイング・キャパシテイ)は10μg程度で極めて
小さく、そのために電極の清浄操作を頻繁に行う必要が
あり繁雑であり、さらには、このために電極が損耗し高
価な水晶振動子を頻繁に取り替える必要があり、また電
気集塵用の針端電極もコロナ放電による電気的摩耗によ
り性能劣化を招くのでこれも頻繁に取り替える必要があ
る等の欠点があり、連続モニターとして使用することは
難しい。
【0003】(4)のTEOM法は、軸方向断面積の異
なるテーパー状中空棒の太い方を固定端とし、細い方を
自由端とした、いわゆる片持梁振動子を利用し、その自
由端に濾紙ホルダーを装着し、これを連続的に振動させ
ながら浮遊塵埃を連続して濾過捕集し、その質量の経時
的増加による振動子の固有振動数の経時的減少の変化を
検出して質量濃度を算出するものである。これは近リア
ルタイムで質量濃度を連続自動的にモニター計測できる
優れた方法ではあるが、気体を濾紙に常時、濾過させな
がら振動子と濾紙を振動させているので、濾紙に捕集さ
れた塵埃粒子には常時、振動加速度による剥離力が作用
し、濾紙から再飛散したり、また、濾紙に常時、気流に
よる動圧力と静圧力が加わることにより、質量増加によ
る以外の要因により振動数が影響を受け、測定誤差が生
じやすい欠点がある。これについて具体的に説明すると
次の通りである。
【0004】(1)まず振動体の濾紙に付着している粒
子あるいは粒子相互の剥離について。粒子あるいは粒子
相互の付着力と加速振 動による剥離力との関係を以下
に吟味する。参考文献: H.Krupp and
G.Sperling:Theory of Adhe
sion of Small Particles,J
l’of Applied Physics, Vo
l.37, No.11, Oct.1966,
p.4176〜4180 一般に、物体に付着している粒子の付着力fは、極めて
接近した接触点の表面の間に作用する分子間力としての
いわゆるファン・デア・ワールス(van der Wa
als)力fvdw、あるいは接触点における毛細管凝
縮(Capillary Condensation)
力によるものであるが、後者については本測定法の場
合、濾紙は約40℃に常時加熱されているので、水分等
が粒子間の接触点において凝縮する可能性は低く無視で
き、結局、前者のファン・デア・ワールス力が支配的にな
り、それは次式により与えられる。
【数1】 fvdw=z0Pvdw(d12)/(d1+d2) (1) ここに、 Pvdw:接触面境界におけるファン・デア・ワールス自
由付着エネルギー圧力 Pvdw=hω/8πz0 3 hω:Lifshitz−van der Waals
定数 z0:接触面における付着作用平衡距離 d1:粒子径 d2:粒子d1が付着している物体の粒子径であり、hω
はd1およびd2の物性により異なるが、約0.5〜9e
V=0.5〜9x10~12ergの範囲にあり、また、
0は約1Å=10~8cmである。 一方、物体が振動している場合に、その付着粒子に作用
する加速振動による剥離力fsは次式により与えられる。
【数2】 fs=(πd1 3/6)ρAm(2πf)2 (2) ここに、 ρ:粒子の密度 Am:正弦波振動している音叉梁の自由端の最大振幅 fs:振動数 であり、結局、この(1)、(2)兩式から剥離を発生
する臨界振動数fcと塵埃粒子径d1との関係は次式で与え
られる。
【数3】 そこで、z0=10~8cm, Pvdw=108dyne
/cm2濾紙の見かけ繊維径d2=2μm、塵埃粒子の密
度ρ=2g/cm3、振動子自由端の最大振幅Am=3
0μmとし、この(3)式から塵埃粒子径d1と剥離を
発生する臨界振動数fcとの関係を求めてみると、
【表1】 となる。振動子式質量マイクロバランスの振動数は、約
数100〜数1000Hzの範囲であり、また、測定対
象になる塵埃粒子の粒子径範囲は約10μm以下である
ので、振動している濾紙に捕集された塵埃粒子の中で、
数μm以上の比較的粗い粒子は剥離再飛散する可能性が
あることが判る。
【0005】(2)気体サンプリング中に濾紙に加えら
れる静圧および動圧の影響による振動子の振動数の誤差
について。実際の測定によると、例えばサンプリングを
停止している振動子の共振振動数が2,000Hzの場
合、約1.5 l/min.の気体サンプリングを有効
直径約1cm2のガラス繊維濾紙に行うと、約数10m
mH20の圧力損失が発生し、その結果、約0.01〜
0.05Hzの誤差が発生し、これは数μgの質量変化
に対応するので無視できないことになる。
【0006】
