JP3349191B2 - Battery electrode - Google Patents

Battery electrode

Info

Publication number
JP3349191B2
JP3349191B2 JP06790793A JP6790793A JP3349191B2 JP 3349191 B2 JP3349191 B2 JP 3349191B2 JP 06790793 A JP06790793 A JP 06790793A JP 6790793 A JP6790793 A JP 6790793A JP 3349191 B2 JP3349191 B2 JP 3349191B2
Authority
JP
Japan
Prior art keywords
electrode
battery
conductive polymer
polymer electrolyte
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06790793A
Other languages
Japanese (ja)
Other versions
JPH06283155A (en
Inventor
英彦 田島
正彦 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kyushu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kyushu Electric Power Co Inc
Priority to JP06790793A priority Critical patent/JP3349191B2/en
Publication of JPH06283155A publication Critical patent/JPH06283155A/en
Application granted granted Critical
Publication of JP3349191B2 publication Critical patent/JP3349191B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、導電性高分子を用いた
電池用電極に関し、具体的にはコンピューター、電話な
どのエレクトロニクス関連製品の駆動用電源やメモリー
などのバックアップ電源、自動車や二輪車等の移動体用
駆動電源、あるいは原子力発電、太陽電池、風力発電、
水力発電などで得られた電力を貯蔵するための電力貯蔵
用電源などに用いられる電池用電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for a battery using a conductive polymer, and more specifically, a backup power supply such as a power supply for driving electronic products such as a computer and a telephone, a backup power supply for a memory, an automobile and a motorcycle, and the like. Mobile power, or nuclear power, solar cells, wind power,
The present invention relates to a battery electrode used for a power storage power supply for storing power obtained by hydroelectric power generation or the like.

【0002】[0002]

【従来の技術】従来、正極活物質として導電性高分子を
用いた電池としては、リチウムを負極活物質として使用
したリチウム二次電池がよく知られている。該電池にお
いては、導電性高分子を用いた正極では、充電時に支持
電解質イオンが取り込まれ、放電時に該支持電解質イオ
ンが放出される。また、リチウム負極では、充電時にリ
チウムが還元析出し、放電時にリチウムイオンが溶出す
る。したがって、該電池の放電に伴って両極間の電解液
中に該支持電解質が蓄積されるため、該電解液は該電池
の電気容量と同当量の該支持電解質を溶解し得る能力が
必要である。
2. Description of the Related Art Conventionally, as a battery using a conductive polymer as a positive electrode active material, a lithium secondary battery using lithium as a negative electrode active material is well known. In the battery, in the positive electrode using the conductive polymer, the supporting electrolyte ions are taken in at the time of charging, and the supporting electrolyte ions are released at the time of discharging. In the case of a lithium negative electrode, lithium is reduced and precipitated during charging, and lithium ions are eluted during discharging. Therefore, since the supporting electrolyte is accumulated in the electrolyte between the two electrodes as the battery is discharged, the electrolyte needs to have an ability to dissolve the same amount of the supporting electrolyte as the electric capacity of the battery. .

【0003】しかしながら、該支持電解質の溶解に用い
られる有機溶媒は一般に電解質を溶解する能力に劣るた
め、支持電解質の溶解には多量の有機溶媒を必要とす
る。しかも、該支持電解質を溶解した電解液は電気抵抗
が大きいため、多量の電解液を用いることによる電池の
内部抵抗の増加は避けられない。以上の原因から、導電
性高分子を正極活物質として使用するリチウム二次電池
において、軽量かつ大容量な電池を得ることは困難であ
った。
However, since the organic solvent used for dissolving the supporting electrolyte generally has poor ability to dissolve the electrolyte, the dissolving of the supporting electrolyte requires a large amount of the organic solvent. In addition, since the electrolytic solution in which the supporting electrolyte is dissolved has a large electric resistance, the use of a large amount of the electrolytic solution inevitably increases the internal resistance of the battery. For the above reasons, it has been difficult to obtain a lightweight and large-capacity battery in a lithium secondary battery using a conductive polymer as a positive electrode active material.

【0004】上記問題点に対する対策として、近年、導
電性高分子とアニオン性高分子電解質との複合体を電極
として用いる方法が見い出された。本方法は、導電性高
分子とアニオン性高分子電解質よりなる複合体が充電・
放電に伴ってカチオンの放出・取り込みを行なう、いわ
ゆるカチオン移動性を示す性質に着目したもので、例え
ば特開昭63−285864号の発明などが知られてい
る。リチウム二次電池において該複合体を正極として用
いると、放電によって生じるリチウムイオンが該複合体
中に取り込まれるため、電解液中に支持電解質が蓄積せ
ず、従来より知られている電池に比べて電解液量を低減
することが可能となった。
As a countermeasure against the above problems, a method has recently been found in which a composite of a conductive polymer and an anionic polymer electrolyte is used as an electrode. In this method, a complex comprising a conductive polymer and an anionic polymer electrolyte is charged and charged.
It pays attention to the property of so-called cation mobility in which cations are released and taken in with discharge, and the invention of JP-A-63-285864 is known, for example. When the composite is used as a positive electrode in a lithium secondary battery, lithium ions generated by discharge are taken into the composite, so that the supporting electrolyte does not accumulate in the electrolytic solution, and compared with a conventionally known battery. It has become possible to reduce the amount of the electrolyte.

【0005】なお、導電性高分子とアニオン性高分子電
解質との複合体は、通常、電極基板を導電性高分子のモ
ノマーおよびアニオン性高分子電解質を含む溶液に浸漬
して電解重合を行なう方法や、導電性高分子のモノマー
およびアニオン性高分子電解質を含む溶液に酸化剤を導
入して化学重合を行なう方法で得られる。何れの方法に
おいても、導電性高分子のモノマーが重合する際、アニ
オン性高分子電解質がドーパントとして取り込まれ、導
電性高分子中にアニオン性高分子電解質が取り込まれた
複合体が形成される。
A composite of a conductive polymer and an anionic polymer electrolyte is usually prepared by immersing an electrode substrate in a solution containing a monomer of a conductive polymer and an anionic polymer electrolyte to conduct electrolytic polymerization. Alternatively, it can be obtained by a method in which an oxidizing agent is introduced into a solution containing a monomer of a conductive polymer and an anionic polymer electrolyte to carry out chemical polymerization. In either method, when the monomer of the conductive polymer is polymerized, the anionic polymer electrolyte is taken in as a dopant, and a complex in which the anionic polymer electrolyte is taken in the conductive polymer is formed.

【0006】[0006]

【発明が解決しようとする課題】ところで、導電性高分
子を用いた電池用電極を上記方法により製作する場合、
重合法や重合条件の違いにより、得られる導電性高分子
の微細構造が変化し、電極重量当たりの容量である容量
密度などの電池性能に影響を与えることが知られてい
る。例えば、電池用電極としてしばしば用いられるポリ
アニリンを電解重合により製作する場合には、重合時に
ドーパントとして取り込まれる支持電解質アニオンの種
類により、粒状構造、フィブリル構造など、異なる微細
構造を有するポリアニリンが得られ、粒状構造よりも大
きな比表面積を有するフィブリル構造のポリアニリンが
優れた電池性能を示すことが知られている。
By the way, when a battery electrode using a conductive polymer is manufactured by the above method,
It is known that the difference in polymerization method and polymerization conditions changes the microstructure of the resulting conductive polymer, which affects battery performance such as capacity density, which is the capacity per electrode weight. For example, when producing polyaniline, which is often used as an electrode for a battery, by electrolytic polymerization, depending on the type of the supporting electrolyte anion incorporated as a dopant during polymerization, a granular structure, a fibril structure, or the like, polyaniline having a different fine structure is obtained. It is known that polyaniline having a fibril structure having a larger specific surface area than a granular structure exhibits excellent battery performance.

【0007】そこで本発明者らは、導電性高分子の微細
構造が与える電池性能への影響という観点から、導電性
高分子とアニオン性高分子電解質との複合体を電極基体
に担持した電池用電極を製作し、該複合体の微細構造と
電池性能について検討を行なった。その結果、該複合体
は緻密で平滑な、比表面積の小さい構造を有する複合体
となり、そのため、容量密度が大きな電池用電極は得ら
れなかった。さらに、容量を大きくするために電極基体
に担持する複合体の量を増やし、電極の厚さを増した電
池用電極では、該複合体が緻密で電解液の浸透性に劣る
ため、電極内部の複合体が活物質として充分に機能せ
ず、上記容量低下傾向がいっそう顕著となった。
In view of the influence of the fine structure of the conductive polymer on the battery performance, the present inventors have developed a battery for a battery having a composite of a conductive polymer and an anionic polymer electrolyte supported on an electrode substrate. Electrodes were fabricated, and the microstructure of the composite and battery performance were examined. As a result, the composite became a dense and smooth composite having a structure with a small specific surface area. Therefore, a battery electrode having a large capacity density could not be obtained. Further, in order to increase the capacity, the amount of the composite supported on the electrode substrate was increased, and in the battery electrode in which the thickness of the electrode was increased, the composite was dense and inferior in the electrolytic solution. The composite did not function sufficiently as an active material, and the above-mentioned tendency of capacity reduction became even more remarkable.

【0008】かかる問題点を生じせしめる原因は、導電
性高分子とアニオン性高分子電解質との複合体では、比
表面積の大きな微細構造が得られないという点にある。
本発明はかかる問題点を解決し、従来の導電性高分子が
有する比表面積の大きな微細構造を維持したままカチオ
ン移動性を実現し得る電池用電極を得ることを目的とす
る。
The cause of this problem is that a composite of a conductive polymer and an anionic polymer electrolyte cannot provide a fine structure having a large specific surface area.
An object of the present invention is to solve such a problem and to obtain a battery electrode capable of realizing cation mobility while maintaining a fine structure having a large specific surface area of a conventional conductive polymer.

【0009】[0009]

【課題を解決するための手段、作用】本発明者らは上記
問題点を解決すべく、従来の導電性高分子とアニオン性
高分子電解質との複合体を用いる電池用電極とは異なる
電極構造を有する電池用電極について、鋭意検討を行な
った結果、電極基体に担持した導電性高分子にアニオン
性高分子電解質膜を被覆した構造を特徴とする電池用電
極が、比表面積が大きく電池性能に優れた微細構造を維
持したまま、カチオン移動性を示す電池用電極となるこ
とを見い出した。本発明は、該電池用電極により、従来
の導電性高分子とアニオン性高分子電解質との複合体を
用いた電池用電極における問題点を、解決せんとするも
のである。
SUMMARY OF THE INVENTION In order to solve the above problems, the present inventors have developed an electrode structure different from a conventional battery electrode using a composite of a conductive polymer and an anionic polymer electrolyte. As a result of diligent studies on battery electrodes having a structure, a battery electrode characterized by a structure in which a conductive polymer supported on an electrode substrate is coated with an anionic polymer electrolyte membrane has a large specific surface area and a high battery performance. It has been found that the resulting electrode for a battery exhibits cation mobility while maintaining an excellent microstructure. The present invention is intended to solve the problem of a conventional battery electrode using a composite of a conductive polymer and an anionic polymer electrolyte.

【0010】本発明において導電性高分子とは、その主
鎖がπ共役系からなる電子導電性を発現する高分子であ
る。例えば、ポリアセチレン、ポリチオフェン、ポリピ
ロール、ポリアニリン、ポリパラフェニレン、ポリフェ
ニレンスルフィド、ポリフェニレンオキシド、ポリフェ
ニレンビニレン、ポリアセンおよびそれらの誘導体など
が挙げられる。この中でも特に、優れた電池性能を示す
ことが知られているポリアニリン、ポリピロールおよび
それらの誘導体が好ましい。該導電性高分子の重合方法
としては、一般に電解重合と化学重合とに大別される
が、本発明にかかる電池用電極は導電性高分子の重合方
法を限定するものではなく、何れの重合方法において製
造された導電性高分子とも使用可能である。
In the present invention, the conductive polymer is a polymer having a π-conjugated main chain and exhibiting electronic conductivity. For example, polyacetylene, polythiophene, polypyrrole, polyaniline, polyparaphenylene, polyphenylene sulfide, polyphenylene oxide, polyphenylenevinylene, polyacene, and derivatives thereof are given. Among these, polyaniline, polypyrrole, and derivatives thereof, which are known to exhibit excellent battery performance, are particularly preferable. The method for polymerizing the conductive polymer is generally roughly classified into electrolytic polymerization and chemical polymerization. However, the battery electrode according to the present invention does not limit the method for polymerizing the conductive polymer. It can also be used with the conductive polymer produced in the method.

【0011】本発明においてアニオン性高分子電解質膜
とはアニオン性高分子電解質を成分とする固体膜のこと
であり、アニオン性高分子電解質とはイオン解離により
アニオンとなる高分子のことである。一例を挙げると、
ポリアクリル酸膜、ポリメタクリル酸膜、ポリスチレン
カルボン酸膜、ポリフルオロカーボンカルボン酸膜、ポ
リビニルスルホン酸膜、ポリスチレンスルホン酸膜、ポ
リビニル硫酸膜、ポリフルオロカーボンスルホン酸膜な
どが挙げられる。中でも、ガラス質で電池用非水電解液
の透過性が近い炭化水素系のアニオン性高分子電解質膜
に比べ、可塑性・柔軟性を有し、電池用非水電解液の透
過性に優れたポリフルオロカーボンカルボン酸アニオ
ン、ポリフルオロカーボンスルホン酸アニオンなどの、
カチオンポリフルオロカーボンの側鎖にアニオン性の官
能基を有するアニオン性高分子電解質膜が、特に好まし
い。
In the present invention, the anionic polymer electrolyte membrane is a solid membrane containing an anionic polymer electrolyte as a component, and the anionic polymer electrolyte is a polymer which becomes an anion by ion dissociation. For example,
Examples include a polyacrylic acid film, a polymethacrylic acid film, a polystyrene carboxylic acid film, a polyfluorocarbon carboxylic acid film, a polyvinyl sulfonic acid film, a polystyrene sulfonic acid film, a polyvinyl sulfate film, and a polyfluorocarbon sulfonic acid film. Above all, compared to hydrocarbon-based anionic polymer electrolyte membranes which are glassy and have close permeability to non-aqueous electrolytes for batteries, plastics having plasticity and flexibility and excellent permeability to non-aqueous electrolytes for batteries Such as a fluorocarbon carboxylate anion and a polyfluorocarbon sulfonate anion;
An anionic polymer electrolyte membrane having an anionic functional group on the side chain of the cationic polyfluorocarbon is particularly preferred.

【0012】該アニオン性高分子電解質膜を、電極基体
に担持した導電性高分子に付与する方法は特に限定され
ないが、単体で膜を形成し得るアニオン性高分子電解質
の場合には、例えば、該アニオン性高分子電解質を適当
な溶媒に溶解し、その溶液を用いて、スピンコート、吹
き付け、はけ塗りなどにより、適量を該導電性高分子上
に塗布し、加熱乾燥あるいは減圧乾燥などにより膜とす
る、といった方法などがある。また、単体では膜を形成
しないアニオン性高分子電解質の場合には、上記方法に
おいて、該アニオン性高分子電解質を溶解した溶液にさ
らに、膜を形成し得るポリエチレンオキシドなどのイオ
ン導電性高分子を添加して用いるなどの方法がある。該
アニオン性高分子電解質や溶媒、導電性高分子などの性
質に応じ、適切な方法を用いれば良い。
The method of applying the anionic polymer electrolyte membrane to the conductive polymer supported on the electrode substrate is not particularly limited. In the case of an anionic polymer electrolyte capable of forming a membrane by itself, for example, Dissolve the anionic polymer electrolyte in a suitable solvent, using the solution, spin coating, spraying, brushing, etc., apply an appropriate amount on the conductive polymer, heat drying or drying under reduced pressure, etc. And the like. In the case of an anionic polymer electrolyte that does not form a film by itself, in the above method, an ionic conductive polymer such as polyethylene oxide capable of forming a film is further added to a solution in which the anionic polymer electrolyte is dissolved. There is a method of adding and using. An appropriate method may be used depending on the properties of the anionic polymer electrolyte, solvent, conductive polymer, and the like.

【0013】本発明において電極基体とは、その表面に
担持した導電性高分子に対する集電体として機能する、
電気導電性を有する材料である。例えば、金属板、炭素
板、金属網、エキスパンデッドメタル、パンチングメタ
ル、金属あるいは炭素よりなる多隙性導電体などが挙げ
られる。中でも、表面、内部の双方もしくは一方に、多
数の間隙や空孔を有する電気導電体である多隙性導電体
は、比表面積が大きいため、これを用いることが好まし
い。なお、多隙性導電体には、例えば、炭素あるいは金
属製の、繊維やウィスカーなどで構成される編織布・不
織布・紙・フェルトなどのシート状あるいは塊状成形
体、粉末で構成されるシート状あるいは塊状形成体など
があるが、中でも特に、比表面積が非常に大きく、導電
性高分子との密着性に優れた炭素繊維、炭素ウィスカ
ー、炭素粉末などよりなる多隙性導電体が好ましい。
In the present invention, the electrode substrate functions as a current collector for the conductive polymer supported on the surface thereof.
It is a material having electrical conductivity. For example, a metal plate, a carbon plate, a metal net, an expanded metal, a punching metal, a multi-porous conductor made of metal or carbon, and the like can be given. Above all, it is preferable to use a multi-porous conductor, which is an electric conductor having a large number of gaps and pores on the surface and / or inside thereof, because of its large specific surface area. Examples of the multi-porous conductor include, for example, carbon or metal sheets or bulk compacts such as knitted fabrics, nonwoven fabrics, papers and felts made of fibers and whiskers, and sheet sheets made of powder. Alternatively, there is a lump formed body or the like, and among them, a multi-porous conductor made of carbon fiber, carbon whisker, carbon powder, or the like having a very large specific surface area and excellent adhesion to a conductive polymer is particularly preferable.

【0014】[0014]

【実施例】以下には、本発明をさらに詳しく説明するた
め実施例を挙げるが、もちろん本発明の内容が、実施例
記載事項に限定されるものではない。
EXAMPLES The present invention will be described below in more detail with reference to Examples, but it should be understood that the present invention is by no means restricted to the details of the Examples.

【0015】〈比較例1〉電極基体に炭素板(W2cm
X L6cm、厚さ1mm、但し接液部w2cm X
L2cm)、対極に白金板(w5cm X L8c
m、厚さ1mm)を用いた。それぞれを陽極、陰極とし
て、0.5Mアニリンおよび一g当量/dm3ポリスチ
レンスルホン酸の混合水溶液を重合液として用い、4m
Aの一定電流で17分間電解し、ポリアニリンーポリス
チレンスルホン酸複合体を該電極基体上に2mg担持し
た。図2は本操作に用いた担持装置の構成を示したもの
であり、陽極1、陰極2、重合液3、直流電源4で構成
されている。該複合体を純水で洗浄した後、100℃で
180分間真空乾燥させて電池用電極とした。得られた
電池用電極の厚さは約0.1mmであった。
Comparative Example 1 A carbon plate (W2 cm
X L6cm, thickness 1mm, but liquid contact part w2cm X
L2cm), Platinum plate (w5cm X L8c)
m, thickness 1 mm). Each was used as an anode and a cathode, and a mixed aqueous solution of 0.5 M aniline and 1 g equivalent / dm3 polystyrene sulfonic acid was used as a polymerization solution, and 4 m
Electrolysis was performed at a constant current of A for 17 minutes, and 2 mg of a polyaniline-polystyrene sulfonic acid complex was supported on the electrode substrate. FIG. 2 shows the structure of the carrier used in this operation, which comprises an anode 1, a cathode 2, a polymer solution 3, and a DC power supply 4. After washing the composite with pure water, it was vacuum-dried at 100 ° C. for 180 minutes to obtain a battery electrode. The thickness of the obtained battery electrode was about 0.1 mm.

【0016】図3に示すように、該電池用電極を正極5
とし、SUSネット(W5cm XL 8cm,φ50
μm,200メッシュ)上に金属リチウム箔(W5cm
X L5cm,厚さ500μm)を圧着したものを負極
6とし、1M−LiC104プロピレンカーボネート溶
液を電解液7としてアルゴンガス雰囲気下で電池を組み
立て、充放電電源9を接続した。なお、該電池には参照
電極8としてリチウム板電極(W2cm X L1c
m,厚さ0.1mm)を組み入れた。該電池を充放電電
流0.1mA、参照電極を基準として正極上端電位4.
0V、正極下端電位2.5Vで充放電を繰り返したとこ
ろ、電極基体を除いた電極重量をもとにした容量密度は
28Ah/kgであった。結果を表1に示す。
As shown in FIG. 3, the battery electrode is
SUS net (W5cm XL 8cm, φ50
μm, 200 mesh) on a metallic lithium foil (W5cm
(L5 cm, thickness 500 μm) was pressed to form a negative electrode 6, a battery was assembled in an argon gas atmosphere using a 1M-LiC104 propylene carbonate solution as an electrolyte 7, and a charge / discharge power supply 9 was connected. The battery had a lithium plate electrode (W2cm X L1c) as a reference electrode 8.
m, thickness 0.1 mm). The charge / discharge current of the battery was 0.1 mA, and the upper potential of the positive electrode based on the reference electrode
When charge and discharge were repeated at 0 V and a lower potential of the positive electrode of 2.5 V, the capacity density was 28 Ah / kg based on the electrode weight excluding the electrode substrate. Table 1 shows the results.

【0017】〈比較例2〉電極基体にSUSネット(W
5cm X L8cm1φ50μm,200メッシュ,
但し接液部W5cm X L5cm)、対極に白金めっ
きチタン板(W5cm X L8cm,めっき厚み2μ
m)2枚を用いた。図4に示すように、該電極基体の両
面に該対極を配置してそれぞれを陽極10、陰極11
a、11bとし、0.5Mアニリンおよび1g当量/d
m3ポリスチレンスルホン酸の混合水溶液を重合液12
として用い、365mAで155分間電解し、ポリアニ
リンーポリスチレンスルホン酸複合体を該電極基体両面
に1.4g担持した。以下比較例1と同様にして電池用
電極とした。得られた電池用電極の厚さは3mmであっ
た。該電池用電極を比較例1と同様にして電池を構成
し、該電池を充放電電流10mA、参照電極を基準とし
て正極上端電位4.0V、正極下端電位2.5Vで充放
電を繰り返したところ、容量密度は1Ah/kgであっ
た。結果を表1に示す。
Comparative Example 2 An SUS net (W
5cm X L8cm1φ50μm, 200 mesh,
However, the liquid-contact part W5cm X L5cm), and a platinum-plated titanium plate (W5cm X L8cm, plating thickness 2μ)
m) Two sheets were used. As shown in FIG. 4, the counter electrodes are arranged on both surfaces of the electrode base, and the counter electrodes are respectively provided with an anode 10 and a cathode 11
a, 11b, 0.5 M aniline and 1 g equivalent / d
m3 polystyrene sulfonic acid mixed aqueous solution
Was electrolyzed at 365 mA for 155 minutes, and 1.4 g of a polyaniline-polystyrene sulfonic acid complex was supported on both surfaces of the electrode substrate. Thereafter, a battery electrode was prepared in the same manner as in Comparative Example 1. The thickness of the obtained battery electrode was 3 mm. A battery was formed using the battery electrode in the same manner as in Comparative Example 1, and the battery was repeatedly charged and discharged at a charge / discharge current of 10 mA and a positive electrode upper potential of 4.0 V and a positive electrode lower potential of 2.5 V with respect to the reference electrode. And the capacity density was 1 Ah / kg. Table 1 shows the results.

【0018】〈実施例1〉図2において、電極基体に炭
素板(W2cm X L6cm,厚さ1mm,但し接液
部W2cm X L2cm)、対極に白金板(W5cm
X L8cm,厚さ1mm)を用い、それぞれを陽極
1、陰極2とした。1Mアニリンおよび2M−HC10
4の混合水溶液を重合液3として用い、4mAの一定電
流で17分間電解し、ポリアニリンを該電極基体上に1
mg担持した。その後、該ポリアニリンを5Wt%ポリ
スチレンスルホン酸水溶液に浸漬して50℃で60分間
加熱乾燥する操作を3回繰り返し、該ポリアニリン上に
1mgのアニオン性高分子電解質膜を被覆した。最後に
100℃で180分間真空乾燥させて電池用電極とし
た。得られた電池用電極の厚さは約0.1mmであっ
た。比較例1と同様に、第3図に示す電池を構成して充
放電を繰り返したところ、容量密度は49Ah/kgで
あった。結果を表1に示す。
Example 1 In FIG. 2, a carbon plate (W2 cm.times.L6 cm, thickness 1 mm, W2cm.times.L2 cm in liquid contact portion) was used as an electrode substrate, and a platinum plate (W5 cm.sup.2) was used as a counter electrode.
XL8 cm, thickness 1 mm), and used as an anode 1 and a cathode 2, respectively. 1M aniline and 2M-HC10
Using the mixed aqueous solution of No. 4 as the polymerization solution 3, electrolysis was performed at a constant current of 4 mA for 17 minutes, and polyaniline was applied on the electrode substrate for 1 minute.
mg supported. Thereafter, the operation of immersing the polyaniline in a 5 wt% polystyrene sulfonic acid aqueous solution and heating and drying at 50 ° C. for 60 minutes was repeated three times, and 1 mg of the anionic polymer electrolyte membrane was coated on the polyaniline. Finally, it was vacuum-dried at 100 ° C. for 180 minutes to obtain a battery electrode. The thickness of the obtained battery electrode was about 0.1 mm. As in Comparative Example 1, the battery shown in FIG. 3 was constructed and repeatedly charged and discharged. As a result, the capacity density was 49 Ah / kg. Table 1 shows the results.

【0019】〈実施例2〉ポリアニリンを浸漬する溶液
を、ポリフルオロカーボンスルホン酸である5wt%N
afion溶液(アルドリッチケミカル社製)にかえ、
実施例1と同様にして電池用電極とした。得られた電池
用電極の厚さは約0.1mmであった。比較例1と同様
に、図3に示す電池を構成して充放電を繰り返したとこ
ろ、容量密度は71Ah/kgであった。結果を表1に
示す。
<Example 2> A solution in which polyaniline was immersed was replaced with a polyfluorocarbon sulfonic acid of 5 wt% N
afion solution (Aldrich Chemical Co.)
An electrode for a battery was obtained in the same manner as in Example 1. The thickness of the obtained battery electrode was about 0.1 mm. As in Comparative Example 1, when the battery shown in FIG. 3 was configured and charged and discharged repeatedly, the capacity density was 71 Ah / kg. Table 1 shows the results.

【0020】〈実施例3〉電極基体にSUSネット(W
5cm X L8cm,φ50μm、200メッシュ,
但し接液部W5cm X L5cm)、対極に白金めっ
きチタン板(5cm X 8cm)2枚を用いた。該電
極基体の両面に該対極を配置し、それぞれを陽極10、
陰極11a、11bとして、1Mアニリンおよび2M−
HC104の混合水溶液を重合液12に用い、365m
Aで155分間電解し、ポリアニリンを該電極基体両面
に0.7g担持した。その後、該ポリアニリンを5wt
%Nafion溶液(アルドリッチケミカル社製)に浸
漬して70℃で60分間加熱乾燥する操作を繰り返し、
0.7gのNaftionを被覆した。最後に100℃
で180分間真空乾燥させて電池用電極とした。得られ
た該電池用電極の厚さは約3mmであった。該電池用電
極を比較例2と同様にして充放電を繰り返したところ、
容量密度は70Ah/kgであった。結果を表1に示
す。
Example 3 An SUS net (W
5cm X L8cm, φ50μm, 200 mesh,
However, two platinum-plated titanium plates (5 cm × 8 cm) were used for the counter electrode, with the liquid contact part W5 cm × L5 cm). The counter electrodes are arranged on both sides of the electrode substrate, and each of them is an anode 10,
As the cathodes 11a and 11b, 1M aniline and 2M-
Using a mixed aqueous solution of HC104 as the polymerization liquid 12, 365 m
A was electrolyzed for 155 minutes, and 0.7 g of polyaniline was supported on both surfaces of the electrode substrate. Then, 5 wt% of the polyaniline
% Nafion solution (manufactured by Aldrich Chemical Co., Ltd.), and repeated by heating and drying at 70 ° C. for 60 minutes.
0.7 g of Naftion was coated. Finally 100 ° C
For 180 minutes to obtain a battery electrode. The thickness of the obtained battery electrode was about 3 mm. When the battery electrode was repeatedly charged and discharged in the same manner as in Comparative Example 2,
The capacity density was 70 Ah / kg. Table 1 shows the results.

【0021】〈実施例4〉電極基体に多隙性導電体であ
るカーボンフェルト(W5cm X L8cm,φ10
μm,厚さ3mm,空隙率85%,但し接液部W5cm
X L5cm)、対極に白金めっきチタン板(W5c
m X L8cm,めっき厚み2μm)2枚を用いた。
図4に示すように、該電極基体の両面に該対極を配置
し、それぞれを陽極10、陰極11a、11bとして、
1Mアニリンおよび2M−HC104の混合水溶液を重
合液12に用い、885mAで65分間電解し、ポリア
ニリンを該電極基体両面に700mg接持した。以下実
施例3と同様にして電池用電極とした。得られた該電池
用電極の厚さは約4mmであった。該電池用電極を比較
例2と同様にして充放電を繰り返したところ、第1図に
示す充放電曲線を得た。このときの容量密度は139A
h/kgであった。結果を表1に示す。なお、第1〜第
5実施例においても図1と同様の山型の充放電曲線が得
られる。上りが充電曲線、下りが放電曲線であり、容量
密度は、図より得られる放電時間に放電電流時間をかけ
たものを、ポリアニリン重量とアニオン性高分子電解質
量の合計で割ることで算出される。
Example 4 A carbon felt (W5 cm × L8 cm, φ10
μm, thickness 3mm, porosity 85%, but liquid contact part W5cm
XL5cm), Platinum-plated titanium plate (W5c)
mx L8 cm, plating thickness 2 μm).
As shown in FIG. 4, the counter electrodes are arranged on both surfaces of the electrode base, and the respective electrodes are provided as an anode 10 and cathodes 11a and 11b.
Using a mixed aqueous solution of 1M aniline and 2M-HC104 as the polymerization liquid 12, electrolysis was performed at 885 mA for 65 minutes, and 700 mg of polyaniline was held on both surfaces of the electrode substrate. Thereafter, a battery electrode was obtained in the same manner as in Example 3. The thickness of the obtained battery electrode was about 4 mm. When the battery electrode was repeatedly charged and discharged in the same manner as in Comparative Example 2, the charge and discharge curve shown in FIG. 1 was obtained. The capacity density at this time is 139 A
h / kg. Table 1 shows the results. In the first to fifth embodiments, a mountain-shaped charge / discharge curve similar to that of FIG. 1 is obtained. The upward curve is the charge curve, the downward curve is the discharge curve, and the capacity density is calculated by dividing the discharge time obtained from the figure by the discharge current time, and dividing the sum by the weight of polyaniline and the mass of the anionic polymer electrolyte. .

【0022】[0022]

【発明の効果】本発明による電池用電極では、電極基体
に担持した導電性高分子の微細構造を電池特性に優れた
比表面積の大きな微細構造に維持することができ、かつ
該導電性高分子に被覆したアニオン性高分子電解質膜の
作用により、該電池用電極の酸化・還元に応じてカチオ
ンの放出・取り込みを行なう機能を有するため、容量密
度の大きな電池用電極を得ることができる。しかも、容
量を大きくとるために電極の厚さを増した電池用電極に
おいても、電極内部へ電解液が十分に浸透し、電極内部
の導電性高分子が活物質として十分に機能するため、容
量の低下を抑制することが可能である。
According to the battery electrode of the present invention, the fine structure of the conductive polymer supported on the electrode substrate can be maintained as a fine structure having excellent specific characteristics and a large specific surface area, and the conductive polymer can be maintained. Because of the function of the anionic polymer electrolyte membrane coated on the substrate to release and take in cations in response to oxidation and reduction of the battery electrode, a battery electrode with a large capacity density can be obtained. Moreover, even in a battery electrode in which the thickness of the electrode is increased in order to increase the capacity, the electrolyte sufficiently penetrates into the electrode, and the conductive polymer inside the electrode functions sufficiently as an active material. Can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例4における電池の充放電曲線を
表したものである。
FIG. 1 shows a charge / discharge curve of a battery in Example 4 of the present invention.

【図2】本発明の比較例1におけるポリアニリンーポリ
スチレンスルホン酸複合体の担持装置の構成を示したも
のである。
FIG. 2 shows a configuration of a supporting device for a polyaniline-polystyrene sulfonic acid composite in Comparative Example 1 of the present invention.

【図3】比較例1における電池の構成を示したものであ
る。
FIG. 3 shows a configuration of a battery in Comparative Example 1.

【図4】比較例2におけるポリアニリンーポリスチレン
スルホン酸複合体の担持装置の構成を示したものであ
る。
FIG. 4 shows a configuration of a supporting device of a polyaniline-polystyrene sulfonic acid composite in Comparative Example 2.

【符号の説明】[Explanation of symbols]

1 10複合体担持装置の陽極 2 11a,11b同陰極 3 12同重合板 4 15同直流電源 5 電池の正極 6 同負極 7 同電解液 8 同参照電極 9 同充放電電源 1 10 Anode of composite supporting device 2 11a, 11b same cathode 3 12 same polymer plate 4 15 same DC power supply 5 battery positive electrode 6 same negative electrode 7 same electrolyte 8 same reference electrode 9 same charge / discharge power supply

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永井 正彦 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎研究所内 (56)参考文献 特開 平2−174076(JP,A) 特開 昭61−211963(JP,A) 特開 昭63−285864(JP,A) 特開 昭63−160154(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/60 H01M 4/02 H01M 4/62 H01M 10/40 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masahiko Nagai 1-1, Akunouramachi, Nagasaki City, Nagasaki Prefecture Mitsubishi Heavy Industries, Ltd. Nagasaki Research Laboratory (56) References JP-A-2-174076 (JP, A) JP JP-A-61-211963 (JP, A) JP-A-63-285864 (JP, A) JP-A-63-160154 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4 / 60 H01M 4/02 H01M 4/62 H01M 10/40

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電極基体に担持した導電性高分子を備え
た電池用電極において、該導電性高分子が、アニオン性
高分子電解質膜で被覆して構成されたことを特徴とする
電池用電極。
1. A battery electrode comprising a conductive polymer supported on an electrode substrate, wherein the conductive polymer is formed by coating with an anionic polymer electrolyte membrane. .
【請求項2】 前記アニオン性高分子電解質膜が、ポリ
フルオロカーボンの側鎖にアニオン性の官能基を有する
アニオン性高分子電解質よりなることを特徴とする請求
項1記載の電池用電極。
2. The battery electrode according to claim 1, wherein the anionic polymer electrolyte membrane is made of an anionic polymer electrolyte having an anionic functional group on a side chain of polyfluorocarbon.
【請求項3】 前記電極基体が多隙性導電体であること
を特徴とする請求項1記載の電池用電極。
3. The battery electrode according to claim 1, wherein said electrode substrate is a multi-porous conductor.
JP06790793A 1993-03-26 1993-03-26 Battery electrode Expired - Fee Related JP3349191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06790793A JP3349191B2 (en) 1993-03-26 1993-03-26 Battery electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06790793A JP3349191B2 (en) 1993-03-26 1993-03-26 Battery electrode

Publications (2)

Publication Number Publication Date
JPH06283155A JPH06283155A (en) 1994-10-07
JP3349191B2 true JP3349191B2 (en) 2002-11-20

Family

ID=13358449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06790793A Expired - Fee Related JP3349191B2 (en) 1993-03-26 1993-03-26 Battery electrode

Country Status (1)

Country Link
JP (1) JP3349191B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5211623B2 (en) * 2007-10-05 2013-06-12 株式会社豊田中央研究所 Electricity storage device

Also Published As

Publication number Publication date
JPH06283155A (en) 1994-10-07

Similar Documents

Publication Publication Date Title
Shi et al. Nanostructured conducting polymer hydrogels for energy storage applications
CN110176591B (en) Aqueous zinc ion secondary battery and preparation method of anode based on organic electrode material
KR100586819B1 (en) Electrode and Electrochemical Cell therewith
Xia et al. Nickel foam-supported polyaniline cathode prepared with electrophoresis for improvement of rechargeable Zn battery performance
CN104779059A (en) Supercapacitor using nickel aluminum hydrotalcite nanometer material as anode material
CN109461865A (en) A kind of preparation method of coating polyetherimide diaphragm and the application in lithium-sulfur cell
KR102176482B1 (en) Manufacturing method of three dimensional current collector for lithium secondary battery of cathode and cathode using the same
Wang et al. Hierarchically Micro/Nanostructured Current Collectors Induced by Ultrafast Femtosecond Laser Strategy for High‐Performance Lithium‐ion Batteries
SE512579C2 (en) Polymer gel electrode, and process for its preparation
CN115425276A (en) Solid-state battery, preparation method and electric equipment
WO2005078831A1 (en) Electric storage device
US11791496B2 (en) Metal-ion battery
JP2003331838A (en) Lithium secondary battery
JP3349191B2 (en) Battery electrode
JP2002025868A (en) Electric double-layer capacitor
JP3492001B2 (en) Battery electrode
JP2002025865A (en) Electric double-layer capacitor
JP6103521B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
CN109920972A (en) PTC electrode based on pyrroles and preparation method thereof
JP3066426B2 (en) Electrochemical element and manufacturing method thereof
JPH08148163A (en) Battery and manufacture thereof
JP2004311417A (en) Electrode and electrochemical cell using it
JP4054925B2 (en) Lithium battery
JPH11185815A (en) Battery and manufacture of battery
JP4379966B2 (en) Lithium battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020813

LAPS Cancellation because of no payment of annual fees