JP3349217B2 - Maintenance method for stationary nickel-hydrogen storage batteries - Google Patents

Maintenance method for stationary nickel-hydrogen storage batteries

Info

Publication number
JP3349217B2
JP3349217B2 JP24880093A JP24880093A JP3349217B2 JP 3349217 B2 JP3349217 B2 JP 3349217B2 JP 24880093 A JP24880093 A JP 24880093A JP 24880093 A JP24880093 A JP 24880093A JP 3349217 B2 JP3349217 B2 JP 3349217B2
Authority
JP
Japan
Prior art keywords
maintenance
capacity
negative electrode
battery
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24880093A
Other languages
Japanese (ja)
Other versions
JPH0778636A (en
Inventor
幹朗 田所
晃治 西尾
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP24880093A priority Critical patent/JP3349217B2/en
Publication of JPH0778636A publication Critical patent/JPH0778636A/en
Application granted granted Critical
Publication of JP3349217B2 publication Critical patent/JP3349217B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、充放電サイクルの繰り
返しにより電池容量が低下した据置型ニッケル−水素蓄
電池の容量回復のためのメンテナンス方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a maintenance method for restoring the capacity of a stationary nickel-metal hydride storage battery whose battery capacity has been reduced by repeating charge / discharge cycles.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】ガスメ
ーター等の各種計測機器の電源などに用いられている据
置型ニッケル−水素蓄電池の充電末期には、正極から酸
素ガスが発生する。発生した酸素ガスが負極の水素との
反応で消費されれば、電池内部の圧力(内圧)は上昇せ
ず、また正負両極の容量バランスが崩れることはない。
2. Description of the Related Art Oxygen gas is generated from a positive electrode at the end of charging of a stationary nickel-hydrogen storage battery used for a power supply of various measuring instruments such as a gas meter. If the generated oxygen gas is consumed by the reaction with the hydrogen of the negative electrode, the pressure (internal pressure) inside the battery does not increase, and the capacity balance between the positive and negative electrodes does not break.

【0003】しかしながら、充電時に発生した酸素ガス
の一部はセパレータなどの易酸化性部材の酸化に消費さ
れるため、負極に水素が残留する。その結果、充放電サ
イクルを繰り返すうちに負極に水素が次第に蓄積し、や
がて充電が負極支配となり、電池容量が低下する。この
ため、電池容量がある程度低下した時点でこれを元に回
復させるために、定期的にメンテナンスを行うことが必
要となる。
However, a part of the oxygen gas generated during charging is consumed for oxidizing an easily oxidizable member such as a separator, so that hydrogen remains on the negative electrode. As a result, hydrogen gradually accumulates in the negative electrode during the repetition of the charge / discharge cycle, and the charge eventually becomes dominant in the negative electrode, and the battery capacity decreases. For this reason, when the battery capacity is reduced to some extent, it is necessary to periodically perform maintenance in order to recover the battery capacity.

【0004】従来、本発明が対象とする複数枚の負極板
からなる負極を備える据置型ニッケル−水素蓄電池(正
極端子及び負極端子を各1個備える。)のメンテナンス
として、充放電サイクル時の電池内圧の上昇を防止する
ために電槽上面に設けられた安全弁(逆止弁)から、負
極の水素吸蔵合金内に蓄積した水素を水素ガスとして電
池系外へ放出させながら、過充電(開放過充電)するこ
とが行われている。
Conventionally, as a maintenance of a stationary nickel-hydrogen storage battery provided with a negative electrode composed of a plurality of negative plates (having one positive electrode terminal and one negative electrode terminal), the present invention relates to a battery during a charge / discharge cycle. Overcharging (opening over) while releasing hydrogen accumulated in the hydrogen storage alloy of the negative electrode out of the battery system from the safety valve (check valve) provided on the top of the battery case to prevent the internal pressure from rising Charging) is being done.

【0005】図3は、この従来方法の説明図であり、図
3(A)はメンテナンス前の正負両極の容量図、図3
(B)はメンテナンス後の正負両極の容量図である。充
放電サイクルの繰り返しにより負極に水素が蓄積するた
め、図3(A)に示すように、充放電サイクル初期にM
1あった電池容量はメンテナンス前にはM2に低下す
る。
FIG. 3 is an explanatory diagram of this conventional method. FIG. 3A is a diagram showing the capacity of positive and negative electrodes before maintenance.
(B) is a capacity diagram of the positive and negative electrodes after maintenance. Since hydrogen accumulates on the negative electrode due to repetition of the charge / discharge cycle, as shown in FIG.
The battery capacity which has been 1 drops to M2 before maintenance.