【発明が解決しようとする課題】本発明は上述の気体の
サンプリングに伴う、自由端に装着された濾紙ホルダー
に加わる動圧および静圧の影響により共振周波数が変化
することによる測定誤差を避けるようにすること、およ
び濾紙に捕集された塵埃粒子が振動子の加速振動により
剥離再飛散することを防止することを課題とする。
【0007】
【課題を解決するための手段】本発明は、振動子の自由
端に濾紙ホルダーを装着し、気体中の塵埃粒子を前記濾
紙ホルダーに濾過捕集し、前記濾過捕集前後の振動子の
振動数を計測することにより気体中の塵埃粒子の質量濃
度を測定する方法において、前記濾過捕集の間は前記振
動子の振動を停止し、前記振動数の計測の間は前記濾過
捕集を停止することを特徴とする。
【0008】
【作用】本発明方法においては、気体サンプリング周期
中には振動子の振動が停止されているので濾紙に捕集さ
れた塵埃粒子が振動子の加速振動により剥離再飛散する
ことがなく、また振動数の計測中には気体サンプリング
が停止されているので濾紙ホルダーに働圧及び静圧が作
用することがなくこれらの影響により誤差を生じたり共
振周波数が変化したりすることがなくなる。
【0009】
【実施例】振動子として音叉型振動子を使用した場合の
実施例について本発明を具体的に説明する。 図1はそ
の外観斜視図、図2はその断面図、図3及び図4は本発
明の他の実施例の断面図、図5及び図6は気体採取、共
振振動駆動および振動周波数計測システムのブロック・
ダイヤグラム、また図7は計測結果の一例をそれぞれ示
したものである。図1の外観斜視図に示されているよう
に、1は音叉型振動子でその二つの振動梁2の長さは、
濾紙ホルダー4を装着した方に比べて、もう一方のそれ
は濾紙ホルダーの質量に対応してやや長くするか、付加
質量を付けて両者の固有振動数がほぼ等しくなるように
して容易に共振が得られるように作られている。振動梁
2の中心に気体流通孔13が軸方向に貫通されている。
この振動子1はその両振動梁の結合端の節点において気
体流通孔を有する支持棒6で防振あるいは除振弾性体8
を介して気体排出口9を有する支持台7に固定されてい
る。浮遊塵埃粒子を含んだ空気あるいはガス11は気体
排出口9に接続された図5あるいは図6に示す気体容積
流量制御器あるいはマス・フロー・コントローラー18
を介してポンプ19により所定量が吸引されると、濾紙
ホルダー4に装着された濾紙5に浮遊塵埃が濾過捕集さ
れ、気体のみが10を通って20へ排出される。図2、
図3及び図4はそれぞれ本発明の実施例になる音叉型振
動子の断面を示すもので、図2は音叉型振動子1をその
軸対称部で支持棒6で支持するもの、図3は圧力損失を
低減するために気体流通孔13が直線的になるように支
持棒6で音叉型振動子1を非対称支持するもの及び図4
はより大量の気体を採取出来るように音叉型振動子13
の双方の振動梁2に気体流通孔13を設け、それぞれに
濾紙ホルダー4を装着し、支持棒6でほぼ軸対称に支持
する(この場合には音叉型振動子の二つの振動梁2の軸
方向長さはほぼ等しくする。)ものである。
【0010】図5はこのような音叉型振動子により気体
中の浮遊粉塵の質量濃度を近リアルタイムで連続計測す
るシステムを示したものである。自動利得調整増幅器1
4の入力側に接続されている一方のピエゾ圧電素子12
は、最初は静止状態の音叉型振動子は自由端−自由端振
動モードであるので、外力としての起動信号を与えなく
てもの極めて微弱な自然共振振動を行っており、これを
検出して微弱な交流正弦波電気信号を発生している。こ
の信号が自動利得調整増幅器14に入力されると高い増
幅度で増幅されて出力側に接続されている他方のピエゾ
圧電振動子12に加えられる。その結果音叉振動子1は
その固有共振周波数で自励振を始め、その振幅が大きく
なるにつれて、ピエゾ圧電素子の出力電圧も大きくなる
と、それに応じて自動利得調整増幅器14の増幅度は自
動的に低下するようになっているので、音叉型振動子1
は常に一定の振幅で共振するようになり、同時に自動利
得調整増幅器14からも常に一定出力の共振周波数に等
しい正弦波信号が発生される。この共振周波数の電気信
号は周波数計数器15に送られ計数され、さらにこれが
データプロセッサー16で次式(1)にもとずいて質量
に換算される。
【数4】 ここで、Δfは所定のサンプリング時間間隔(例えば、
数秒〜数分毎)における濾紙の重量増加Δmに対応する
振動子の共振周波数の減少幅、K1,K2は振動子および
の濾紙ホルダーの弾性率、密度、幾何学的形態や寸法等
で決まる定数である。また、この△mとサンプリング時
間間隔に対応する採取気体流量から浮遊塵埃粒子の質量
濃度が求められる。
【0011】このような演算結果はデータプロセッサー
16を通して記録装置17で記録表示される。なお、1
8は常に所定の一定気体流量11をポンプ19で吸引排
気20するための定容積流量制御器あるいはマス・フロ
ー・コントローラーである。また、22は所定の気体サ
ンプリング周期の前後における振動子の共振周波数の変
化(差)を計測するときに、気体サンプリングを停止す
るための例えば2方弁もしくは3方弁であり、制御・プ
ロセッサーからの制御信号により自動的に開閉され、ま
た、23はこの制御信号に同期して自動利得調整増幅器
14のフィードバック信号を開閉するたとえばサイリス
ターを使用した無接点スイッチであり、気体サンプリン
グ周期には振動子の共振振動を停止させるように閉状態
に、また共振周波数の計測周期には共振振動を行わせる
ように開状態になるように自動的に動作する。
【0012】図6は基準周波数を発信する音叉型振動子
1′と前述のような濾紙ホルダーを装着した音叉型振動
子1の共振周波数との差を計測するコムパレーター21
を加えてより高い測定精度が得られるようにした実施例
を示したものである。
【0013】図7は本方法による計測結果の一例を示し
たもので、マイクログラム程度の微量な質量からグラム
程度の比較的大きい質量までの広い範囲にわたって計測
可能なことを示している。
【0014】なお、以上の説明においては、音叉型振動
子の振動梁の断面形状は矩形状のものについて行った
が、その他、正方形、円形、楕円形等の異形であっても
よい。また、振動子としては音叉型に限定されず、たと
えば片持梁型等任意のもので良い。振動子の素材として
は一般に恆弾性合金が使用されるが、その他、鉄、ステ
ンレス、アルミ合金、チタン合金、水晶、セラミック
ス、エンジニャリング・プラスチック等の一般工業用弾
性材料も使用できる。
【0015】
【発明の効果】本発明によれば、気体サンプリング周期
中には振動子の振動を自動的に停止し、また、その前後
における振動数の計測中には気体サンプリングを自動的
に停止することにより、気体のサンプリングに伴う、自
由端に装着された濾紙ホルダーに加わる動圧および静圧
の影響により共振周波数が変化することによる測定誤差
が避けられ、また濾紙に捕集された塵埃粒子に加わる加
速振動による剥離再飛散が防止できるので、振動子を振
動させながら気体サンプリングと振動計測とを同時に連
続的に行なわせる従来方法に比べて、濾紙に捕集付着し
た塵埃粒子の質量をより正確に計測できるようになる。
【図面の簡単な説明】
【図1】本発明の実施例になる音叉型振動子式マイクロ
・バランス質量濃度計の外観斜視図
【図2】図1の実施例の構造を示す縦断面図
【図3】本発明の他の実施例になる構造を示す縦断面図
【図4】本発明のさらに他の実施例になる構造を示す縦
断面図
【図5】本発明の実施例になる計測システムを示すブロ
ック・ダイヤグラム
【図6】本発明の他の実施例になる計測システムを示す
ブロック・ダイヤグラム
【図7】本発明の測定器による測定結果の一例を示す線
【符号の説明】
1…音叉型振動子 2…音叉型振動子1の振動梁 3…音叉型振動子1の自由端 4…自由端3に固定された濾紙ホルダー 5…濾紙ホルダー4に装着された濾紙 6…音叉型振動子1を支持する気体流通孔を有する支持
棒 7…音叉型振動子1を支持する気体流通部をもつ支持台 8…支持台7に設けられた防振あるいは除振体 9…支持台7に設けられた排気孔 10…排気 11…採取気体 12…振動梁2の共振励振および振動周波数を検出する
ピエゾ圧電素子 13…振動梁2に設けられた気体流通孔 14…音叉型振動子1の共振振動によりピエソ圧電素子
12で発生する交流電気信号を増幅しその出力をピエゾ
圧電素子12へ戻して音叉型振動子1を励振させる自動
利得調整増幅器 15…自動利得調整増幅器14の出力信号の周波数を計
測する計数器 16…自動利得調整増幅器14の周波数を質量に演算す
る等のデータ・プロセッサー 17…データ・プロセッサー16の記録表示装置 18…気体のサンプリング流量を所定量に制御するため
の定容積流量制御器あるいはマス・フロー・コントロラ
ー 19…ポンプ 20…排気 21…周波数差を計測するコンパレーター 22…サンプリング気体の開閉弁 23…自動利得調整増幅器のフィードバック信号の開閉
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 5/02 G01H 13/00 JICSTファイル(JOIS)

Claims (1)

    (57)【特許請求の範囲】
  1. 【請求項1】 振動子の自由端に装着された濾紙ホルダ
    ーに、気体中の塵埃粒子を濾過捕集し、捕集前後の前記
    振動子の振動数を計測することにより気体中の塵埃粒子
    の質量濃度を測定する方法において、前記振動子の附勢
    信号回路に信号開閉器を設け、前記濾紙ホルダーからの
    気体サンプリング回路に気体開閉弁を設け、前記信号開
    閉器及び前記気体開閉弁を操作する制御プロセッサーを
    設けてなり、前記気体のサンプリングの間は前記信号開
    閉器により前記振動子の振動を停止し、またその前後の
    振動数の計測周期中には前記気体開閉弁の操作により気
    体サンプリングを停止する操作を自動的に行うようにし
    たことを特徴とする気体中の塵埃粒子の質量濃度を測定
    する方法。
JP18948393A 1993-07-30 1993-07-30 気体中の塵埃粒子の質量濃度を測定する方法 Expired - Fee Related JP3354217B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18948393A JP3354217B2 (ja) 1993-07-30 1993-07-30 気体中の塵埃粒子の質量濃度を測定する方法
US08/283,525 US5604335A (en) 1993-07-30 1994-08-01 Measuring method of mass concentration of suspended particulate matter in gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18948393A JP3354217B2 (ja) 1993-07-30 1993-07-30 気体中の塵埃粒子の質量濃度を測定する方法

Publications (2)

Publication Number Publication Date
JPH0743283A JPH0743283A (ja) 1995-02-14
JP3354217B2 true JP3354217B2 (ja) 2002-12-09

Family

ID=16242020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18948393A Expired - Fee Related JP3354217B2 (ja) 1993-07-30 1993-07-30 気体中の塵埃粒子の質量濃度を測定する方法

Country Status (2)

Country Link
US (1) US5604335A (ja)
JP (1) JP3354217B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160070474A (ko) 2014-12-10 2016-06-20 한국표준과학연구원 마이크로밸런스 기반 미세먼지 측정장치

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE504199C2 (sv) * 1995-05-04 1996-12-02 Bengt Kasemo Anordning vid mätning av resonansfrekvens och/eller dissipationsfaktor hos en piezoelektrisk kristallmikrovåg
GB9523812D0 (en) * 1995-11-21 1996-01-24 Sun Electric Uk Ltd Method and apparatus for analysis of particulate content of gases
US5717147A (en) * 1996-08-22 1998-02-10 Rupprecht & Patashnick Company, Inc. Air sampler filter cassette carrier
US6161420A (en) * 1997-11-12 2000-12-19 Fisher Controls International, Inc. High frequency measuring circuit
FR2777351B1 (fr) * 1998-04-08 2000-06-23 Hycel Diagnostics Procede et dispositif de mesure de particules en suspension dans un liquide
WO2000014518A1 (en) * 1998-09-04 2000-03-16 Ceramem Corporation Simple particulate emissions measuring instrument, system and method
US6222366B1 (en) 1999-05-10 2001-04-24 Fisher Controls International, Inc. High frequency measuring circuit with inherent noise reduction for resonating chemical sensors
US6654470B1 (en) 1999-07-13 2003-11-25 Fisher-Rosemount Systems, Inc. Frequency warping for improving resonator signal-to-noise ratio
AU1456801A (en) * 1999-11-01 2001-05-14 Johns Hopkins University, The Self-monitoring controller for quartz crystal microbalance sensors
US20030131654A1 (en) * 2001-11-26 2003-07-17 Healthy Buildings International, Inc. Method and apparatus for monitoring building air flow
JP4129947B2 (ja) * 2002-04-01 2008-08-06 臼井国際産業株式会社 毛管凝縮効果を利用した接着方法
US7091427B2 (en) * 2003-01-28 2006-08-15 Hewlett-Packard Development Company, L.P. Apparatus using resonance of a cavity to determine mass of a load
US7285736B2 (en) * 2004-10-21 2007-10-23 David Michael Korpi Oscillating Inertial Microbalance and Method of Passive Compensation
US7947503B2 (en) * 2005-06-17 2011-05-24 The United States Of America As Represented By The Department Of Health And Human Services Monitor and methods for characterizing airborne particulates
DE102007013938A1 (de) * 2007-03-23 2008-09-25 Forschungszentrum Karlsruhe Gmbh Vorrichtung zur Messung von Feinstpartikelmassen
US9157871B2 (en) 2012-07-11 2015-10-13 Met One Instruments, Inc. Method and apparatus to enhance collection of particles in particulate mass measurement device
CN103969143A (zh) * 2014-05-20 2014-08-06 潜山县新型工程建筑材料有限公司 卤片中氯化镁含量的测定方法
WO2015180981A1 (en) * 2014-05-30 2015-12-03 Koninklijke Philips N.V. Aerosol particle mass sensor and sensing method
CN114659953B (zh) * 2022-03-29 2024-07-26 中国矿业大学 基于振荡天平的矿井便携式实时粉尘浓度监测装置及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3653253A (en) * 1970-01-05 1972-04-04 Thermo Systems Inc Aerosol mass concentration spectrometer
US3653773A (en) * 1970-03-16 1972-04-04 Mobil Oil Corp Analytical apparatus and method for smokes and gases
US4391338A (en) * 1980-04-04 1983-07-05 Harvey Patashnick Microbalance and method for measuring the mass of matter suspended within a fluid medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160070474A (ko) 2014-12-10 2016-06-20 한국표준과학연구원 마이크로밸런스 기반 미세먼지 측정장치

Also Published As

Publication number Publication date
JPH0743283A (ja) 1995-02-14
US5604335A (en) 1997-02-18

Similar Documents

Publication Publication Date Title
JP3354217B2 (ja) 気体中の塵埃粒子の質量濃度を測定する方法
US5349844A (en) System and method for resonant filter mass monitoring
EP0775295B1 (en) A piezoelectric crystal microbalance device
US3561253A (en) Apparatus and method of measurement of particulate mass
Nolle Methods for measuring dynamic mechanical properties of rubber‐like materials
US3653253A (en) Aerosol mass concentration spectrometer
Soysal et al. Aerosol mass concentration measurements: Recent advancements of real-time nano/micro systems
US3926271A (en) Microbalance
Ide Some dynamic methods for determination of Young's modulus
JP4155960B2 (ja) 発振回路が適用された微細質量測定装置及び方法
JPS6191564A (ja) 超音波血液凝固監視装置及び測定方法
JPH01106902A (ja) タービン回転翼の試験方法及び装置
CA1155197A (en) Ultra sensitive liquid level detector and method
Daley et al. The performance of piezoelectric crystal sensors used to determine aerosol mass concentrations
JP2017517728A (ja) エアロゾル粒子質量センサ及び感知方法
SEM et al. A new mass sensor for respirable dust measurement
JPH04191639A (ja) 塵埃粒子の質量濃度の計測方法
JPH07151664A (ja) 気体中の塵埃粒子の質量濃度を測定する方法
EP1059521A2 (en) System and method for continuous monitoring of particulates
CN104390891B (zh) 一种改进的便携式pm2.5检测仪
Chellasivalingam et al. Mass tuning in weakly coupled low-Q piezoelectric MEMS resonator arrays for particulate sensing
Näbauer et al. Biosensors based on piezoelectric crystals
Baron Direct-reading instruments for aerosols. A review
Ficken Jr et al. Simple Form of the “Sing‐Around” Method for the Determination of Sound Velocities
JPS5948636A (ja) 高速復帰型微粒子付着検知センサ

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees