JP2002025865A - Electric double-layer capacitor - Google Patents

Electric double-layer capacitor

Info

Publication number
JP2002025865A
JP2002025865A JP2000208636A JP2000208636A JP2002025865A JP 2002025865 A JP2002025865 A JP 2002025865A JP 2000208636 A JP2000208636 A JP 2000208636A JP 2000208636 A JP2000208636 A JP 2000208636A JP 2002025865 A JP2002025865 A JP 2002025865A
Authority
JP
Japan
Prior art keywords
conductive polymer
electric double
electrode
layer capacitor
based material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000208636A
Other languages
Japanese (ja)
Inventor
Hiroshi Tatemori
寛 舘盛
Satoshi Takase
敏 高瀬
Satoshi Maeda
郷司 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2000208636A priority Critical patent/JP2002025865A/en
Publication of JP2002025865A publication Critical patent/JP2002025865A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To realize a large capacity of an electric double-layer capacitor. SOLUTION: A pair of polarizable electrodes is impregnated with an electrolyte and the electric double-layer capacitor is formed through the intermediary of a separator. At least one of the polarizable electrodes is a complex compound, made of a conductive polymer compound which is obtained on a porous carbonaceous material through a chemical oxidation polymerization method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電気二重層キャパシ
タに関する。より詳しくは、高速充放電可能で、大容量
である電気二重層キャパシタである。例えば、携帯電
話、ICカード、ページャー等におけるメモリバックア
ップ用電源・コンピュータ、データ通信機器等における
非常用電源・ソーラ−発電システム等において低電圧で
も充電可能なエネルギー蓄積デバイス・高速充放電可能
なガソリン自動車エンジンのイグナイタ用電源・電気自
動車、電気-ガソリンハイブリッド自動車等における回
生制動エネルギーの蓄積用デバイス・交換困難な道路埋
込式点滅表示灯等の電源等に好適な電気二重層キャパシ
タに関する。
The present invention relates to an electric double layer capacitor. More specifically, it is an electric double layer capacitor which can be charged and discharged at high speed and has a large capacity. For example, power supply for memory backup in mobile phones, IC cards, pagers, etc., emergency power supply in computers, data communication equipment, etc., energy storage devices that can be charged even at low voltage in solar power generation systems, etc., gasoline vehicles that can be charged and discharged at high speed The present invention relates to a power supply for an engine igniter, a device for storing regenerative braking energy in an electric vehicle, an electric-gasoline hybrid vehicle, and the like, and an electric double layer capacitor suitable for a power supply of a flashing indicator light embedded in a road which is difficult to replace.

【0002】[0002]

【従来の技術】周知のように電気二重層キャパシタは、
一対の分極性電極と、各分極性電極の集電電極と、両分
極性電極間に介在する多孔性のセパレータとによって主
として構成されている。各分極性電極には電解液が含浸
されている。
2. Description of the Related Art As is well known, an electric double layer capacitor is:
It is mainly composed of a pair of polarizable electrodes, current collecting electrodes of each polarizable electrode, and a porous separator interposed between the polarizable electrodes. Each polarizable electrode is impregnated with an electrolytic solution.

【0003】従来では分極性電極として、活性炭または
繊維状活性炭によって構成するのを普通としているが、
これによると放電容量が小さく、そのため実際の使用に
おいて長時間にわたる放電を維持することができない欠
点がある。また内部抵抗が大きいため、大電流が取り出
せない欠点がある。
Conventionally, the polarizable electrode is usually made of activated carbon or fibrous activated carbon.
According to this, there is a disadvantage that the discharge capacity is small, so that it is impossible to maintain the discharge for a long time in actual use. Further, there is a disadvantage that a large current cannot be taken out due to a large internal resistance.

【0004】これを解決するために、特開平6−104
141号公報では電解重合法により製作した導電性高分
子膜を電気二重層キャパシタの分極性電極とする構成を
提案している。これによると従来の分極性電極を使用し
た場合よりも容量も大きく、かつ内部抵抗も小さくなる
利点があるが、必ずしも満足できるものではない。
To solve this problem, Japanese Patent Laid-Open No. 6-104 discloses
No. 141 proposes a configuration in which a conductive polymer film produced by an electrolytic polymerization method is used as a polarizable electrode of an electric double layer capacitor. According to this, there is an advantage that the capacitance is larger and the internal resistance is smaller than when a conventional polarizable electrode is used, but this is not always satisfactory.

【0005】また特開平7−201676号公報では電
解重合法により製作した粉末状または繊維状のカーボン
を取り込んだ導電性高分子膜を電気二重層キャパシタの
分極性電極とする構成を提案している。これによると導
電性高分子膜だけを電極に使用した場合より容量も大き
く、かつ内部抵抗も小さくなるが、電解重合法は陽極と
して導電体を必要とするので、そのまま分極性電極とす
る場合には、導電体の耐電解液性、特に水系の電解液に
対する安定性が問題となる。即ち、金、銀、白金、ステ
ンレス、チタン、タングステンなどは、電解液に対して
安定だが高価である。銅、ニッケル、錫などは、耐電解
液性に劣る。またアルミニウムは、陽極酸化が先行、あ
るいは同時進行し、電解重合が進行しにくい上、耐電解
液性に劣る。また導電性高分子膜を重合電極から剥離し
て使用することもできるが、重合電極が薄い場合には困
難を伴い、厚くすると高価になる。
Japanese Patent Application Laid-Open No. 7-201676 proposes a configuration in which a conductive polymer film containing powdered or fibrous carbon produced by an electrolytic polymerization method is used as a polarizable electrode of an electric double layer capacitor. . According to this, the capacity is larger and the internal resistance is smaller than when only a conductive polymer film is used for the electrode, but the electrolytic polymerization method requires a conductor as the anode, so when the polarizable electrode is used as it is. However, there is a problem with the electrolyte resistance of the conductor, especially the stability with respect to the aqueous electrolyte. That is, gold, silver, platinum, stainless steel, titanium, tungsten and the like are stable with respect to the electrolytic solution but are expensive. Copper, nickel, tin and the like are inferior in electrolyte resistance. In addition, aluminum precedes or proceeds simultaneously with anodic oxidation, so that electrolytic polymerization hardly progresses and aluminum has poor electrolyte resistance. Further, the conductive polymer film can be used after being peeled off from the polymerized electrode, but it is difficult when the polymerized electrode is thin, and it becomes expensive when the polymerized electrode is thick.

【0006】[0006]

【発明が解決しようとする課題】本発明は、導電性高分
子化合物を分極性電極として使用する電気二重層キャパ
シタにおいて、更に高速充放電および大容量化を図るこ
とを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an electric double-layer capacitor using a conductive polymer compound as a polarizable electrode, to achieve higher speed charging and discharging and a larger capacity.

【0007】[0007]

【課題を解決するための手段】本発明は、対とされた分
極性電極に電解液を含浸し、セパレータを介して構成さ
れる電気二重層キャパシタにおいて、この分極性電極の
うちの少なくとも一方を、多孔性炭素系材料上に化学酸
化重合法により得られた導電性高分子化合物を有する複
合電極によって構成したことを特徴とする。本発明で使
用する分極性電極は、表面積の大きな導電性物質(例え
ば粉末状又は繊維状の活性炭)であるが、少なくとも一
方は多孔性炭素系材料と化学酸化重合により得られた導
電性高分子化合物とからなる複合電極である。本発明で
使用する多孔性炭素系材料は特に限定されず、粉末状、
粒状、繊維状、あるいは成形体状の活性炭が用いられ
る。本発明で使用する化学酸化重合により得られた導電
性高分子化合物は、ポリピロール、ポリアニリン、ポリ
チオフェン、ポリフラン、ポリセレノフェン、ポリイソ
チアナフテン、ポリフェニレンスルフィド、ポリフェニ
レンオキシド、ポリアズレン、もしくはこれらの誘導
体、あるいはこれらの共重合体である。
According to the present invention, there is provided an electric double layer capacitor comprising a pair of polarizable electrodes impregnated with an electrolytic solution and having a separator interposed therebetween, wherein at least one of the polarizable electrodes is provided. And a composite electrode having a conductive polymer compound obtained by a chemical oxidation polymerization method on a porous carbon-based material. The polarizable electrode used in the present invention is a conductive substance having a large surface area (for example, powdered or fibrous activated carbon), at least one of which is a porous carbon-based material and a conductive polymer obtained by chemical oxidation polymerization. A composite electrode comprising a compound. The porous carbon-based material used in the present invention is not particularly limited, and powdery,
Granular, fibrous, or compacted activated carbon is used. The conductive polymer compound obtained by the chemical oxidation polymerization used in the present invention is polypyrrole, polyaniline, polythiophene, polyfuran, polyselenophene, polyisothianaphthene, polyphenylene sulfide, polyphenylene oxide, polyazulene, or a derivative thereof, or These are copolymers.

【0008】多孔性炭素系材料上に化学酸化重合法によ
り得られた導電性高分子化合物によれば、導電性が向上
し、高速充放電が可能となり、また容量が増大する。
According to a conductive polymer compound obtained by a chemical oxidation polymerization method on a porous carbon-based material, conductivity is improved, high-speed charge / discharge becomes possible, and capacity is increased.

【0009】[0009]

【発明の実施の形態】本発明で使用する導電性高分子は
次のようにして作成する。すなわち有機溶媒もしくは水
に、モノマーとドーパントを溶解させ、この溶液を多孔
性炭素系材料に含浸させた後、これを酸化剤溶液に浸漬
して化学酸化重合する。また、モノマーとドーパントの
溶液中に多孔性炭素系材料を懸濁させた状態で酸化剤を
加えて重合する。この化学酸化重合により導電性高分子
化合物が、多孔性炭素系材料上に生成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A conductive polymer used in the present invention is prepared as follows. That is, a monomer and a dopant are dissolved in an organic solvent or water, and this solution is impregnated in a porous carbon-based material, and then immersed in an oxidizing agent solution to undergo chemical oxidative polymerization. Further, in a state where the porous carbon-based material is suspended in a solution of the monomer and the dopant, an oxidizing agent is added to perform polymerization. By this chemical oxidative polymerization, a conductive polymer compound is formed on the porous carbon-based material.

【0010】ここで用いるモノマーとして、ピロール、
アニリン、チオフェン、フラン、セレノフェン、イソチ
アナフテン、フェニレンスルフィド、フェニレンオキシ
ド、アズレン、もしくはこれらの誘導体、あるいはこれ
らを複数組み合わせた(共重合体)ものが使用できる。
なかでも、アニリンおよびその誘導体が高導電性の面か
ら好ましい。
As the monomers used here, pyrrole,
Aniline, thiophene, furan, selenophene, isothianaphthene, phenylene sulfide, phenylene oxide, azulene, a derivative thereof, or a combination thereof (copolymer) can be used.
Among them, aniline and its derivatives are preferable from the viewpoint of high conductivity.

【0011】ドーパントは導電性高分子に導電性を付与
するために加えられるもので、一般に使用されているス
ルホン酸塩イオン、過塩素酸イオン、6フッ化リン酸イ
オン、4フッ化リン酸イオン、4フッ化ホウ酸イオン、
6フッ化ヒ素イオン、6フッ化アンチモン酸イオン、4
塩化アルミン酸イオン、ハロゲンイオン、リン酸イオ
ン、硫酸イオン、硝酸イオン等が利用できる。またこの
他多価アニオンも利用可能である。
The dopant is added to impart conductivity to the conductive polymer, and is generally used as a sulfonate ion, a perchlorate ion, a hexafluorophosphate ion and a tetrafluorophosphate ion. Tetrafluoroborate ion,
Arsenic hexafluoride ion, hexafluoroantimonate ion, 4
Chloroaluminate ions, halogen ions, phosphate ions, sulfate ions, nitrate ions and the like can be used. In addition, polyvalent anions can also be used.

【0012】本発明に用いられる多孔性炭素系材料は、
特に限定されず、粉末状、粒状、繊維状、あるいは成形
体状の活性炭が用いられるが、全酸性基量が全表面積に
対して0.45mmol/m2以上であるものが好ましい。
ここでいう酸性基とは、炭素材表面の水酸基、カルボキ
シル基を意味する。この全酸性基量が全表面積に対して
0.45mmol/m2以上、好ましくは0.5〜4.0mmo
l/m2の多孔質炭素系材料を用いることにより、表面積
の利用率を高めることができ、単位表面積あたり大きな
電気二重層容量が得られる。
The porous carbon-based material used in the present invention comprises:
There is no particular limitation, and powdered, granular, fibrous, or shaped activated carbon is used, but those having a total acidic group content of 0.45 mmol / m 2 or more based on the total surface area are preferred.
Here, the acidic group means a hydroxyl group or a carboxyl group on the surface of the carbon material. The total amount of the acidic groups is 0.45 mmol / m 2 or more, preferably 0.5 to 4.0 mmo, based on the total surface area.
By using a l / m 2 porous carbon-based material, the utilization factor of the surface area can be increased, and a large electric double layer capacity per unit surface area can be obtained.

【0013】本発明で得られる導電性高分子複合電極中
の導電性高分子と多孔性炭素系材料の複合比率は、任意
の値を取りうるが、好ましくは導電性高分子/多孔性炭
素系材料=5/95〜50/50(重量比)、より好ま
しくは10/90〜25/75である。導電性高分子が
5wt%未満では充分な容量増加効果が見られず、50
wt%を超えるものは化学酸化重合法による複合化では
作製しにくいので好ましくない。
The composite ratio of the conductive polymer and the porous carbon-based material in the conductive polymer composite electrode obtained in the present invention can take any value, but is preferably a conductive polymer / porous carbon-based material. Material = 5/95 to 50/50 (weight ratio), more preferably 10/90 to 25/75. If the amount of the conductive polymer is less than 5 wt%, a sufficient capacity increasing effect cannot be seen,
If the content exceeds wt%, it is not preferable because it is difficult to produce the composite by chemical oxidation polymerization.

【0014】電気二重層キャパシタの対をなす両分極性
電極として、ともに導電性高分子複合電極を用いてもよ
いし、また一方のみを利用してもよい。その場合他方の
分極性電極は、表面積の大きな導電性物質(例えば粉末
状又は繊維状の活性炭)を使用するとよい。複合電極を
作製するのに用いた多孔性炭素系材料も好適に使用され
得る。
As the bipolar electrodes forming a pair of the electric double layer capacitor, a conductive polymer composite electrode may be used, or only one of them may be used. In that case, the other polarizable electrode may use a conductive substance having a large surface area (for example, powdered or fibrous activated carbon). The porous carbon-based material used for producing the composite electrode can also be suitably used.

【0015】分極性電極およびセパレータに含浸させる
電解液としては、水もしくは有機溶媒(カーボネート
類、アルコール類、ニトリル類、アミド類、エーテル類
などの単独または混合物)に電解質を溶解したものが利
用できる。
As the electrolytic solution to be impregnated into the polarizable electrode and the separator, a solution obtained by dissolving an electrolyte in water or an organic solvent (single or a mixture of carbonates, alcohols, nitriles, amides, ethers, etc.) can be used. .

【0016】電解質としては、プロトン、アルカリ金属
イオン、4級アンモニウムイオン、4級ホスホニウムイ
オンなどの単独あるいは複数のカチオンと、スルホン酸
イオン、過塩素酸イオン、6フッ化ヒ素イオン、ハロゲ
ンイオン、リン酸イオン、硫酸イオン、硝酸イオンの単
独あるいは複数のアニオンを組み合せたものがよい。
The electrolyte includes one or more cations such as a proton, an alkali metal ion, a quaternary ammonium ion, and a quaternary phosphonium ion, a sulfonate ion, a perchlorate ion, an arsenic hexafluoride ion, a halogen ion, and a phosphorus ion. It is preferable to use an acid ion, a sulfate ion, or a nitrate ion alone or in combination of a plurality of anions.

【0017】セパレータは両分極性電極の電気的な短絡
を防ぎ、電気化学的に安定でイオン透過性が大きく、あ
る程度の機械強度を備えた、絶縁性の多孔体であればよ
い。具体的には、不織布あるいは多孔性のポリプロピレ
ンフィルム、ポリエチレンフィルムなどが利用できる。
The separator may be an insulating porous material that prevents electrical short circuit between the bipolar electrodes, is electrochemically stable, has high ion permeability, and has a certain mechanical strength. Specifically, a nonwoven fabric or a porous polypropylene film, polyethylene film, or the like can be used.

【0018】本発明における分極性電極を成型する方法
は、通常知られている方法を適用することが可能であ
る。導電性高分子複合電極が繊維状あるいは成型体状で
得られる場合は、そのまま適当な大きさに打ち抜いて使
用することができる。導電性高分子複合電極が粉末状あ
るいは粒状で得られる場合は、結着剤を1〜数10%加え
て良く混合した後、金型に入れ、加圧成型したり、必要
に応じては加圧成型時に熱を加えることも可能である。
As a method for molding a polarizable electrode in the present invention, a generally known method can be applied. When the conductive polymer composite electrode is obtained in the form of a fibrous or molded body, it can be used as it is by punching it into an appropriate size. When the conductive polymer composite electrode is obtained in the form of powder or granules, the binder is added in an amount of 1 to several tens%, mixed well, and then placed in a mold and pressure-molded. It is also possible to apply heat during the pressing.

【0019】結着剤としては、ポリフッ化ビニリデン、
フルオロオレフィン共重合体、カルボキシメチルセルロ
ース、ポリビニルピロリドン、ポリビニルアルコール、
ポリアクリル酸、及びポリイミドのいずれかが好まし
い。
As the binder, polyvinylidene fluoride,
Fluoroolefin copolymer, carboxymethylcellulose, polyvinylpyrrolidone, polyvinyl alcohol,
Either polyacrylic acid or polyimide is preferred.

【0020】また、電極成型時に、導電剤を添加し、電
極の抵抗を低下させても良い。これは、分極性電極の内
部抵抗を低下させることによって、効率よく電荷を取り
出すためである。
Further, a conductive agent may be added at the time of molding the electrode to lower the resistance of the electrode. This is to reduce the internal resistance of the polarizable electrode to efficiently extract electric charges.

【0021】導電剤としては、カーボンブラック、天然
黒鉛、人造黒鉛、金属ファイバ、酸化チタン、酸化ルテ
ニウム等が使用できる。特にカーボンブラックの一種で
あるケッチェンブラック又はアセチレンブラックは、少
量でも効果が大きく好ましい。
As the conductive agent, carbon black, natural graphite, artificial graphite, metal fiber, titanium oxide, ruthenium oxide and the like can be used. In particular, ketjen black or acetylene black, which is a kind of carbon black, is preferable because it has a large effect even in a small amount.

【0022】[0022]

【実施例】図1に本発明の実施例による電気二重層キャ
パシタの構成を示す。1,2は正極および負極として対
をなす分極性電極、3は両分極性電極1,2間に介在す
るセパレータ、4は集電用のカーボンプラスチックフィ
ルム、5は絶縁性樹脂である。
FIG. 1 shows the configuration of an electric double layer capacitor according to an embodiment of the present invention. Reference numerals 1 and 2 denote a pair of polarizable electrodes as a positive electrode and a negative electrode, 3 a separator interposed between the two polarizable electrodes 1 and 4, 4 a carbon plastic film for current collection, and 5 an insulating resin.

【0023】両分極性電極1,2のうちの少なくとも一
方は本発明による導電性高分子複合電極により構成され
ている。一方が導電性高分子複合電極である場合、他方
は活性炭の層を利用するとよい。
At least one of the bipolar electrodes 1 and 2 is constituted by the conductive polymer composite electrode according to the present invention. When one is a conductive polymer composite electrode, the other may use a layer of activated carbon.

【0024】次に実施例で用いた材料を示す。Next, the materials used in the examples are shown.

【0025】<多孔性炭素系材料1>表面積が1150
2/g、全酸性基量が1.5mmol/m2の活性炭繊維布
<Porous carbon-based material 1> Surface area is 1150
activated carbon fiber cloth with m 2 / g and total amount of acidic groups of 1.5 mmol / m 2

【0026】<多孔性炭素系材料2>表面積が900m
2/g、全酸性基量が2.2mmol/m2の粉末活性炭
<Porous carbon-based material 2> The surface area is 900 m
2 / g, powdered activated carbon having a total acidic group content of 2.2 mmol / m 2

【0027】<多孔性炭素系材料3>クラレケミカル
(株)製粉末活性炭BP−20
<Porous carbon-based material 3> Powdered activated carbon BP-20 manufactured by Kuraray Chemical Co., Ltd.

【0028】<導電性高分子複合電極1>0.2(モル
/リットル)のアニリンを含む0.2(モル/リット
ル)の硫酸水溶液100mlに、多孔性炭素系材料1
(50x50mm、0.466g)を室温で30分浸漬
して、モノマー溶液を1.295g含浸させた後、0.
2(モル/リットル)の過硫酸アンモニウム水溶液50
mlに−1℃で3時間浸漬して化学酸化重合を行った。
酸化剤溶液から取り出し、水洗・乾燥したところ、19
%の重量増が認められた。
<Conductive Polymer Composite Electrode 1> A porous carbon-based material 1 was added to 100 ml of a 0.2 (mol / liter) sulfuric acid aqueous solution containing 0.2 (mol / liter) aniline.
(50 × 50 mm, 0.466 g) was immersed at room temperature for 30 minutes to impregnate the monomer solution with 1.295 g.
2 (mol / liter) aqueous solution of ammonium persulfate 50
Then, the substrate was immersed in -1 ml at -1 ° C for 3 hours to carry out chemical oxidation polymerization.
Removed from the oxidant solution, washed with water and dried.
% Weight gain was observed.

【0029】<導電性高分子複合電極2>0.4(モル
/リットル)のアニリンを含む0.4(モル/リット
ル)の硫酸水溶液25mlに、多孔性炭素系材料1(5
0x50mm、0.475g)を室温で30分浸漬し
て、モノマー溶液を1.406g含浸させた後、0.4
(モル/リットル)の過硫酸アンモニウム水溶液50m
lに−1℃で3時間浸漬して化学酸化重合を行った。酸
化剤溶液から取り出し、水洗・乾燥したところ、23%
の重量増が認められた。
<Conductive Polymer Composite Electrode 2> A porous carbon-based material 1 (5) was added to 25 ml of a 0.4 (mol / liter) sulfuric acid aqueous solution containing 0.4 (mol / liter) aniline.
0x50 mm, 0.475 g) was immersed at room temperature for 30 minutes to impregnate 1.406 g of the monomer solution.
(Mole / liter) aqueous solution of ammonium persulfate 50m
1 for 3 hours at -1 ° C to perform chemical oxidative polymerization. Removed from oxidant solution, washed and dried, 23%
Was found to have increased in weight.

【0030】<導電性高分子複合電極3>0.2(モル
/リットル)のアニリンを含む0.2(モル/リット
ル)の硫酸水溶液100mlに、多孔性炭素系材料2を
5.0g加えて0℃に冷却した後、過硫酸アンモニウム
4.564gを加えて1時間化学酸化重合を行った。重
合溶液から取り出し、水洗・乾燥したところ、22%の
重量増が認められた。
<Conductive Polymer Composite Electrode 3> To 100 ml of a 0.2 (mol / l) aqueous sulfuric acid solution containing 0.2 (mol / l) aniline, 5.0 g of the porous carbon-based material 2 was added. After cooling to 0 ° C., 4.564 g of ammonium persulfate was added, and a chemical oxidation polymerization was carried out for 1 hour. After taking out from the polymerization solution, washing with water and drying, a weight increase of 22% was recognized.

【0031】<導電性高分子複合電極4>0.2(モル
/リットル)のアニリンを含む0.2(モル/リット
ル)の硫酸水溶液100mlに、多孔性炭素系材料3を
5.0g加えて0℃に冷却した後、過硫酸アンモニウム
4.564gを加えて1時間化学酸化重合を行った。重
合溶液から取り出し、水洗・乾燥したところ、37%の
重量増が認められた。
<Conductive Polymer Composite Electrode 4> To 100 ml of a 0.2 (mol / l) sulfuric acid aqueous solution containing 0.2 (mol / l) aniline, 5.0 g of the porous carbon-based material 3 was added. After cooling to 0 ° C., 4.564 g of ammonium persulfate was added, and a chemical oxidation polymerization was carried out for 1 hour. It was taken out from the polymerization solution, washed with water and dried, and a weight increase of 37% was recognized.

【0032】<導電剤>ライオン(株)製ケッチェンブ
ラックEC―DJ―600
<Conductive Agent> Ketjen Black EC-DJ-600 manufactured by Lion Corporation

【0033】<結着剤>Polysciences社製ポリフッ化ビ
ニリデン(MW120,000)
<Binder> Polyvinylidene fluoride manufactured by Polysciences (MW120,000)

【0034】(実施例1)導電性高分子複合電極1を、
直径13mmの円形に打ち抜き、これを正極とし、また
負極には多孔性炭素系材料1(直径13mm)を、セパ
レータとしてポリプロピレン多孔膜をそれぞれ使用し
た。そして電解液として、2(モル/リットル)の硫酸
水溶液を用いて、図1に示すような電気二重層キャパシ
タを構成した。これを使用した電極材重量あたり15m
A/gの電流密度で定電流充放電を行い、放電曲線より
直流静電容量を求め、電極材重量あたりの容量を算出し
たところ、得られたキャパシタの比静電容量は66F/
gであった。
(Example 1) The conductive polymer composite electrode 1 was
A 13 mm diameter circle was punched out, and this was used as a positive electrode. A porous carbon-based material 1 (13 mm in diameter) was used as a negative electrode, and a polypropylene porous film was used as a separator. Then, an electric double layer capacitor as shown in FIG. 1 was formed by using a 2 (mol / liter) aqueous sulfuric acid solution as an electrolytic solution. 15m per electrode material weight using this
A constant current charge / discharge was performed at a current density of A / g, a DC capacitance was determined from a discharge curve, and a capacitance per electrode material weight was calculated. The specific capacitance of the obtained capacitor was 66 F /
g.

【0035】(実施例2)導電性高分子複合電極1を、
キャパシタの正負両極に用いる以外は実施例1と同様に
実験を行った。得られたキャパシタの比静電容量は76
F/gであった。
Example 2 A conductive polymer composite electrode 1 was
An experiment was performed in the same manner as in Example 1 except that the capacitor was used for both positive and negative electrodes. The specific capacitance of the obtained capacitor is 76
F / g.

【0036】(実施例3)導電性高分子複合電極2を、
キャパシタの正極に用いる以外は実施例1と同様に実験
を行った。得られたキャパシタの比静電容量は71F/
gであった。
Example 3 The conductive polymer composite electrode 2 was
An experiment was performed in the same manner as in Example 1 except that the positive electrode of the capacitor was used. The specific capacitance of the obtained capacitor is 71 F /
g.

【0037】(実施例4)導電性高分子複合電極2を、
キャパシタの正負両極に用いる以外は実施例1と同様に
実験を行った。得られたキャパシタの比静電容量は82
F/gであった。
Example 4 The conductive polymer composite electrode 2 was
An experiment was performed in the same manner as in Example 1 except that the capacitor was used for both positive and negative electrodes. The specific capacitance of the obtained capacitor is 82
F / g.

【0038】(実施例5)導電性高分子複合電極3と導
電剤、結着剤を8:1:1の重量比で混合し、これを8
0mgとって直径13mmの型に入れ約10MPaで圧
粉成型した。これを正極とし、負極には多孔性炭素系材
料2と導電剤、結着剤を同様に圧粉成型したものを、セ
パレータとしてポリプロピレン多孔膜をそれぞれ使用し
た。そして電解液として、2(モル/リットル)の硫酸
水溶液を用いて、図1に示すような電気二重層キャパシ
タを構成した。これを使用した電極材重量あたり15m
A/gの電流密度で定電流充放電を行い、放電曲線より
直流静電容量を求め、電極材重量あたりの容量を算出し
たところ、得られたキャパシタの比静電容量は49F/
gであった。
Example 5 A conductive polymer composite electrode 3 was mixed with a conductive agent and a binder at a weight ratio of 8: 1: 1.
0 mg was placed in a mold having a diameter of 13 mm and compacted at about 10 MPa. This was used as a positive electrode, and a porous carbon-based material 2, a conductive agent, and a binder were similarly compacted as a negative electrode, and a polypropylene porous membrane was used as a separator. Then, an electric double layer capacitor as shown in FIG. 1 was formed by using a 2 (mol / liter) aqueous sulfuric acid solution as an electrolytic solution. 15m per electrode material weight using this
A constant current charge / discharge was performed at a current density of A / g, a DC capacitance was determined from a discharge curve, and a capacitance per electrode material weight was calculated. The specific capacitance of the obtained capacitor was 49 F / g.
g.

【0039】(実施例6)導電性高分子複合電極3を実
施例5と同様に混合・圧粉成型したものを、キャパシタ
の正負両極に用いる以外は実施例5と同様に実験を行っ
た。得られたキャパシタの比静電容量は69F/gであ
った。
Example 6 An experiment was conducted in the same manner as in Example 5 except that the conductive polymer composite electrode 3 was mixed and compacted in the same manner as in Example 5 and used as both positive and negative electrodes of a capacitor. The specific capacitance of the obtained capacitor was 69 F / g.

【0040】(実施例7)導電性高分子複合電極4を実
施例5と同様に混合・圧粉成型したものを、キャパシタ
の正極に用いる以外は実施例5と同様に実験を行った。
得られたキャパシタの比静電容量は45F/gであっ
た。
Example 7 An experiment was conducted in the same manner as in Example 5 except that the conductive polymer composite electrode 4 was mixed and compacted in the same manner as in Example 5 and used as the positive electrode of a capacitor.
The specific capacitance of the obtained capacitor was 45 F / g.

【0041】(実施例8)導電性高分子複合電極4を実
施例5と同様に混合・圧粉成型したものを、キャパシタ
の正負両極に用いる以外は実施例5と同様に実験を行っ
た。得られたキャパシタの比静電容量は54F/gであ
った。
Example 8 An experiment was conducted in the same manner as in Example 5, except that the conductive polymer composite electrode 4 was mixed and compacted in the same manner as in Example 5 and used as both positive and negative electrodes of a capacitor. The specific capacitance of the obtained capacitor was 54 F / g.

【0042】(比較例1)多孔性炭素系材料1を、キャ
パシタの正負両極に用いる以外は実施例3と同様に実験
を行った。得られたキャパシタの比静電容量は56F/
gであった。
Comparative Example 1 An experiment was conducted in the same manner as in Example 3 except that the porous carbon-based material 1 was used for both positive and negative electrodes of a capacitor. The specific capacitance of the obtained capacitor is 56F /
g.

【0043】(比較例2)多孔性炭素系材料2と導電
剤、結着剤を混合したものを、キャパシタの正負両極に
用いる以外は実施例5と同様に実験を行った。得られた
キャパシタの比静電容量は44F/gであった。
Comparative Example 2 An experiment was carried out in the same manner as in Example 5, except that a mixture of the porous carbon-based material 2, a conductive agent and a binder was used for both positive and negative electrodes of a capacitor. The specific capacitance of the obtained capacitor was 44 F / g.

【0044】(比較例3)多孔性炭素系材料3と導電
剤、結着剤を混合したものを、キャパシタの正負両極に
用いる以外は実施例5と同様に実験を行った。得られた
キャパシタの比静電容量は35F/gであった。
Comparative Example 3 An experiment was conducted in the same manner as in Example 5, except that a mixture of the porous carbon-based material 3, a conductive agent and a binder was used for both positive and negative electrodes of a capacitor. The specific capacitance of the obtained capacitor was 35 F / g.

【0045】以上の結果をまとめたものを表1に示す。Table 1 summarizes the above results.

【表1】 [Table 1]

【0046】[0046]

【発明の効果】以上説明したように本発明によれば、多
孔性炭素系材料上に化学酸化重合法により得られた導電
性高分子化合物を有する複合電極によって構成するよう
にしたので、従来の電解重合法により得られた導電性高
分子化合物を有する複合電極を用いた電気二重層キャパ
シタよりも簡単な操作で大容量のキャパシタを得ること
ができる効果を奏する。
As described above, according to the present invention, a composite electrode having a conductive polymer compound obtained by a chemical oxidation polymerization method on a porous carbon-based material is used. An effect is obtained that a large-capacity capacitor can be obtained by a simpler operation than an electric double-layer capacitor using a composite electrode having a conductive polymer compound obtained by an electrolytic polymerization method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 分極性電極 2 分極性電極 3 セパレータ 4 集電用カーボンプラスチックフィルム 5 絶縁性樹脂 1-polarity electrode 2 2-polarity electrode 3 Separator 4 Carbon plastic film for current collection 5 Insulating resin

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】対とされた分極性電極に電解液を含浸し、
セパレータを介して構成される電気二重層キャパシタに
おいて、前記分極性電極のうちの少なくとも一方を、多
孔性炭素系材料と化学酸化重合法により得られた導電性
高分子化合物とからなる複合電極によって構成してなる
電気二重層キャパシタ。
An impregnated electrolytic solution is provided in a pair of polarizable electrodes,
In an electric double layer capacitor configured with a separator interposed therebetween, at least one of the polarizable electrodes is constituted by a composite electrode composed of a porous carbon-based material and a conductive polymer compound obtained by a chemical oxidation polymerization method. Electric double layer capacitor.
【請求項2】化学酸化重合法により得られる導電性高分
子化合物が、ポリアニリンまたはその誘導体であること
を特徴とする請求項1に記載の電気二重層キャパシタ。
2. The electric double layer capacitor according to claim 1, wherein the conductive polymer compound obtained by the chemical oxidation polymerization method is polyaniline or a derivative thereof.
【請求項3】導電性高分子化合物を多孔性炭素系材料上
で重合して複合化されたことを特徴とする請求項1また
は2に記載の電気二重層キャパシタ。
3. The electric double layer capacitor according to claim 1, wherein the conductive polymer compound is polymerized on the porous carbon-based material to form a composite.
JP2000208636A 2000-07-10 2000-07-10 Electric double-layer capacitor Pending JP2002025865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000208636A JP2002025865A (en) 2000-07-10 2000-07-10 Electric double-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000208636A JP2002025865A (en) 2000-07-10 2000-07-10 Electric double-layer capacitor

Publications (1)

Publication Number Publication Date
JP2002025865A true JP2002025865A (en) 2002-01-25

Family

ID=18705186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000208636A Pending JP2002025865A (en) 2000-07-10 2000-07-10 Electric double-layer capacitor

Country Status (1)

Country Link
JP (1) JP2002025865A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005724A (en) * 2005-06-27 2007-01-11 Nicca Chemical Co Ltd Carbonaceous/conductive polymer compound material and manufacturing method thereof
US7585433B2 (en) * 2006-11-28 2009-09-08 The Yokohama Rubber Co., Ltd. Polyaniline/carbon composite and electric double-layer capacitor using same
US7663863B2 (en) 2006-11-21 2010-02-16 The Yokohama Rubber Co., Ltd. Electrode for capacitor and electric double layer capacitor using the same
JP2012033783A (en) * 2010-07-30 2012-02-16 Nitto Denko Corp Electric double layer capacitor
JP2013131730A (en) * 2011-11-21 2013-07-04 Yokohama Rubber Co Ltd:The Polyaniline/porous carbon material complex, and electrode material using the same
JP2014170951A (en) * 2014-04-18 2014-09-18 Nitto Denko Corp Electric double-layer capacitor
CN113228352A (en) * 2019-05-31 2021-08-06 株式会社Lg化学 Carbon having polymer layer containing redox functional group formed thereon, and sulfur-carbon composite and lithium secondary battery comprising the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005724A (en) * 2005-06-27 2007-01-11 Nicca Chemical Co Ltd Carbonaceous/conductive polymer compound material and manufacturing method thereof
US7663863B2 (en) 2006-11-21 2010-02-16 The Yokohama Rubber Co., Ltd. Electrode for capacitor and electric double layer capacitor using the same
US7585433B2 (en) * 2006-11-28 2009-09-08 The Yokohama Rubber Co., Ltd. Polyaniline/carbon composite and electric double-layer capacitor using same
JP2012033783A (en) * 2010-07-30 2012-02-16 Nitto Denko Corp Electric double layer capacitor
JP2013131730A (en) * 2011-11-21 2013-07-04 Yokohama Rubber Co Ltd:The Polyaniline/porous carbon material complex, and electrode material using the same
JP2014170951A (en) * 2014-04-18 2014-09-18 Nitto Denko Corp Electric double-layer capacitor
CN113228352A (en) * 2019-05-31 2021-08-06 株式会社Lg化学 Carbon having polymer layer containing redox functional group formed thereon, and sulfur-carbon composite and lithium secondary battery comprising the same
JP2022521562A (en) * 2019-05-31 2022-04-11 エルジー エナジー ソリューション リミテッド Carbon on which a redox functional group-containing polymer layer is formed, a sulfur-carbon composite containing this, and a lithium secondary battery
JP7195437B2 (en) 2019-05-31 2022-12-23 エルジー エナジー ソリューション リミテッド Carbon with redox functional group-containing polymer layer formed, sulfur-carbon composite containing the same, and lithium secondary battery

Similar Documents

Publication Publication Date Title
US7576971B2 (en) Asymmetric electrochemical supercapacitor and method of manufacture thereof
US7199997B1 (en) Asymmetric electrochemical supercapacitor and method of manufacture thereof
KR100883748B1 (en) Electrochemical energy storage device with high capacity and high power using conductive polymer composite
CN102324317B (en) Electrode for flexible solid super capacitor and preparation method thereof
JP5999367B2 (en) High electron conductive polymer and high dose / high output electric energy storage device using the same
US5451476A (en) Cathode for a solid-state battery
Shendkar et al. Hybrid composite polyaniline-nickel hydroxide electrode materials for supercapacitor applications
JPH046072B2 (en)
EP0971426B1 (en) Polymer secondary battery and method of making same
JP2002025868A (en) Electric double-layer capacitor
JP2002025865A (en) Electric double-layer capacitor
JP2017199639A (en) Electrode structure for power storage device, power storage device, and method for manufacturing electrode structure
JP2002203742A (en) Redox type capacitor
JP3403856B2 (en) Organic electrolyte battery
JPH11145009A (en) Electric double layer capacitor
JP2001351833A (en) Electric double-layer capacitor
JPH09270370A (en) Electric double layer capacitor and its manufacturing method
JP3800810B2 (en) Electric double layer capacitor
JP3711015B2 (en) Polarized electrode
JP3089707B2 (en) Solid electrode composition
JPH0878057A (en) Organic electrolytic battery
JP2588405B2 (en) Organic electrolyte battery using high concentration mixed solute
JP2519180B2 (en) Organic electrolyte battery
JP2005209703A (en) Electrochemical capacitor and its manufacturing method
JP2002033248A (en) Electric double-layer capacitor