【0006】メンテナンスは、負極に蓄積した水素を電
池系外へ放出して、低下した電池容量M2をM1に回復
させるために行う操作であるが、過充電時に水素ガスの
みならず、酸素ガスをも多量に電池系外へ放出すると、
電解液不足を招き、サイクル寿命の短縮をもたらす。こ
のため、酸素ガスを多量に電池系外へ放出しない程度に
過充電する必要がある。それゆえ、従来方法において
は、現実には、酸素ガスが激しく正極から発生しだす前
に過充電を打ち切る必要がある。図3(B)に示すメン
テナンス後の正負両極の充電深度が、等高に描かれてい
るのはこの理由による。なお、図3(A)及び(B)中
のハッチングを施した部分a、bは、それぞれ水素が蓄
積している部分である。
[0006] The maintenance is an operation performed to release the hydrogen accumulated in the negative electrode to the outside of the battery system to restore the reduced battery capacity M2 to M1. At the time of overcharging, not only hydrogen gas but also oxygen gas is removed. When a large amount is released outside the battery system,
This leads to a shortage of the electrolyte and shortens the cycle life. For this reason, it is necessary to overcharge so that a large amount of oxygen gas is not released out of the battery system. Therefore, in the conventional method, in reality, it is necessary to stop overcharging before oxygen gas is strongly generated from the positive electrode. It is for this reason that the charging depths of the positive and negative electrodes after maintenance shown in FIG. Note that hatched portions a and b in FIGS. 3A and 3B are portions where hydrogen is accumulated, respectively.

【0007】しかしながら、上記従来方法には、メンテ
ナンス後の充放電サイクルにおいて電池容量が短サイク
ル裡に低下するという問題の他、蓄電池のサイクル寿命
が短いという問題があった。このため、より優れたメン
テナンス方法の開発が要望されていた。
[0007] However, the above-mentioned conventional method has a problem that the battery life is short in a short cycle in a charge / discharge cycle after maintenance and also a problem that the cycle life of the storage battery is short. For this reason, development of a better maintenance method has been demanded.

【0008】本発明は、かかる要望に応えるべくなされ
たものであって、その目的とするところは、分割メンテ
ナンス方式を採用することにより、上述した問題の無い
新規且つ有用なメンテナンス方法を提供するにある。
The present invention has been made in order to meet such a demand, and an object of the present invention is to provide a new and useful maintenance method which does not have the above-mentioned problems by employing a divided maintenance system. is there.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る負極が複数枚の負極板からなる据置型ニ
ッケル−水素蓄電池のメンテナンス方法(以下、「本発
明方法」と称する。)は、前記複数枚の負極板を分けて
複数個のメンテナンス用負極端子に接続し、各メンテナ
ンス用負極端子と正極端子とを用いて、電池系内に発生
する水素ガスを電池系外へ放出させながら充放電する操
作を順次行う方法である。
In order to achieve the above object, a maintenance method for a stationary nickel-hydrogen storage battery according to the present invention in which the negative electrode comprises a plurality of negative plates (hereinafter, referred to as the "method of the present invention"). Is divided into a plurality of negative electrode plates, connected to a plurality of negative electrode terminals for maintenance, using each of the negative electrode terminal for maintenance and the positive electrode terminal, to discharge hydrogen gas generated in the battery system outside the battery system. This is a method of sequentially performing charging and discharging operations.

【0010】このように、本発明方法では、メンテナン
スを複数回に分けて行う分割メンテナンス方式が採られ
る。メンテナンスにおける好適な充電容量は、40〜7
0%である。充電容量があまり小さいと、蓄積した水素
の負極からの抜き取りが不十分となるため、容量回復の
割合が低下するとともに、サイクル寿命が短くなる。一
方、各分割メンテナンスにおける充電容量をあまり大き
くすると、放出すべき水素ガスの他に酸素ガスも電池系
外へ放出されることとなり、電解液不足が生じて、サイ
クル寿命の短縮を招く。
As described above, the method of the present invention employs a divided maintenance system in which maintenance is performed in a plurality of times. Suitable charging capacity for maintenance is 40-7
0%. If the charge capacity is too small, the accumulated hydrogen is not sufficiently extracted from the negative electrode, so that the rate of capacity recovery is reduced and the cycle life is shortened. On the other hand, if the charge capacity in each divided maintenance is too large, oxygen gas in addition to the hydrogen gas to be released is also released to the outside of the battery system, causing a shortage of the electrolyte and shortening the cycle life.

【0011】[0011]

【作用】本発明方法においては、正極端子と複数個のメ
ンテナンス用負極端子とを用いて順次開放充放電する分
割メンテナンス方式が採られるため、正極端子と負極端
子とをそのまま用いて開放過充電する従来方法に比し、
メンテナンス時の酸素ガスの電池系外への放出に起因す
る電解液不足が起こりにくい。また、負極に蓄積した水
素が水素ガスとして多量に電池系外へ放出されるため、
メンテナンス後の充放電サイクルにおける電池容量の低
下が緩やかになる。以下に本発明方法の原理を説明す
る。
In the method of the present invention, since a divided maintenance system is adopted in which the positive electrode terminal and a plurality of negative electrode terminals for maintenance are sequentially opened and charged and discharged, the overcharging is performed using the positive electrode terminal and the negative electrode terminal as they are. Compared to the conventional method,
An electrolyte shortage due to the release of oxygen gas outside the battery system during maintenance is unlikely to occur. In addition, since a large amount of hydrogen accumulated in the negative electrode is released outside the battery system as hydrogen gas,
The decrease in battery capacity in the charge / discharge cycle after maintenance is moderated. Hereinafter, the principle of the method of the present invention will be described.

【0012】メンテナンスは、その後の負極への水素の
蓄積を考慮すれば、メンテナンス後の負極の深度がなる
べく浅くなるように、すなわち水素の抜き取り量が多く
なるように行うことが好ましい筈であり、また電解液不
足に起因するサイクル寿命の短縮を回避するためには、
酸素ガスの放出を伴うことなく水素ガスのみを電池系外
へ放出するように行うことが好ましい筈である。かかる
知見に基づき開発されたのが本発明方法である。すなわ
ち、本発明方法は、酸素ガスを殆ど又は全く放出するこ
となく、蓄積した水素を負極から多量に抜き取るように
したものである。
In consideration of the subsequent accumulation of hydrogen in the negative electrode, it is preferable that the maintenance should be performed so that the depth of the negative electrode after the maintenance is as small as possible, that is, the amount of extracted hydrogen is large. Also, in order to avoid shortening the cycle life due to lack of electrolyte,
It should be preferable to discharge only the hydrogen gas to the outside of the battery system without releasing the oxygen gas. The method of the present invention has been developed based on such knowledge. That is, in the method of the present invention, a large amount of accumulated hydrogen is extracted from the negative electrode with little or no release of oxygen gas.

【0013】図1は、3枚の正極板と4枚の負極板とが
交互に対向配置された据置型ニッケル−水素蓄電池のメ
ンテナンスに本発明方法を適用する場合の正極板及び負
極板の正極端子又は負極端子への接続方法の一例を示す
配線図である。図に示すように、3枚の正極板P1,P
2,P3は全て正極端子PTに接続され、また4枚の負
極板N1,N2,N3,N4は1枚おきに2枚づつに分
けられ、それぞれがメンテナンス用負極端子NT1及び
NT2に接続されている。
FIG. 1 shows a positive electrode plate and a negative electrode plate in a case where the method of the present invention is applied to maintenance of a stationary nickel-hydrogen storage battery in which three positive electrode plates and four negative electrode plates are alternately arranged to face each other. It is a wiring diagram showing an example of a connection method to a terminal or a negative electrode terminal. As shown in the figure, three positive plates P1, P
2 and P3 are all connected to the positive terminal PT, and the four negative plates N1, N2, N3 and N4 are divided into two every other plate, each connected to the maintenance negative terminals NT1 and NT2. I have.

【0014】図2は、本発明方法を図1に示す如く正極
板及び負極板を接続した据置型ニッケル−水素蓄電池
(単電池)のメンテナンスに適用した場合の説明図であ
り、図2(A)はメンテナンス前の正負両極の容量図、
図2(B)は正極端子PTと一方のメンテナンス用負極
端子NT1とを使用した第1回目のメンテナンス後の正
極板P1,P2,P3及び分割結線された負極板N1,
N3の容量図、図2(C)は正極端子PTと他方のメン
テナンス用負極端子NT2とを使用した第2回目のメン
テナンス後の正極板P1,P2,P3及び分割結線され
た負極板N2,N4の容量図、図2(D)はメンテナン
ス後の正負両極の容量図である。
FIG. 2 is an explanatory diagram in the case where the method of the present invention is applied to maintenance of a stationary nickel-hydrogen storage battery (unit cell) in which a positive electrode plate and a negative electrode plate are connected as shown in FIG. ) Is the positive and negative electrode capacity diagram before maintenance,
FIG. 2B shows the positive electrodes P1, P2, and P3 after the first maintenance using the positive electrode terminal PT and one of the negative electrodes NT1 for maintenance, and the negative electrode plates N1 and N1 divided and connected.
FIG. 2C shows the positive electrode plates P1, P2, and P3 after the second maintenance using the positive electrode terminal PT and the other maintenance negative electrode terminal NT2, and the separately connected negative electrode plates N2 and N4. FIG. 2D is a capacity diagram of the positive and negative electrodes after maintenance.

【0015】本発明方法では、分割した負極板N1,N
3又は負極板N2,N4の各総容量が負極板N1,N
2,N3,N4の総容量に比し小さいため、深度の浅い
充電によって、負極板N1,N3又は負極板N2,N4
から、蓄積した水素を電池系外へ放出させることができ
る。その結果、酸素ガスを電池系外へ放出させることな
くメンテナンスを実施することが可能となり、電解液不
足が生じにくい(サイクル寿命の長期化)。
In the method of the present invention, the divided negative electrode plates N1, N
3 or the total capacity of the negative plates N2 and N4 is
2, N3, N4, the negative electrode plates N1, N3 or N2, N4 by charging at a shallow depth.
Thus, the accumulated hydrogen can be released outside the battery system. As a result, maintenance can be performed without releasing oxygen gas out of the battery system, and shortage of electrolyte does not easily occur (extending of cycle life).

【0016】また、メンテナンスの充電末期に酸素ガス
が発生しにくいので蓄積した水素を電池系外へ多量に放
出させることができる。その結果、図2(D)に示すよ
うに、メンテナンス後の負極に余分の容量Sが生じて、
負極の充電深度が浅くなる。この余分の容量Sに水素が
完全に蓄積されるまでは、充電は正極支配でなされるこ
ととなり、その間は殆ど容量低下しない。余分の容量S
に水素が完全に蓄積された後は、同時支配となり、やが
て負極支配の充電に移行するので容量低下するが、殆ど
容量低下しない期間が存在するので、従来方法に比べ
て、メンテナンス後の容量低下が緩やかとなる(メンテ
ナンス間隔の長期化)。
[0016] Further, since oxygen gas is hardly generated at the end of charging for maintenance, a large amount of accumulated hydrogen can be released outside the battery system. As a result, as shown in FIG. 2D, an extra capacity S is generated in the negative electrode after maintenance,
The charge depth of the negative electrode becomes shallow. Until hydrogen is completely accumulated in the extra capacity S, charging is performed by the positive electrode, and the capacity hardly decreases during that time. Extra capacity S
After the hydrogen is completely stored, the capacity becomes lower due to simultaneous control, and eventually the charge shifts to negative electrode control.However, there is a period during which the capacity hardly decreases. Becomes slower (longer maintenance intervals).

【0017】[0017]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples, and may be carried out by appropriately changing the scope of the present invention. Is possible.

【0018】(実施例1〜21)3枚の正極板及び4枚
の負極板が交互に対向配置された据置型ニッケル−水素
蓄電池単電池(定格容量:100Ah;安全弁の開放
圧:3気圧)について、1Cで1時間充電した後、1C
で放電終止電圧1Vまで放電する工程を1サイクルとす
る充放電サイクル試験を行い、300サイクル経過後又
は1000サイクル経過後に、先の図1に示したように
3枚の正極板及び4枚の負極板をそれぞれ正極端子PT
及び負極端子NT1,NT2に接続し、先ず正極端子P
Tとメンテナンス用負極端子NT1とを用いて安全弁か
ら水素ガスを放出させながら充放電し、次に正極端子P
Tとメンテナンス用負極端子NT2とを用いて同様に充
放電して、メンテナンスを行った。各メンテナンスにお
ける充電容量(Ah)、メンテナンスの実施時期(サイ
クル)、メンテナンス前後の電池容量(Ah)及び内圧
(気圧)を表1及び表2に示す。なお、両表中のメンテ
ナンス前後の内圧は、0.1Cで内圧が3気圧に達する
まで充電し、さらに1時間放置した後の内圧である。ま
た、両表中のメンテナンス前後の電池容量は、0.1C
で充電終止圧力3気圧まで充電した後、0.1Cで放電
終止電圧1Vまで放電したときの電池容量である。
(Examples 1 to 21) A stationary nickel-hydrogen storage battery cell in which three positive electrode plates and four negative electrode plates are alternately arranged to face each other (rated capacity: 100 Ah; safety valve opening pressure: 3 atm). After charging for 1 hour at 1C,
A charge / discharge cycle test was performed in which the process of discharging to a discharge end voltage of 1 V was one cycle, and after 300 or 1000 cycles, three positive plates and four negative electrodes were used as shown in FIG. Each plate is a positive terminal PT
And the negative terminals NT1 and NT2, and the positive terminal P
T and charge / discharge while releasing hydrogen gas from the safety valve using the negative electrode terminal NT1 for maintenance.
Using T and the negative electrode terminal for maintenance NT2, charging and discharging were performed in the same manner to perform maintenance. Tables 1 and 2 show the charging capacity (Ah), the timing of performing the maintenance (cycle), the battery capacity (Ah) before and after the maintenance, and the internal pressure (atmospheric pressure) in each maintenance. In addition, the internal pressure before and after the maintenance in both tables is the internal pressure after charging until the internal pressure reaches 3 atm at 0.1 C and leaving it to stand for 1 hour. The battery capacity before and after maintenance in both tables is 0.1 C
Is the battery capacity when the battery is charged to a charge end pressure of 3 atm and then discharged at 0.1 C to a discharge end voltage of 1 V.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】表1に示すように、本発明方法によるメン
テナンスを300サイクル経過後に行った実施例1〜1
0では、早期にメンテナンスを行ったため水素の蓄積量
が少なく、それゆえメンテナンス前に電池容量が全く低
下していないが、充電容量を40Ah(40%)以上と
した実施例4〜10では、メンテナンス前後において内
圧が1.5気圧から1.1又は1.0気圧に低下してい
る。このことから、充電容量を40Ah(40%)以上
に大きくした場合には、水素の抜き取り量が顕著に多く
なることが分かる。
As shown in Table 1, Examples 1 to 1 in which maintenance by the method of the present invention was performed after 300 cycles had elapsed.
0, the amount of stored hydrogen was small because maintenance was performed early, and the battery capacity did not decrease at all before maintenance. However, in Examples 4 to 10 in which the charging capacity was 40 Ah (40%) or more, Before and after, the internal pressure drops from 1.5 atm to 1.1 or 1.0 atm. This indicates that when the charging capacity is increased to 40 Ah (40%) or more, the amount of extracted hydrogen is significantly increased.

【0022】一方、表2に示すように、本発明方法によ
るメンテナンスを1000サイクル又は1500サイク
ル経過後に行った実施例11〜21では、負極に水素が
かなり蓄積したため、メンテナンス前に電池容量が80
Ah又は60Ahに低下している。しかし、充電容量を
40Ah(40%)以上とした実施例14〜21では、
メンテナンスにより水素の蓄積量が大幅に減少したた
め、メンテナンス前後において内圧が2.0気圧から
1.3〜1.1気圧に大きく低下しているとともに、電
池容量が初期の90%以上に回復している。これらの結
果から、本発明方法におけるメンテナンス時の充電容量
は40%以上とすることが好ましいことが分かる。
On the other hand, as shown in Table 2, in Examples 11 to 21 in which the maintenance according to the method of the present invention was carried out after the lapse of 1000 or 1500 cycles, a considerable amount of hydrogen was accumulated on the negative electrode, and thus the battery capacity was reduced to 80 before the maintenance.
Ah or 60 Ah. However, in Examples 14 to 21 in which the charge capacity was 40 Ah (40%) or more,
Since the amount of accumulated hydrogen has been significantly reduced due to the maintenance, the internal pressure has largely decreased from 2.0 atm to 1.3 to 1.1 atm before and after the maintenance, and the battery capacity has recovered to 90% or more of the initial level. I have. From these results, it is understood that the charging capacity during maintenance in the method of the present invention is preferably set to 40% or more.

【0023】(比較例1〜18)実施例1〜21と同じ
条件で充放電サイクル試験を行い、メンテナンス用負極
端子N1とメンテナンス用負極端子N2とを短絡させて
1個の負極端子とし、この負極端子と正極端子PTとを
用いて1回だけ充放電したこと以外は実施例1〜21と
同様にして、メンテナンスを行った。メンテナンス時の
充電容量、メンテナンスの実施時期、メンテナンス前後
の電池容量及び電池内圧を表3及び表4に示す。メンテ
ナンス前後の電池内圧及び電池容量は、先と同様にして
測定したものである。
(Comparative Examples 1 to 18) A charge / discharge cycle test was performed under the same conditions as in Examples 1 to 21, and the maintenance negative electrode terminal N1 and the maintenance negative electrode terminal N2 were short-circuited to form one negative electrode terminal. The maintenance was performed in the same manner as in Examples 1 to 21 except that charging and discharging were performed only once using the negative electrode terminal and the positive electrode terminal PT. Tables 3 and 4 show the charge capacity at the time of maintenance, the timing of the maintenance, the battery capacity before and after the maintenance, and the battery internal pressure. The battery internal pressure and the battery capacity before and after the maintenance were measured in the same manner as above.

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】表3に示すように、従来方法によるメンテ
ナンスを300サイクル経過後に行った比較例1〜9で
は、早期にメンテナンスを行ったためメンテナンス前に
電池容量が全く低下していないが、充電容量が120〜
180Ahと大きい比較例6〜9では、メンテナンス前
後において内圧が1.5気圧から1.7〜2.0気圧に
上昇している。これは、負極に水素が殆ど蓄積されてい
ない状態で大容量の充電がなされたため酸素ガスが正極
から発生し、その分に対応する水素が負極に蓄積され
て、電池系内の水素濃度が高まったからである。
As shown in Table 3, in Comparative Examples 1 to 9 in which the maintenance by the conventional method was performed after 300 cycles, the battery capacity did not decrease at all before the maintenance because the maintenance was performed early. 120-
In Comparative Examples 6 to 9 as large as 180 Ah, the internal pressure increased from 1.5 atm to 1.7 to 2.0 atm before and after maintenance. This is because oxygen gas is generated from the positive electrode due to large-capacity charging with little hydrogen stored in the negative electrode, and corresponding hydrogen is stored in the negative electrode, increasing the hydrogen concentration in the battery system. This is because the.

【0027】一方、表4に示すように、従来方法による
メンテナンスを1000サイクル又は1500サイクル
経過後に行った比較例10〜18では、負極への水素の
蓄積に起因してメンテナンス前に電池容量が80Ahに
低下している。そして、充電容量が60Ahと小さい比
較例10〜13ではメンテナンス前後において電池容量
及び内圧に変化は無いが、充電容量が80Ah以上と大
きい比較例14〜18では、メンテナンスにより、負極
に蓄積した水素の一部が電池系外へ放出されたため、メ
ンテナンス後における充電後の内圧が低下しているとと
もに、電池容量が初期の95%まで回復している。
On the other hand, as shown in Table 4, in Comparative Examples 10 to 18 in which maintenance by the conventional method was performed after 1000 or 1500 cycles, the battery capacity was 80 Ah before maintenance due to accumulation of hydrogen in the negative electrode. Has declined. In Comparative Examples 10 to 13 in which the charge capacity is as small as 60 Ah, there is no change in the battery capacity and the internal pressure before and after the maintenance. Since part of the battery was released outside the battery system, the internal pressure after charging after maintenance was reduced, and the battery capacity was recovered to 95% of the initial value.

【0028】(実施例22〜28及び比較例19〜2
4)先と同じ種類の据置型ニッケル−水素蓄電池につい
て、先と同じ条件で充放電サイクルを繰り返し、300
サイクルごとに本発明方法又は従来方法を用いてメンテ
ナンスを行い、サイクル寿命を調べた。比較のために、
メンテナンスを全く行わなかった場合のサイクル寿命に
ついても調べた。なお、実施例22〜28における如く
充電容量を40Ah(40%)以上とした場合のサイク
ル寿命のみ調べたのは、実施例1〜3の結果から充電容
量を40Ah未満としたのでは、容量回復が殆ど困難で
あることが分かったからである。サイクル寿命は、50
サイクルおきに電池容量を測定し、電池容量が初期容量
の50%に低下した時点までの総サイクル数で示した。
結果を表5に示す。
(Examples 22 to 28 and Comparative Examples 19 to 2)
4) For the same type of stationary nickel-hydrogen storage battery, the charge / discharge cycle was repeated under the same conditions as above,
Maintenance was performed for each cycle using the method of the present invention or the conventional method, and the cycle life was examined. For comparison,
The cycle life when no maintenance was performed was also examined. Only the cycle life when the charge capacity was set to 40 Ah (40%) or more as in Examples 22 to 28 was examined. When the charge capacity was set to less than 40 Ah from the results of Examples 1 to 3, the capacity recovery was performed. Was found to be almost difficult. The cycle life is 50
The battery capacity was measured at every cycle, and indicated by the total number of cycles until the battery capacity decreased to 50% of the initial capacity.
Table 5 shows the results.

【0029】[0029]

【表5】 [Table 5]

【0030】表5に示すように、本発明方法によりメン
テナンスを行った実施例22〜28では、従来方法によ
りメンテナンスを行った比較例19〜23及びメンテナ
ンスを行わなかった比較例24に比し、蓄電池のサイク
ル寿命が総じて長い。これは、充電時の酸素ガスの電池
系外への放出に起因する電解液不足を殆ど生じさせるこ
となく容量回復が行われたためである。また、本発明方
法による場合であっても、実施例26〜28にみるよう
に、充電容量があまり大きいと、酸素ガスの放出量が多
くなるため電解液不足が生じ、サイクル寿命が短くなる
ので、充電容量は70Ah(70%)以下とすることが
好ましい。これと、先に述べた容量回復の点で40%以
上の充電容量が好ましいことを併せ考えると、メンテナ
ンスにおける充電容量は40〜70%が好ましいことが
分かる。
As shown in Table 5, in Examples 22 to 28 where maintenance was performed by the method of the present invention, Comparative Examples 19 to 23 where maintenance was performed by the conventional method and Comparative Example 24 where maintenance was not performed, The cycle life of the storage battery is generally long. This is because the capacity was recovered with almost no shortage of the electrolyte caused by the release of oxygen gas outside the battery system during charging. Further, even in the case of the method of the present invention, as shown in Examples 26 to 28, if the charging capacity is too large, the amount of released oxygen gas becomes large, so that the electrolyte becomes insufficient and the cycle life becomes short. , The charging capacity is preferably 70 Ah (70%) or less. Considering this and the fact that the charging capacity of 40% or more is preferable in terms of the capacity recovery described above, it can be seen that the charging capacity in maintenance is preferably 40 to 70%.

【0031】上記実施例では、正極板を3枚と、負極板
を4枚有する据置型ニッケル−水素蓄電池を例に挙げて
説明したが、複数枚の負極板を複数個のメンテナンス用
負極端子に分割して接続し、分割メンテナンス方式を行
い得る構造のものであれば、極板の数は特に制限されな
い。また、上記実施例では、本発明方法を単電池のメン
テナンスに適用する場合を例に挙げて説明したが、本発
明方法は複数対の正極及び負極が直列に接続されてなる
集合電池のメンテナンスにも同様に適用し得るものであ
る。
In the above embodiment, a stationary nickel-hydrogen storage battery having three positive electrode plates and four negative electrode plates has been described as an example, but a plurality of negative electrode plates are used as a plurality of maintenance negative electrode terminals. The number of the electrode plates is not particularly limited as long as it is a structure that can be divided and connected to perform the divided maintenance method. In the above embodiment, the case where the method of the present invention is applied to the maintenance of a unit cell is described as an example.However, the method of the present invention is applied to the maintenance of an assembled battery in which a plurality of pairs of positive electrodes and negative electrodes are connected in series. Is also applicable.

【0032】[0032]

【発明の効果】本発明方法によれば、メンテナンス後に
おける容量低下が緩やかであり、メンテナンス間隔を長
くすることが可能である。また、メンテナンス時の充電
容量を酸素ガスを殆ど放出しない程度の大きさに設定す
ることにより、電解液不足に因るサイクル寿命の短縮を
招くことなくメンテナンスを行うことができる。
According to the method of the present invention, the capacity decrease after the maintenance is gradual, and the maintenance interval can be lengthened. In addition, by setting the charging capacity at the time of maintenance to a size that hardly releases oxygen gas, maintenance can be performed without shortening the cycle life due to insufficient electrolyte.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を実施する場合の正極板及び負極板
の各端子への接続方法の一例を示す配線図である。
FIG. 1 is a wiring diagram showing an example of a method of connecting a positive electrode plate and a negative electrode plate to each terminal when carrying out the method of the present invention.

【図2】本発明方法の説明図であり、(A)はメンテナ
ンス前の正負両極の容量図、(B)は正極端子と一方の
メンテナンス用負極端子とを使用した第1回目のメンテ
ナンス後の正極及び分割された負極の容量図、(C)は
正極端子と他方のメンテナンス用負極端子とを使用した
第2回目のメンテナンス後の正極及び分割された負極の
容量図、(D)はメンテナンス後の正負両極の容量図で
ある。
FIGS. 2A and 2B are explanatory diagrams of the method of the present invention, wherein FIG. 2A is a diagram showing the capacity of positive and negative electrodes before maintenance, and FIG. 2B is a diagram after the first maintenance using a positive terminal and one maintenance negative terminal. The capacity diagram of the positive electrode and the divided negative electrode, (C) is a capacity diagram of the positive electrode and the divided negative electrode after the second maintenance using the positive terminal and the other maintenance negative terminal, and (D) is after the maintenance. FIG. 4 is a capacity diagram of positive and negative electrodes of FIG.

【図3】従来方法の説明図であり、(A)はメンテナン
ス前の正負両極の容量図、(B)はメンテナンス後の正
負両極の容量図である。
3A and 3B are explanatory diagrams of a conventional method, in which FIG. 3A is a capacity diagram of positive and negative electrodes before maintenance, and FIG. 3B is a capacity diagram of positive and negative electrodes after maintenance.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−36442(JP,A) 特開 昭61−49384(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/00 - 10/48 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-36442 (JP, A) JP-A-61-49384 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/00-10/48

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】負極が複数枚の負極板からなる据置型ニッ
ケル−水素蓄電池のメンテナンス方法であって、前記複
数枚の負極板を分けて複数個のメンテナンス用負極端子
に接続し、各メンテナンス用負極端子と正極端子とを用
いて、電池系内に発生する水素ガスを電池系外へ放出さ
せながら充放電する操作を順次行うことを特徴とする据
置型ニッケル−水素蓄電池のメンテナンス方法。
1. A maintenance method for a stationary nickel-hydrogen storage battery in which a negative electrode comprises a plurality of negative plates, wherein the plurality of negative plates are divided and connected to a plurality of negative terminals for maintenance. A maintenance method for a stationary nickel-hydrogen storage battery, comprising sequentially performing charging and discharging operations while discharging hydrogen gas generated in the battery system to the outside of the battery system using the negative electrode terminal and the positive electrode terminal.
【請求項2】前記操作における充電容量が40〜70%
である請求項1記載の据置型ニッケル−水素蓄電池のメ
ンテナンス方法。
2. The charging capacity in said operation is 40 to 70%.
The maintenance method for a stationary nickel-hydrogen storage battery according to claim 1, wherein
JP24880093A 1993-09-08 1993-09-08 Maintenance method for stationary nickel-hydrogen storage batteries Expired - Fee Related JP3349217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24880093A JP3349217B2 (en) 1993-09-08 1993-09-08 Maintenance method for stationary nickel-hydrogen storage batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24880093A JP3349217B2 (en) 1993-09-08 1993-09-08 Maintenance method for stationary nickel-hydrogen storage batteries

Publications (2)

Publication Number Publication Date
JPH0778636A JPH0778636A (en) 1995-03-20
JP3349217B2 true JP3349217B2 (en) 2002-11-20

Family

ID=17183593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24880093A Expired - Fee Related JP3349217B2 (en) 1993-09-08 1993-09-08 Maintenance method for stationary nickel-hydrogen storage batteries

Country Status (1)

Country Link
JP (1) JP3349217B2 (en)

Also Published As

Publication number Publication date
JPH0778636A (en) 1995-03-20

Similar Documents

Publication Publication Date Title
US6456043B1 (en) Method of diagnosing the state of health of a battery
US9559391B2 (en) Method and device for adjusting battery module
JP3349217B2 (en) Maintenance method for stationary nickel-hydrogen storage batteries
JP3349215B2 (en) Maintenance method for stationary nickel-hydrogen storage batteries
JP4331473B2 (en) Charge / discharge control device and charge / discharge control method for lead-acid battery
JP2003036891A (en) Charge method and discharge method for nonaqueous electrolyte secondary battery and apparatus for the same
JP2003346890A (en) Valve regulated lead-acid battery and its manufacturing method
JP2006156022A (en) Charging method of control valve type lead acid storage battery
JP3184308B2 (en) Rechargeable battery charge control method
JP3216180B2 (en) Method for recovering capacity of nickel-cadmium battery
JP2861665B2 (en) Maintenance and inspection method and capacity recovery method for nickel-cadmium batteries
JP2001126771A (en) Charging method of sealed lead-acid battery
JP4120084B2 (en) Lead-acid battery charging method
JPH06215774A (en) Lead-acid secondary battery
JP2001351695A (en) Recharging method of plural alkali water solution secondary cells for backup use connected in parallel
JP2003346911A (en) Method for charging lead storage battery
JP2001160422A (en) Charging control method of lead storage battery
JP3010691B2 (en) Battery forming method for sealed lead-acid batteries
JP2008234854A (en) Battery pack
JPH10189057A (en) Charging method for lead-acid battery
JP2002042899A (en) Charging system for control valve type lead-acid battery
CN117318252A (en) Battery pack charge and discharge protection method and device
JP3582068B2 (en) How to charge lead storage batteries
Yasaki et al. Ten minutes-rechargeable, valve-regulated, lead/acid battery after deep discharge and stand
JPH08329989A (en) Method for charging sealed lead-acid battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070913

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees