JP3349141B2 - Liquid crystal display device and driving method thereof - Google Patents

Liquid crystal display device and driving method thereof

Info

Publication number
JP3349141B2
JP3349141B2 JP2000392075A JP2000392075A JP3349141B2 JP 3349141 B2 JP3349141 B2 JP 3349141B2 JP 2000392075 A JP2000392075 A JP 2000392075A JP 2000392075 A JP2000392075 A JP 2000392075A JP 3349141 B2 JP3349141 B2 JP 3349141B2
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
transition
display device
backlight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000392075A
Other languages
Japanese (ja)
Other versions
JP2002006284A (en
Inventor
勝治 服部
將市 石原
強 上村
健次 中尾
好紀 田中
圭介 津田
幸雄 沼田
美香 中村
淳一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000392075A priority Critical patent/JP3349141B2/en
Publication of JP2002006284A publication Critical patent/JP2002006284A/en
Application granted granted Critical
Publication of JP3349141B2 publication Critical patent/JP3349141B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • G02F1/1395Optically compensated birefringence [OCB]- cells or PI- cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0469Details of the physics of pixel operation
    • G09G2300/0478Details of the physics of pixel operation related to liquid crystal pixels
    • G09G2300/0491Use of a bi-refringent liquid crystal, optically controlled bi-refringence [OCB] with bend and splay states, or electrically controlled bi-refringence [ECB] for controlling the color
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/024Scrolling of light from the illumination source over the display in combination with the scanning of the display screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/061Details of flat display driving waveforms for resetting or blanking
    • G09G2310/063Waveforms for resetting the whole screen at once
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/065Waveforms comprising zero voltage phase or pause
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • G09G2330/022Power management, e.g. power saving in absence of operation, e.g. no data being entered during a predetermined time
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/026Arrangements or methods related to booting a display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3651Control of matrices with row and column drivers using an active matrix using multistable liquid crystals, e.g. ferroelectric liquid crystals

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表示に先立って初
期配向から表示可能な所定の配向への液晶分子の転移を
必要とする液晶表示装置に関するものであり、より詳し
くは液晶分子の配向を転移するための液晶表示装置の駆
動方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device which requires a transition of liquid crystal molecules from an initial orientation to a predetermined displayable orientation prior to display. The present invention relates to an improvement in a driving method of a liquid crystal display device for performing transition.

【0002】[0002]

【従来の技術】従来より、種々の液晶表示装置が提案さ
れ、実用化されている。近年では液晶テレビジョンの普
及が期待されている。広く実用化されているネマティッ
ク液晶を用いたツイステッドネマティックモ−ドの液晶
表示装置は、応答が遅い、視野が狭いなどの欠点を有す
る。広視野にすぐれる水平面内駆動モードの液晶表示装
置は、応答速度や開口率に難がある。応答が速く視野角
が広い強誘電性液晶モードの液晶表示装置(以下、FL
C型液晶表示装置とする)は、耐ショック性、温度特性
などに大きな欠点を有する。
2. Description of the Related Art Conventionally, various liquid crystal display devices have been proposed and put into practical use. In recent years, the spread of liquid crystal televisions is expected. A liquid crystal display device of a twisted nematic mode using a nematic liquid crystal, which is widely used, has disadvantages such as a slow response and a narrow field of view. The liquid crystal display device of the in-horizontal plane driving mode having a wide field of view has a difficulty in response speed and aperture ratio. A liquid crystal display device of a ferroelectric liquid crystal mode (hereinafter, referred to as FL) having a quick response and a wide viewing angle.
C-type liquid crystal display devices) have major drawbacks in shock resistance, temperature characteristics, and the like.

【0003】それらに対して、例えば特開平7−842
54号公報や社団法人電気通信学会信学技報EDI98
−144の19頁に提案されている光学補償ベンドモー
ド(または光学補償複屈折モード)の液晶表示装置(以
下、OCB型液晶表示装置とする)は、応答が速く視野
角が広いことから、今後、透過型あるいは反射型の液晶
表示装置として例えば液晶テレビジョンへの応用が期待
されている。
[0003] For example, Japanese Patent Application Laid-Open No.
No. 54 and IEICE Technical Report EDI98
The liquid crystal display device of the optical compensation bend mode (or the optical compensation birefringence mode) (hereinafter referred to as OCB type liquid crystal display device) proposed on p. For example, application to a liquid crystal television as a transmission type or reflection type liquid crystal display device is expected.

【0004】OCB型液晶表示装置の一例を図7に示
す。液晶パネル2は、表面に透明な画素電極4aが形成
されているアレイ基板3aと、表面に透明な対向電極4
bが形成されている対向基板3bと、アレイ基板3aと
対向基板3bに挟まれた液晶層7を有する。基板3aお
よび3bのそれぞれ画素電極4aおよび対向電極4bが
設けられた内面には、ポリイミドからなる液晶配向膜6
aおよび6bが形成されている。この液晶配向膜6aお
よび6bはいずれもラビング処理が施されていて、その
ラビング方向が互いに平行になるよう配されている。液
晶層7には、正の誘電率異方性を有するネマティック液
晶材料が充填されている。電極4aおよび4b間に電圧
が印加されていないときには、基板3aおよび3b表面
での液晶分子7aのプレチルト角は互いに逆方向に約数
度〜10度であって、液晶分子7aは図7(a)に示す
ように同一平面上に上下対称に斜めに広がった配向(ス
プレイ配向)を示す。
FIG. 7 shows an example of an OCB type liquid crystal display device. The liquid crystal panel 2 includes an array substrate 3 a having a transparent pixel electrode 4 a formed on the surface thereof, and a transparent counter electrode 4
b, and a liquid crystal layer 7 sandwiched between the array substrate 3a and the counter substrate 3b. On the inner surfaces of the substrates 3a and 3b on which the pixel electrodes 4a and the counter electrodes 4b are respectively provided, a liquid crystal alignment film 6 made of polyimide is provided.
a and 6b are formed. Each of the liquid crystal alignment films 6a and 6b has been subjected to a rubbing treatment, and is arranged so that the rubbing directions are parallel to each other. The liquid crystal layer 7 is filled with a nematic liquid crystal material having a positive dielectric anisotropy. When no voltage is applied between the electrodes 4a and 4b, the pretilt angles of the liquid crystal molecules 7a on the surfaces of the substrates 3a and 3b are about several degrees to 10 degrees in opposite directions to each other, and the liquid crystal molecules 7a are shown in FIG. As shown in ()), an orientation (spray orientation) that is obliquely spread vertically and symmetrically on the same plane is shown.

【0005】OCB型液晶表示装置では、装置の主電源
を入れる時などに、電極4aおよび4b間に比較的高電
圧のパルス(以下、転移用電圧パルスとする)を短時間
に印加することによって、図7(a)に示すようなスプ
レイ配向の液晶分子7aが局所的に立ち上がり、図7
(b)に示すようにベンド配向あるいはねじれ配向を含
んだベンド配向を示す微小領域(以下、転移核とする)
が発生する。転移用電圧パルスを繰り返し印加すること
で、この転移核が拡大する。OCB型液晶表示装置は、
液晶層7中の液晶材料全てをベンド配向へ転移させるこ
とで表示が可能になる。OCB型液晶表示装置は、表示
信号駆動電圧を印加することで生じる液晶分子7aのベ
ンド配向の程度の変化に起因した光位相差の変化を利用
して表示する。液晶パネル2の外面には、それぞれ液晶
パネル2の低電圧駆動を可能とするとともに、視野角を
拡大するために光学補償するための位相補償板8がその
光軸を所定の方向に固定されて配置される。
In the OCB type liquid crystal display device, a relatively high voltage pulse (hereinafter referred to as a transition voltage pulse) is applied between the electrodes 4a and 4b in a short time when the main power supply of the device is turned on. The liquid crystal molecules 7a having a splay alignment as shown in FIG.
As shown in (b), a minute region showing bend orientation including bend orientation or twist orientation (hereinafter referred to as transition nucleus)
Occurs. By repeatedly applying the transition voltage pulse, the transition nucleus expands. The OCB type liquid crystal display device
The display can be performed by transferring all the liquid crystal materials in the liquid crystal layer 7 to the bend alignment. The OCB type liquid crystal display device performs display using a change in optical phase difference caused by a change in the degree of bend alignment of the liquid crystal molecules 7a caused by application of a display signal drive voltage. On the outer surface of the liquid crystal panel 2, a phase compensating plate 8 for enabling low voltage driving of the liquid crystal panel 2 and optically compensating for expanding the viewing angle is fixed with its optical axis in a predetermined direction. Be placed.

【0006】上記のように、OCB型液晶表示装置で
は、通常の表示駆動モードに入る前に、初期的にスプレ
イ配向からベンド配向への転移発生を促して、液晶パネ
ルの全画素領域で転移を短時間に完了させておく必要が
ある。また、FLC型液晶表示装置や相転移型液晶表示
装置においても表示駆動モードの前に同様の処理が必要
である。そこで、これらの液晶表示装置においては、以
下のような問題点を有する。
As described above, in the OCB type liquid crystal display device, the transition from the splay alignment to the bend alignment is initially promoted before entering the normal display driving mode, and the transition is performed in all the pixel regions of the liquid crystal panel. It must be completed in a short time. Further, the same processing is required before the display driving mode in the FLC type liquid crystal display device and the phase transition type liquid crystal display device. Therefore, these liquid crystal display devices have the following problems.

【0007】液晶分子が表示のための配向に充分転移し
ていないと、表示駆動モードに移行したときに良好な表
示が得られない。たとえば、OCB型の液晶表示装置で
は、ベンド配向への転移が確実に行われず、局所的にス
プレイ配向の領域が残存すると表示駆動時にその箇所が
輝点となって点欠陥のように見える。また、表示駆動開
始後数秒から数分間は、全体が曇ったような表示になり
画像が安定しない。したがって、表示駆動モードに移行
する前にこのベンド配向への転移を確実に完了させる必
要がある。しかしながら、同じ条件で転移用電圧パルス
を印加しても、転移核は同じ場所で発生せず、また偶発
的に発生することから、短時間で確実に転移を終了させ
ることが困難であった。
If the liquid crystal molecules are not sufficiently transferred to the orientation for display, good display cannot be obtained when the mode is shifted to the display driving mode. For example, in the OCB-type liquid crystal display device, the transition to the bend alignment is not reliably performed, and if a region of the splay alignment remains locally, the portion becomes a bright spot at the time of display driving and looks like a point defect. In addition, for a few seconds to several minutes after the start of the display driving, the display becomes entirely cloudy and the image is not stable. Therefore, it is necessary to surely complete the transition to the bend alignment before shifting to the display driving mode. However, even when a voltage pulse for transition is applied under the same conditions, transition nuclei do not occur at the same place and occur accidentally, so it has been difficult to surely terminate the transition in a short time.

【0008】装置の主電源がONになるとバックライト
が点灯される。液晶テレビジョンの場合には、スピーカ
からの音声出力も同時に開始される。しかしながら、表
示に先立って液晶層内の液晶分子の配向を所定の配向に
転移させる必要がある液晶表示装置においては、表示駆
動に移行するまでに長時間要する場合もある。この表示
駆動モードまでの移行期間すなわち転移処理期間におい
ては、バックライトの点灯はエネルギーの浪費である。
また、未転移あるいは転移途中の画素による点的配向欠
陥や面的配向欠陥が多い表示や、転移用パルス電圧の印
加にともなう画面全体の点滅は、使用者に不快感や不安
感を与える要因にもなる。高画質で商業的にも優れた液
晶表示装置を実現するためには、上記の配向転移による
欠陥状態を見えなくして違和感を与えないようにする必
要がある。
When the main power of the apparatus is turned on, the backlight is turned on. In the case of a liquid crystal television, sound output from a speaker is also started at the same time. However, in a liquid crystal display device that needs to transfer the orientation of liquid crystal molecules in a liquid crystal layer to a predetermined orientation prior to display, it may take a long time to shift to display driving. During the transition period up to the display drive mode, that is, the transition processing period, turning on the backlight is a waste of energy.
In addition, displays with many point alignment defects and planar alignment defects due to untransferred or in the middle of transition, and blinking of the entire screen due to the application of pulse voltage for transition may cause discomfort and anxiety to the user. Also. In order to realize a liquid crystal display device having high image quality and being commercially excellent, it is necessary to make the above-mentioned defect state caused by the alignment transition invisible so as not to give a sense of incongruity.

【0009】液晶表示装置を種々の用途に展開するため
には、広い温度範囲において装置の動作を保証する必要
がある。OCB型液晶表示装置では、この動作保証温度
範囲で、確実かつ短時間で上記のようなベンド配向への
転移処理を完了させる必要がある。例えば10型のアク
ティブマトリックス型の液晶表示装置では、25℃付近
の室温中で0.5〜1秒の短時間で転移を完了させるこ
とができるが、−10℃〜0℃の低温雰囲気下では、液
晶層全体をベンド配向に転移させる処理に長時間要し、
条件によっては数分要する場合もある。すなわち、実用
化に際しては、一般の表示装置と同様の広い温度領域に
おいてこの転移処理を短時間、長くとも数秒以内で確実
に行うことが必要とされる。
In order to develop a liquid crystal display device for various uses, it is necessary to guarantee the operation of the device over a wide temperature range. In the OCB type liquid crystal display device, it is necessary to complete the above-described transition processing to the bend alignment in the operation guaranteed temperature range reliably and in a short time. For example, in a 10-type active matrix liquid crystal display device, the transition can be completed in a short time of 0.5 to 1 second at room temperature around 25 ° C., but in a low-temperature atmosphere of −10 ° C. to 0 ° C. , It takes a long time to process the entire liquid crystal layer to bend alignment,
It may take several minutes depending on the conditions. That is, for practical use, it is necessary to surely perform this transition processing within a short temperature, at most within a few seconds, in a wide temperature range similar to a general display device.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記問題点
を解決するためのものであり、OCB型液晶表示装置に
代表されるような、液晶分子の初期配向が表示のための
配向と異なる液晶表示装置において、その表示のための
液晶配向の転移を確実かつ短時間で終了させることがで
きる液晶表示装置の駆動方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and the initial alignment of liquid crystal molecules is different from the alignment for display as represented by an OCB type liquid crystal display device. It is an object of the present invention to provide a method for driving a liquid crystal display device, which is capable of terminating transition of liquid crystal alignment for display in a reliable and short time.

【0011】[0011]

【課題を解決するための手段】本発明の液晶表示装置の
駆動方法は、一対の基板と、一対の基板に挟持された液
晶層と、液晶層に電圧を印加するための電圧印加手段と
を含む液晶パネルを備え、液晶層の初期配向が表示のた
めの配向と異なる液晶表示装置のためのものであって、
液晶パネルによる表示に先立って、液晶パネルの表示領
域の液晶層で初期配向より表示のための配向への転移が
終了するまで液晶層に転移を進行させるための電圧を印
加する。好ましくは、表示のための配向に転移した液晶
層の微小領域の成長速度と電圧印加時間との積が、液晶
パネルの表示領域の面積よりも大きくなった後に前記転
移が終了したと判定する。たとえば成長速度と電圧印加
時間との積が、液晶パネルの表示領域の面積の1〜2倍
の範囲内にある所定の値を超えたときに転移が終了した
と判定する。
A driving method of a liquid crystal display device according to the present invention comprises a pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, and voltage applying means for applying a voltage to the liquid crystal layer. Comprising a liquid crystal panel, wherein the initial alignment of the liquid crystal layer is for a liquid crystal display device different from the alignment for display,
Prior to the display by the liquid crystal panel, a voltage is applied to the liquid crystal layer in the display area of the liquid crystal panel until the transition from the initial alignment to the alignment for display is completed. Preferably, it is determined that the transition has ended after the product of the growth rate of the minute region of the liquid crystal layer that has transitioned to the orientation for display and the voltage application time becomes larger than the area of the display region of the liquid crystal panel. For example, when the product of the growth rate and the voltage application time exceeds a predetermined value within a range of 1 to 2 times the area of the display area of the liquid crystal panel, it is determined that the transition has ended.

【0012】転移の進行速度は、温度によって異なるこ
とから、転移を進行させるための電圧の印加に先立って
パネルの温度を測定し、得られた温度に基づいて転移の
ための電圧印加時間を設定すると、電圧印加の過剰や不
足を防ぐことができる。また、あらかじめ設定された使
用温度領域内の最低温度において表示領域の前記液晶層
が表示のための配向に転移するために要する時間、液晶
層に電圧を印加すると、全使用温度領域において確実に
転移を完了させることができる。
Since the speed of the transition depends on the temperature, the temperature of the panel is measured prior to the application of the voltage for causing the transition, and the voltage application time for the transition is set based on the obtained temperature. Then, excessive or insufficient voltage application can be prevented. In addition, when a voltage is applied to the liquid crystal layer during the time required for the liquid crystal layer in the display area to transition to the orientation for display at the lowest temperature within the preset operating temperature range, the transition is ensured in the entire operating temperature range. Can be completed.

【0013】表示領域の液晶層を転移させるためには、
たとえば表示のための配向に転移した液晶材料が占める
微小領域を画素ごとまたは所定数の画素を含む領域ごと
に発生させたのち、この微小領域を成長させる。たとえ
ば電圧印加手段の表面に形成された突起や液晶配向膜に
設けられた液晶材料のプレチルト角が他所のそれとは異
なる部位の周囲にこの微小領域を発生させることができ
る。画素ごとにこの微小領域を形成する場合には、微小
領域の成長速度と電圧印加時間との積が、画素の面積よ
りも大きくなった後に転移が終了したと判定することが
できる。複数の画素に対して1つの微小領域を形成する
場合には、微小領域の成長速度と電圧印加時間の積を、
1つの微小領域に対応した数の画素のサイズと比較し
て、同様に転移の終了を判定すればよい。
To transfer the liquid crystal layer in the display area,
For example, a minute region occupied by the liquid crystal material that has been transferred to the orientation for display is generated for each pixel or each region including a predetermined number of pixels, and then the minute region is grown. For example, this minute region can be generated around a projection formed on the surface of the voltage applying means or a portion where the pretilt angle of the liquid crystal material provided on the liquid crystal alignment film is different from that of another portion. When this minute region is formed for each pixel, it can be determined that the transfer has ended after the product of the growth rate of the minute region and the voltage application time becomes larger than the area of the pixel. When one minute area is formed for a plurality of pixels, the product of the growth rate of the minute area and the voltage application time is
The end of the transition may be determined in the same manner by comparing the size of the number of pixels corresponding to one micro area.

【0014】転移のための電圧は、液晶層に断続的また
は連続的に印加する。バックライトを備えたいわゆる透
過型の液晶表示装置の場合には、液晶層への電圧の印加
が終了した後にバックライトを点灯することが好まし
い。この液晶表示装置の駆動方法は、表示のための配向
がベンド配向であって、表示に先立って液晶層の配向を
スプレイ配向からベンド配向に転移させる光学的補償ベ
ンド型液晶パネルに有用である。
The voltage for the transition is applied intermittently or continuously to the liquid crystal layer. In the case of a so-called transmission type liquid crystal display device having a backlight, it is preferable to turn on the backlight after the application of the voltage to the liquid crystal layer is completed. This method of driving a liquid crystal display device is useful for an optically compensated bend type liquid crystal panel in which the alignment for display is bend alignment and the alignment of the liquid crystal layer is changed from splay alignment to bend alignment prior to display.

【0015】本発明の液晶表示装置は、表面にラビング
処理が施された液晶配向膜を有し、液晶配向膜を互いに
向かい合わせかつラビング方向を同じ方向に向けて配置
された一対の基板と、一対の基板に挟持された液晶層
と、液晶層に電圧を印加するための電圧印加手段とを含
む液晶パネルを備え、基板のラビング方向の長さが、そ
れと垂直な方向の長さよりも長い。ラビング処理された
方向の微小領域の成長速度は、ラビング方向と垂直な方
向のそれと比べて大きい。したがって、基板の長手方向
をラビング方向と平行にすると、転移に要する時間を大
幅に短縮することができる。また、画素のラビング方向
の長さを、それと垂直な方向の長さよりも長くすると、
同様に転移に要する時間を大幅に短縮することができ
る。
A liquid crystal display device according to the present invention has a liquid crystal alignment film having a rubbed surface on its surface, and a pair of substrates arranged so that the liquid crystal alignment films face each other and the rubbing directions are the same. A liquid crystal panel including a liquid crystal layer sandwiched between a pair of substrates and voltage applying means for applying a voltage to the liquid crystal layer is provided, and a length of the substrate in a rubbing direction is longer than a length in a direction perpendicular to the rubbing direction. The growth speed of the minute region in the rubbing direction is higher than that in the direction perpendicular to the rubbing direction. Therefore, when the longitudinal direction of the substrate is parallel to the rubbing direction, the time required for the transfer can be greatly reduced. Also, if the length of the pixel in the rubbing direction is longer than the length in the direction perpendicular to it,
Similarly, the time required for transfer can be greatly reduced.

【0016】本発明の他の液晶表示装置の駆動方法は、
一対の基板、一対の基板に挟持された液晶層および液晶
層に電圧を印加するための電圧印加手段を含む液晶パネ
ルと、液晶パネルの表示のために液晶パネルに光を照射
するバックライトとを備え、液晶層の初期配向が表示の
ための配向と異なる液晶表示装置のためのものであっ
て、液晶層に電圧を印加して液晶層を表示のための配向
に転移させるステップと、液晶層の転移のための電圧の
印加が終了した後にバックライトを点灯するステップと
を含む。
Another method of driving a liquid crystal display device according to the present invention is as follows.
A liquid crystal panel including a pair of substrates, a liquid crystal layer sandwiched between the pair of substrates, and a voltage applying unit for applying a voltage to the liquid crystal layer, and a backlight for irradiating the liquid crystal panel with light for display on the liquid crystal panel. Applying a voltage to the liquid crystal layer to transition the liquid crystal layer to an orientation for display, wherein the initial orientation of the liquid crystal layer is different from the orientation for display. Turning on the backlight after the application of the voltage for the transition is completed.

【0017】液晶テレビジョンにおいては、たとえば、
主電源がONになった時点で放送用音声の出力を開始さ
せる。これにより、使用者に装置が起動中であることを
認知させる。画像表示は、転移終了後に開始する。たと
えば、バックライトは、通常の表示駆動モード中すなわ
ち画像を表示しているときにのみ点灯させる。この駆動
方法は、とりわけ液晶パネルの表示に先立って、液晶層
の配向を初期配向であるスプレイ配向から表示のための
配向であるベンド配向に転移させる光学的補償ベンド型
液晶表示装置に有用である。この駆動方法は、たとえば
画素ごとにスイッチング素子を有するアクティブマトリ
クス型の液晶パネルを用いた液晶表示装置に用いられ
る。液晶層の転移の開始より所定時間経過すると、転移
が終了したと判定して前記バックライトを点灯すること
が好ましい。
In a liquid crystal television, for example,
Output of broadcast audio is started when the main power is turned on. Thereby, the user is made aware that the device is being activated. Image display starts after the end of the transition. For example, the backlight is turned on only during a normal display driving mode, that is, when displaying an image. This driving method is particularly useful for an optically compensated bend-type liquid crystal display device in which the orientation of a liquid crystal layer is changed from a splay orientation, which is an initial orientation, to a bend orientation, which is an orientation for display, prior to display on a liquid crystal panel. . This driving method is used, for example, in a liquid crystal display device using an active matrix type liquid crystal panel having a switching element for each pixel. Preferably, when a predetermined time has elapsed from the start of the transition of the liquid crystal layer, it is determined that the transition has been completed, and the backlight is turned on.

【0018】液晶層を短時間で所定の配向へ転移させる
ためには、液晶パネルの表示のための電圧信号のそれよ
りも高い電圧を印加する必要があるが、表示用電圧信号
とのそれと同等の電圧を印加することによっても転移を
進行させることができる。すなわち、転移駆動用と表示
駆動用にそれぞれ電源装置を用意する必要はなく、表示
駆動用電源からの出力電圧信号を転移用電圧信号に用い
ることもできる。ノート型パーソナルコンピュータ、折
畳式の携帯電話等、液晶パネルを覆うカバーを備えた液
晶表示装置では、バックライトの点灯に先立ってカバー
の開放に同期して転移の進行状況を検知することが好ま
しい。すなわち、カバーを開放したときに転移が完了し
たかどうかを判定し、転移が完了していればその時点で
バックライトを点灯する。転移が完了していなければ転
移の完了後にバックライトを点灯する。また、カバーを
開放したときに液晶層の転移を開始してもよい。カバー
の閉鎖に同期してバックライトを消灯しかつ液晶層の配
向状態を維持するために液晶層に電圧を印加し、カバー
の開放に同期してバックライトを点灯しかつ電圧の印加
を終了することが好ましい。
In order to transfer the liquid crystal layer to a predetermined orientation in a short time, it is necessary to apply a voltage higher than that of the voltage signal for display of the liquid crystal panel, but it is equivalent to that of the display voltage signal. The transition can also be advanced by applying a voltage of. That is, it is not necessary to prepare a power supply device for each of the transition drive and the display drive, and an output voltage signal from the display drive power supply can be used as the transition voltage signal. In a liquid crystal display device having a cover for covering a liquid crystal panel, such as a notebook personal computer and a foldable mobile phone, it is preferable to detect the progress of the transition in synchronization with opening of the cover prior to turning on the backlight. . That is, it is determined whether or not the transfer is completed when the cover is opened, and if the transfer is completed, the backlight is turned on at that time. If the transfer is not completed, the backlight is turned on after the transfer is completed. The transition of the liquid crystal layer may be started when the cover is opened. The backlight is turned off in synchronization with the closing of the cover and a voltage is applied to the liquid crystal layer in order to maintain the alignment state of the liquid crystal layer. The backlight is turned on in synchronization with the opening of the cover and the application of the voltage is terminated. Is preferred.

【0019】所定時間、使用者からの入力信号が認めら
れない場合には、バックライトを消灯しかつ液晶層の配
向状態を維持するために液晶層に電圧を印加することが
好ましい。この場合、液晶層の配向状態を維持するため
の電圧の印加中に使用者からの入力信号が認められる
と、電圧の印加を終了しかつバックライトを点灯させ
る。好ましくは、液晶層の転移の進行状態または終了を
使用者に告知する。たとえば、スピーカを用いた音声
や、ランプ、発光ダイオード、エレクトロルミネッセン
ス素子等を用いた光信号または表示により使用者に告知
する。液晶テレビジョンの場合には、主電源がONにな
った時に液晶層への電圧の印加およびスピーカによる放
送用音声の出力が開始され、転移の状況を告知する音声
信号を放送用音声信号に重畳することが好ましい。
When an input signal from the user is not recognized for a predetermined time, it is preferable to turn off the backlight and apply a voltage to the liquid crystal layer in order to maintain the alignment state of the liquid crystal layer. In this case, if an input signal from the user is recognized during application of a voltage for maintaining the alignment state of the liquid crystal layer, the application of the voltage is terminated and the backlight is turned on. Preferably, the user is notified of the progress or completion of the transition of the liquid crystal layer. For example, the user is notified by voice using a speaker, an optical signal or display using a lamp, a light emitting diode, an electroluminescence element, or the like. In the case of a liquid crystal television, when the main power supply is turned on, the application of a voltage to the liquid crystal layer and the output of broadcast audio by a speaker are started, and an audio signal indicating a transition state is superimposed on the broadcast audio signal. Is preferred.

【0020】本発明の他の液晶表示装置は、初期配向が
表示のための配向と異なる液晶層、液晶層を両者の間に
挟持する一対の基板および液晶層に電圧を印加する電圧
印加手段を含む液晶パネルと、液晶パネルの表示のため
に液晶パネルに光を照射するバックライトと、液晶層を
表示のための配向に転移させるために電圧印加手段を駆
動して液晶層に電圧を印加しかつ液晶層の転移の終了を
判定する転移制御手段と、転移の終了後にバックライト
を点灯させるバックライト制御手段とを備える。
Another liquid crystal display device of the present invention comprises a liquid crystal layer whose initial alignment is different from the alignment for display, a pair of substrates sandwiching the liquid crystal layer between them, and voltage applying means for applying a voltage to the liquid crystal layer. A liquid crystal panel including a liquid crystal panel, a backlight for irradiating the liquid crystal panel with light for display on the liquid crystal panel, and a voltage application unit for driving the voltage application unit to apply a voltage to the liquid crystal layer to transfer the liquid crystal layer to an orientation for display. The liquid crystal display further includes a transition control unit that determines the end of the transition of the liquid crystal layer, and a backlight control unit that turns on the backlight after the end of the transition.

【0021】これは、表示のための配向がベンド配向で
あって、表示に先立って液晶層の配向をスプレイ配向か
らベンド配向に転移させる光学的補償ベンド型液晶表示
装置に有用である。また、画素ごとにスイッチング素子
を有するアクティブマトリクス型の液晶表示装置に有用
である。好ましくは、表示装置は、電圧印加手段による
液晶層の転移のための電圧の印加を強制的に開始させる
ためのスイッチをさらに備える。液晶パネルに転移不良
に起因した表示不良が認められるときに、このスイッチ
を用いて液晶層に再度転移処理を施し、表示不良を解消
する。
This is useful for an optically-compensated bend-type liquid crystal display device in which the alignment for display is bend alignment and the alignment of the liquid crystal layer is changed from splay alignment to bend alignment prior to display. Further, it is useful for an active matrix type liquid crystal display device having a switching element for each pixel. Preferably, the display device further includes a switch for forcibly starting application of a voltage for transition of the liquid crystal layer by the voltage applying unit. When a display defect due to a transition defect is recognized in the liquid crystal panel, the liquid crystal layer is subjected to a transition process again by using this switch to eliminate the display defect.

【0022】本発明の他の液晶表示装置の駆動方法は、
一対の基板、基板間に挟持された液晶層および液晶層に
電圧を印加するための電圧印加手段を含む液晶パネルを
備えたOCB型液晶表示装置のためのものであって、画
像の表示に先立って液晶パネルの温度を測定するステッ
プと、測定した温度に基づいて液晶層の配向をベンド配
向に転移させるための電圧パルスの条件を決定するステ
ップと、決定された条件に従って液晶層に電圧パルスを
印加するステップとを含む。
Another driving method of the liquid crystal display device of the present invention is as follows.
An OCB type liquid crystal display device including a pair of substrates, a liquid crystal layer sandwiched between the substrates, and a liquid crystal panel including a voltage applying unit for applying a voltage to the liquid crystal layer, is provided prior to displaying an image. Measuring the temperature of the liquid crystal panel, determining the condition of the voltage pulse for changing the orientation of the liquid crystal layer to bend alignment based on the measured temperature, and applying the voltage pulse to the liquid crystal layer according to the determined condition. Applying.

【0023】本発明の好ましい態様においては、電圧パ
ルスの条件を決定するステップにおいて、測定した温度
に基づいて電圧パルスの周波数を決定する。このとき、
好ましくは、高温側では、低温側よりもより電圧パルス
の周波数を高く設定する。たとえば、温度が20℃以上
のときの電圧パルスの周波数が2〜5Hzであり、0℃
以下のときの電圧パルスの周波数が0.2〜1Hzであ
る。より好ましくは、20℃以上のときの電圧パルスの
周波数が2.5〜4Hzであり、0℃以下のときの電圧
パルスの周波数が0.4〜0.6Hzである。
In a preferred aspect of the present invention, in the step of determining the condition of the voltage pulse, the frequency of the voltage pulse is determined based on the measured temperature. At this time,
Preferably, the frequency of the voltage pulse is set higher on the high temperature side than on the low temperature side. For example, the frequency of the voltage pulse when the temperature is 20 ° C. or more is 2 to 5 Hz and 0 ° C.
The frequency of the voltage pulse in the following cases is 0.2 to 1 Hz. More preferably, the frequency of the voltage pulse at 20 ° C. or higher is 2.5 to 4 Hz, and the frequency of the voltage pulse at 0 ° C. or lower is 0.4 to 0.6 Hz.

【0024】本発明の他の好ましい態様においては、電
圧パルスの条件を決定するステップにおいて、測定した
温度に基づいて電圧パルスの電圧値を決定する。このと
き、好ましくは、低温側では、高温側よりもより電圧パ
ルスの電圧値を高く設定する。本発明のさらに他の好ま
しい態様においては、電圧パルスの条件を決定するステ
ップにおいて、測定した温度に基づいて電圧パルスの周
波数および電圧値を決定する。
In another preferred aspect of the present invention, in the step of determining the condition of the voltage pulse, the voltage value of the voltage pulse is determined based on the measured temperature. At this time, preferably, the voltage value of the voltage pulse is set higher on the low temperature side than on the high temperature side. In a further preferred aspect of the present invention, in the step of determining the condition of the voltage pulse, the frequency and the voltage value of the voltage pulse are determined based on the measured temperature.

【0025】本発明のさらに他の好ましい態様において
は、電圧パルスの条件を決定するステップにおいて、測
定した温度に基づいて電圧パルスのパルス幅を決定す
る。これらパルスの条件は、温度に対して、連続的に変
化させる。また、段階的に変化させてもよい。たとえ
ば、電圧パルスの条件を決定するステップにおいて、区
分された所定の温度領域ごとに決定する電圧パルスの条
件を設定する。たとえば、使用動作温度範囲は高温側と
低温側の2つの温度領域に分割される。
In another preferred embodiment of the present invention, in the step of determining the condition of the voltage pulse, the pulse width of the voltage pulse is determined based on the measured temperature. The conditions of these pulses are continuously changed with respect to the temperature. Moreover, you may change it stepwise. For example, in the step of determining the condition of the voltage pulse, the condition of the voltage pulse determined for each of the divided predetermined temperature regions is set. For example, the operating temperature range for use is divided into two temperature ranges, a high temperature side and a low temperature side.

【0026】液晶層に電圧パルスを印加する直前に、電
圧印加手段としての電極間の電位差を略0Vにした初期
期間を設けると、短時間で転移を完了させることができ
る。初期期間は、好ましくは0.2〜5秒である。ま
た、電圧パルスを断続的に印加する場合には、パルス間
に電極間の電位差を略0Vとした期間を設けることが効
果的である。電圧パルスは、全画素に対して一斉に印加
することで短時間で転移を完了させることができる。バ
ックライトを備えた透過型液晶表示装置の場合には、電
圧パルスの印加により液晶層中の液晶材料がベンド配向
に転移した後にバックライトを点灯させることが好まし
い。この駆動方法は、たとえば画素ごとにスイッチング
素子を備えたアクティブマトリクス型の液晶表示装置に
用いられる。
By providing an initial period in which the potential difference between the electrodes as the voltage applying means is set to approximately 0 V immediately before applying the voltage pulse to the liquid crystal layer, the transition can be completed in a short time. The initial period is preferably between 0.2 and 5 seconds. When voltage pulses are applied intermittently, it is effective to provide a period in which the potential difference between the electrodes is approximately 0 V between the pulses. The transition can be completed in a short time by applying the voltage pulse to all the pixels at once. In the case of a transmissive liquid crystal display device equipped with a backlight, it is preferable to turn on the backlight after the liquid crystal material in the liquid crystal layer transitions to bend alignment by applying a voltage pulse. This driving method is used, for example, in an active matrix type liquid crystal display device having a switching element for each pixel.

【0027】本発明の他のOCB型液晶表示装置の駆動
方法は、画像の表示に先立って、あらかじめ設定された
使用温度範囲の最低温度において液晶層の配向をベンド
配向に転移させるために液晶層に電圧パルスを印加する
時間が短い条件に従って、全使用温度範囲において液晶
層に電圧パルスを印加する。すなわち、より長時間の電
圧パルスの印加が必要とされる温度において適した条件
を用いて、全使用温度範囲において液晶層に電圧パルス
を印加する。これにより、使用されるいずれの温度にお
いても比較的短時間で転移を完了させることが可能にな
る。たとえば、周波数を0.2〜1Hzの範囲より選択
される一つ、より好ましくは0.4〜0.6Hzの範囲
より選択される一つとした固定された条件の電圧パルス
を印加する。
In another driving method of the OCB type liquid crystal display device of the present invention, prior to displaying an image, the liquid crystal layer is transferred to a bend alignment at a minimum temperature within a preset operating temperature range. The voltage pulse is applied to the liquid crystal layer in the entire operating temperature range according to the condition that the time for applying the voltage pulse is short. That is, the voltage pulse is applied to the liquid crystal layer over the entire operating temperature range using conditions suitable for a temperature at which a longer time application of the voltage pulse is required. This allows the transition to be completed in a relatively short time at any temperature used. For example, a voltage pulse with a fixed condition of one frequency selected from the range of 0.2 to 1 Hz, more preferably one selected from the range of 0.4 to 0.6 Hz is applied.

【0028】本発明のさらに他の液晶表示装置は、OC
B型のそれであって、一対の基板、基板間に挟持された
液晶層および液晶層に電圧を印加するための電圧印加手
段を含む液晶パネルと、液晶パネルの温度を検出するパ
ネル温度検出手段と、電圧印加手段が前記液晶層の配向
をベンド配向に転移させるために印加する電圧の条件
を、パネル温度検出手段により検出された液晶パネルの
温度に基づいて決定するパルス条件決定手段とを備え
る。
[0028] Still another liquid crystal display device of the present invention comprises an OC.
A liquid crystal panel comprising a pair of substrates, a liquid crystal layer sandwiched between the substrates, and a voltage application unit for applying a voltage to the liquid crystal layer; and a panel temperature detection unit for detecting a temperature of the liquid crystal panel. And pulse condition determining means for determining, based on the temperature of the liquid crystal panel detected by the panel temperature detecting means, the condition of the voltage applied by the voltage applying means to change the orientation of the liquid crystal layer to the bend orientation.

【0029】[0029]

【発明の実施の形態】以下、本発明の好ましい実施の形
態を図面を用いて詳細に説明する。なお、以下の実施の
形態では、OCB型液晶表示装置を例に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings. In the following embodiments, an OCB type liquid crystal display device will be described as an example.

【0030】《実施の形態1》本実施の形態では、パネ
ルの表示に先立って液晶層の配向状態を初期配向から表
示のための配向に確実に転移させる方法の例を、図面を
参照しながら詳細に説明する。
<< Embodiment 1 >> In this embodiment, an example of a method for reliably transferring the alignment state of a liquid crystal layer from an initial alignment to an alignment for display prior to display on a panel will be described with reference to the drawings. This will be described in detail.

【0031】図7に示すようなOCB型液晶パネルにお
いては、基本的に一対の基板3aおよび3bは、液晶層
7に接する表面に形成された液晶配向膜6aおよび6b
のラビング方向が互いに平行になるように配される。電
極4aおよび4b間に電圧を印加していない初期の状態
では、液晶層7中の液晶分子7aは、図7(a)に示す
ようにほぼ平行に並んだスプレイ状態にある。パネルの
表示のためには、これを図7(b)に示すようなベンド
配向状態に転移させる必要がある。この転移のために、
従来から、表示用駆動信号よりも比較的高い電圧(例え
ば25V)が両極間に印加される。
In an OCB type liquid crystal panel as shown in FIG. 7, a pair of substrates 3a and 3b basically have liquid crystal alignment films 6a and 6b formed on the surface in contact with liquid crystal layer 7.
Are arranged so that the rubbing directions are parallel to each other. In an initial state in which no voltage is applied between the electrodes 4a and 4b, the liquid crystal molecules 7a in the liquid crystal layer 7 are in a splay state in which they are arranged substantially in parallel as shown in FIG. In order to display a panel, it is necessary to transfer the panel to a bend alignment state as shown in FIG. For this transition,
Conventionally, a voltage (for example, 25 V) relatively higher than the display drive signal is applied between both electrodes.

【0032】この転移用電圧パルスを印加する間は通常
の表示ができないことから、使用者の利便性等を考慮す
ると、この転移処理の期間を短くすることが望まれる。
転移用電圧パルスを印加すると、ベンド配向をした微細
な領域(転移核)が局所的に発生したのち、これが徐々
に成長する。画素内にこの転移核を発生させるとここか
らベンド配向への転移が開始される。たとえば、画素内
のゲート線付近に配された補助容量上に転移核形成部を
設ける。電極に突起を設けたり、液晶配向膜にその表面
に位置する液晶分子のプレチルト角が他所のそれとは異
なるような領域を設けることで、所望の場所に転移核を
発生させることができる。
Since normal display cannot be performed during the application of the transition voltage pulse, it is desirable to shorten the period of the transition process in consideration of user convenience and the like.
When a voltage pulse for transition is applied, a fine region (transition nucleus) having a bend orientation is locally generated, and then gradually grows. When this transition nucleus is generated in the pixel, the transition to the bend orientation starts from this. For example, a transition nucleus forming part is provided on an auxiliary capacitance arranged near a gate line in a pixel. A transition nucleus can be generated at a desired location by providing a projection on the electrode or providing a region on the liquid crystal alignment film in which the pretilt angle of liquid crystal molecules located on the surface is different from that of the other location.

【0033】ベンド配向領域が画素全体をカバーした後
に転移用電圧パルスの印加を停止して表示用の駆動信号
を発信すると、良好な表示が得られる。充分な転移のた
めに必要なのは、画素ごとに転移核を発生させることか
ら、ベンド配向の領域の成長速度と印加時間の積が画素
サイズ以上になるまで転移用電圧パルスを印加すること
である。ここで、ベンド配向領域の成長速度を図1およ
び表1に示す。
When the application of the transition voltage pulse is stopped and the drive signal for display is transmitted after the bend alignment region covers the entire pixel, a good display can be obtained. Since a transition nucleus is generated for each pixel for sufficient transition, it is necessary to apply a transition voltage pulse until the product of the growth rate of the bend-aligned region and the application time is equal to or larger than the pixel size. Here, the growth rate of the bend alignment region is shown in FIG.

【0034】[0034]

【表1】 [Table 1]

【0035】図および表より明らかなように、転移した
ベンド配向領域の成長速度は、温度および印加電圧のそ
れぞれに依存する。また、液晶配向膜におけるそのラビ
ング方向の成長速度は、それに垂直な方向におけるその
成長速度よりも速い。したがって、長方形の画素の長手
方向をラビング方向と一致させることにより、ベンド配
向領域の形成を短時間で行うことができる。
As apparent from the figures and the table, the growth rate of the transferred bend alignment region depends on the temperature and the applied voltage, respectively. Further, the growth rate of the liquid crystal alignment film in the rubbing direction is faster than that in the direction perpendicular thereto. Therefore, the bend alignment region can be formed in a short time by making the longitudinal direction of the rectangular pixel coincide with the rubbing direction.

【0036】実際に画素の長手方向をラビング方向と一
致させた液晶パネルにおいては、成長速度が4000μ
m/秒である室温(25℃)では画素のサイズが160
μm×50μmの液晶パネルの電圧印加時間は、0.0
4秒で充分であった。また、画素サイズが450μm×
150μmの場合、室温での電圧印加時間は0.12秒
で充分であった。しかしながら、上記のように成長速度
は温度によって異なる。ベンド配向へ転移させるための
電圧パルスの印加時間が過剰であると、過剰分だけ正常
な表示ができない。すなわち、使用者に時間を浪費させ
る要因になる。また、ベンド配向への転移が不充分であ
ると、正常な表示ができない場合も生じる。そこで、温
度センサを液晶パネルに設置し、測定したパネル温度に
基づいて電圧を印加する時間を決定する。この方法によ
ると、転移処理を適正な時間で行うことができ、処理の
過剰や不足を防止することができる。
In a liquid crystal panel in which the longitudinal direction of the pixel is actually matched with the rubbing direction, the growth rate is 4000 μm.
At room temperature (25 ° C.) which is m / sec, the pixel size is 160
The voltage application time of the liquid crystal panel of μm × 50 μm is 0.0
Four seconds was sufficient. The pixel size is 450 μm ×
In the case of 150 μm, the voltage application time at room temperature of 0.12 seconds was sufficient. However, as described above, the growth rate differs depending on the temperature. If the application time of the voltage pulse for causing the transition to the bend orientation is excessive, normal display cannot be performed by an excessive amount. That is, it is a factor that wastes time for the user. In addition, if the transition to the bend orientation is insufficient, normal display may not be performed. Therefore, a temperature sensor is installed on the liquid crystal panel, and the time for applying the voltage is determined based on the measured panel temperature. According to this method, the transfer process can be performed in a proper time, and the excess or shortage of the process can be prevented.

【0037】上記のような温度による転移処理の管理に
は、温度センサやその制御手段の追加などのために付加
的な費用が必要とされる。そこで、転移処理の不足を防
止する観点から、装置の動作保証温度範囲において最も
転移核の成長速度が遅い最低温度でベンド配向への転移
に必要とされる条件をあらかじめ設定しておけば、温度
センサを取り付ける必要なく充分な転移処理が保証され
る。また、温度センサを用いる場合のような新たなコス
トの発生はない。例えば、動作保証最低温度を、その成
長速度が1000μm/秒である0℃とすると、電圧印
加時間は、0℃で画素サイズが160μm×50μmの
液晶パネルでは0.16秒以上で充分であり、画素サイ
ズが450μm×150μm液晶パネルでは0.45秒
以上で充分であった。
The above-mentioned management of the transfer process by temperature requires additional cost for adding a temperature sensor and its control means. Therefore, from the viewpoint of preventing the shortage of the transition treatment, if the conditions required for transition to the bend orientation at the lowest temperature where the growth rate of the transition nucleus is the slowest in the operation guaranteed temperature range of the apparatus are set in advance, the temperature can be increased. Sufficient transfer processing is guaranteed without the need to mount a sensor. Also, there is no new cost as in the case of using a temperature sensor. For example, assuming that the operation guarantee minimum temperature is 0 ° C., which is a growth rate of 1000 μm / sec, a voltage application time of 0.16 seconds or more is sufficient for a liquid crystal panel having a pixel size of 160 μm × 50 μm at 0 ° C. For a liquid crystal panel having a pixel size of 450 μm × 150 μm, 0.45 seconds or more was sufficient.

【0038】転移処理のための電圧は、断続的または連
続的に印加する。ここで、断続的に印加した場合には印
加した時間の総和が、図2に示すT1に相当する。電圧
印加の開始からベンド配向の転移核が発生するまでのタ
イムラグは存在するが、経験的に、マージンを含めて成
長速度に基づく計算値の2倍に電圧印加時間を設定すれ
ば充分であった。また本実施の形態では、図2にT1
示す電圧印加時間の前に、印加電圧を0Vにする休止期
間T0を設けた。この休止期間を設けることで、転移核
を安定して発生させることができ、安定して転移が進行
する。この休止期間を長くするにつれ、より安定して転
移を進行させることができる。実際には、休止期間を
0.2秒程度とすることで安定した転移処理が可能にな
る。
The voltage for the transfer process is applied intermittently or continuously. Here, when intermittently applied the sum of the time of applying, corresponding to T 1 shown in FIG. Although there is a time lag from the start of the voltage application to the generation of the transition nucleus of the bend orientation, empirically, it was sufficient to set the voltage application time to twice the calculated value based on the growth rate including the margin. . Further, in this embodiment, before the voltage application time indicated by T 1 in FIG. 2, provided rest period T 0 of the applied voltage to 0V. By providing this rest period, the transition nucleus can be generated stably, and the transition proceeds stably. As the pause period is lengthened, metastasis can progress more stably. Actually, stable transition processing can be performed by setting the pause period to about 0.2 seconds.

【0039】《実施の形態2》本実施の形態では、不要
な電力消費を抑制しかつ使用者に不快感や不安感を与え
ないための改良について説明する。
Embodiment 2 In this embodiment, an improvement will be described in which unnecessary power consumption is suppressed and a user does not feel discomfort or anxiety.

【0040】本実施の形態の液晶表示装置の概略した構
成を図3に示す。この液晶表示装置は、OCB型液晶表
示装置である。液晶表示装置1は、アクティブマトリッ
クス型で7インチの液晶パネル2、低電圧化駆動と視角
拡大のために光学補償する一対のフィルム位相差板8、
一対の偏光板10および液晶パネル2を照射するための
バックライト9を備える。液晶パネル2は、図7に示す
ものと同様の構造を有する。制御部11は、表示駆動時
に表示用駆動信号を出力する表示駆動回路12、液晶層
の配向をベンド配向に転移させるための電圧パルスを出
力する転移駆動回路13バックライトのON/OFFを
制御するためのバックライト制御回路14およびこれら
を制御する制御回路16を備える。転移駆動回路13
は、液晶パネル2の対向電極4bと画素電極4aとの間
に、液晶層7をスプレイ配向からベンド配向に転移させ
るために例えば15Vの高電圧の転移用電圧パルスを間
欠的に一定時間印加する。
FIG. 3 shows a schematic configuration of the liquid crystal display device of the present embodiment. This liquid crystal display device is an OCB type liquid crystal display device. The liquid crystal display device 1 includes an active matrix type 7-inch liquid crystal panel 2, a pair of film retarders 8 for optically compensating for low voltage driving and viewing angle expansion,
A backlight 9 for irradiating the pair of polarizing plates 10 and the liquid crystal panel 2 is provided. The liquid crystal panel 2 has a structure similar to that shown in FIG. The control unit 11 controls ON / OFF of a display drive circuit 12 that outputs a drive signal for display at the time of display drive, a transition drive circuit 13 that outputs a voltage pulse for changing the orientation of the liquid crystal layer to bend orientation, and a backlight. And a control circuit 16 for controlling these. Transition drive circuit 13
Is to intermittently apply a high-voltage transfer voltage pulse of, for example, 15 V between the counter electrode 4b and the pixel electrode 4a of the liquid crystal panel 2 to transfer the liquid crystal layer 7 from the splay alignment to the bend alignment. .

【0041】本液晶表示装置では、室温下で液晶パネル
2の全画素中の液晶層が全てベンド配向に転移するに
は、2秒間の電圧印加が必要である。液晶表示装置1の
主電源をONにすると、制御回路16は、スイッチ15
を端子A側に接続し、転移駆動回路13より液晶パネル
2に高電圧の転移用電圧パルスを2秒間印加する。この
2秒間の電圧パルスの印加により、液晶層7中の液晶分
子7aの転移が完了する。電圧パルスの印加が終了する
と、制御回路16はスイッチ15を端子B側に接続して
表示駆動回路12を液晶パネル2と接続する。制御回路
16は、この表示駆動回路12と液晶パネル2との接続
に同期してバックライト制御回路14を操作して、バッ
クライト9を点灯させる。これにより、液晶表示装置1
は、表示駆動モードに移行する。
In the present liquid crystal display device, it is necessary to apply a voltage for 2 seconds in order for all the liquid crystal layers in all the pixels of the liquid crystal panel 2 to transition to the bend alignment at room temperature. When the main power supply of the liquid crystal display device 1 is turned on, the control circuit 16
Is connected to the terminal A side, and a high voltage transition voltage pulse is applied to the liquid crystal panel 2 from the transition drive circuit 13 for 2 seconds. The transfer of the liquid crystal molecules 7a in the liquid crystal layer 7 is completed by applying the voltage pulse for 2 seconds. When the application of the voltage pulse is completed, the control circuit 16 connects the switch 15 to the terminal B and connects the display drive circuit 12 to the liquid crystal panel 2. The control circuit 16 operates the backlight control circuit 14 in synchronization with the connection between the display drive circuit 12 and the liquid crystal panel 2 to turn on the backlight 9. Thereby, the liquid crystal display device 1
Shifts to the display drive mode.

【0042】本実施の形態の液晶表示装置では、バック
ライトを点灯した後に転移用電圧パルスを印加する従来
の液晶表示装置のように、転移処理中に、画面が間欠的
に明暗に点滅しさらに点欠陥や面欠陥が液晶パネルの全
面に現れるような不良な表示を行うことがない。したが
って、使用者に不快な印象を与えたり、故障を予期させ
ることを避けることもできる。なお、本実施の形態で
は、液晶層中の液晶分子をスプレイ配向からベンド配向
に転移させた後表示するOCB型の液晶表示装置を例に
説明したが、本発明は、配向状態を初期状態から表示可
能配向状態へ転移させた後に表示し、転移中にパネル面
で不均一に配向状態が移行、進行する他の型の液晶表示
装置、例えばFLC型液晶表示装置や相転移型液晶表示
装置においても適用される。なお、電極に突起を設けた
り、液晶配向膜にそこに位置する液晶分子のプレチルト
角が他の領域のそれと異なるように形成された特異な領
域を設けることで、転移を誘起することができ、予め設
定された時間内で転移を確実に完了させることができ
る。
In the liquid crystal display device according to the present embodiment, the screen intermittently blinks bright and dark during the transition process as in the conventional liquid crystal display device in which the transition voltage pulse is applied after the backlight is turned on. A defective display in which point defects and surface defects appear on the entire surface of the liquid crystal panel is not performed. Therefore, it is also possible to avoid giving the user an unpleasant impression or expecting a failure. Note that, in the present embodiment, an OCB type liquid crystal display device in which liquid crystal molecules in a liquid crystal layer are transferred from a splay alignment to a bend alignment and then displayed is described as an example. In other types of liquid crystal display devices that display after being transferred to a displayable alignment state, and the alignment state is shifted and progresses non-uniformly on the panel surface during the transfer, for example, an FLC type liquid crystal display device and a phase transition type liquid crystal display device Also applies. In addition, by providing a projection on the electrode, or by providing a unique region formed in the liquid crystal alignment film such that the pretilt angle of liquid crystal molecules located there is different from that of the other region, transition can be induced, Transfer can be reliably completed within a preset time.

【0043】ここで、転移用電圧パルスとして、表示状
態における表示駆動信号よりも高い例えば25V程度の
電圧が電極間に印加される。しかしながら、この高電圧
の印加は、転移時に大きな消費電力を要することにな
る。そこで、転移用電圧パルスの電圧値を表示駆動信号
と同等の5〜6Vとしたところ、約30秒を要したもの
の低電圧で液晶層中の液晶分子をスプレイ配向からベン
ド配向に転移させることができた。すなわち、必ずしも
表示用とは別に転移用に電源供給機構を設ける必要はな
い。したがって、転移用電圧パルスの電圧モードを表示
駆動信号のそれと等しくすることで、消費電力を下げ、
さらに装置の価格を低くすることができる。
Here, as the transition voltage pulse, a voltage of, for example, about 25 V higher than the display drive signal in the display state is applied between the electrodes. However, application of this high voltage requires large power consumption during transition. Therefore, when the voltage value of the transition voltage pulse is set to 5 to 6 V, which is equivalent to the display drive signal, it takes about 30 seconds, but it is possible to transition the liquid crystal molecules in the liquid crystal layer from the splay alignment to the bend alignment at a low voltage. did it. That is, it is not always necessary to provide a power supply mechanism for transfer separately from display. Therefore, by making the voltage mode of the transition voltage pulse equal to that of the display drive signal, power consumption is reduced,
Further, the cost of the device can be reduced.

【0044】図4に示すように、ノート型パーソナルコ
ンピュータ、モバイルコンピュータ、折畳式の携帯電話
等、液晶パネル2を覆うカバー17を有し、使用の際に
カバー17を開ける必要がある液晶表示装置の場合に
は、制御回路16はカバー17の開閉に同期して液晶パ
ネル2と表示駆動回路12または転移駆動回路13との
接続を制御することもできる。主電源がONになってい
てカバー17が閉鎖されているときにカバー17を開放
すると、制御回路16は、液晶パネル2に転移用電圧パ
ルスの印加が必要か否かを判定する。
As shown in FIG. 4, a notebook personal computer, a mobile computer, a foldable portable telephone or the like has a cover 17 for covering the liquid crystal panel 2, and a liquid crystal display which needs to be opened when used. In the case of the device, the control circuit 16 can control the connection between the liquid crystal panel 2 and the display drive circuit 12 or the transfer drive circuit 13 in synchronization with opening and closing of the cover 17. When the cover 17 is opened while the main power is on and the cover 17 is closed, the control circuit 16 determines whether or not the transfer voltage pulse needs to be applied to the liquid crystal panel 2.

【0045】転移用電圧パルスの印加が必要であると判
定すると、制御回路16はスイッチ15を操作して液晶
パネル2と転移駆動回路13を接続して、液晶パネル2
に転移用電圧パルスを例えば1秒間印加する。転移用電
圧パルスの印加後、制御回路16は、スイッチ15を操
作して液晶パネル2と表示駆動回路12とを接続し、さ
らにこれと同期してバックライト9を点灯して、装置は
通常の表示駆動モードに移行する。一方、転移用電圧パ
ルスの印加が不要であると判定すると、制御回路16は
スイッチ15を操作して液晶パネル2と表示駆動回路1
2とを接続し、さらにこれと同期してバックライト9を
点灯して、装置は通常の表示駆動モードに移行する。装
置の主電源がONになっている場合にカバー17が閉じ
られると、制御回路16は、スイッチ15を操作して液
晶パネル2と転移駆動回路13とを接続して、液晶パネ
ル2にベンド配向を維持するために電圧パルスを印加す
る。またそれと同期してバックライトを消灯する。
When it is determined that the application of the transition voltage pulse is necessary, the control circuit 16 operates the switch 15 to connect the liquid crystal panel 2 and the transition drive circuit 13 to the liquid crystal panel 2.
For example, a transfer voltage pulse is applied for one second. After the application of the transition voltage pulse, the control circuit 16 operates the switch 15 to connect the liquid crystal panel 2 and the display driving circuit 12, and further turns on the backlight 9 in synchronization with the operation. The display shifts to the display drive mode. On the other hand, when it is determined that the application of the transition voltage pulse is unnecessary, the control circuit 16 operates the switch 15 to operate the liquid crystal panel 2 and the display drive circuit 1.
2 and the backlight 9 is turned on in synchronization with this, and the apparatus shifts to a normal display drive mode. When the cover 17 is closed when the main power supply of the apparatus is turned on, the control circuit 16 operates the switch 15 to connect the liquid crystal panel 2 and the transition drive circuit 13 to bend the liquid crystal panel 2. Voltage pulse is applied to maintain In addition, the backlight is turned off in synchronization with it.

【0046】また、使用者からの入力が所定時間認めら
れない場合には、制御回路16は、同様にスイッチ15
を操作して液晶パネル2と転移駆動回路13とを接続し
て、液晶パネル2にベンド配向を維持するために電圧パ
ルスを印加する。またそれと同期してバックライトを消
灯する。使用者からの入力が確認されると、制御回路1
6はスイッチ15を操作して液晶パネル2と表示駆動回
路12とを接続し、さらにこれと同期してバックライト
9を点灯して、装置は通常の表示駆動モードに移行す
る。これらは、ノート型パーソナルコンピュータ、モバ
イルコンピュータ、折畳式の携帯電話等の駆動に有用で
ある。
When the input from the user is not recognized for a predetermined time, the control circuit 16 similarly operates the switch 15.
Is operated to connect the liquid crystal panel 2 and the transition drive circuit 13, and a voltage pulse is applied to the liquid crystal panel 2 to maintain the bend alignment. In addition, the backlight is turned off in synchronization with it. When an input from the user is confirmed, the control circuit 1
The switch 6 operates the switch 15 to connect the liquid crystal panel 2 and the display drive circuit 12, and further turns on the backlight 9 in synchronization with the operation, whereby the apparatus shifts to a normal display drive mode. These are useful for driving notebook personal computers, mobile computers, foldable mobile phones, and the like.

【0047】例えば液晶テレビジョンなど、スピーカを
有する液晶表示装置においては、スピーカを転移の進行
や終了を告知する手段として用いる。装置の主電源が投
入されると、所定時間(例えば2秒間)電圧パルスが印
加される。例えばこの転移駆動中に、転移の進行を告知
する音声信号をスピーカより出力させる。すなわち、転
移が完了してバックライトが点灯される以前にスピーカ
から音声を出力させて、転移操作中でも装置が起動中で
あることを認識させる。液晶テレビジョンにおいては、
たとえば、主電源がONになった時点でスピーカによる
放送用音声の出力を開始させ、転移の状況を告知する音
声信号は放送用音声信号に重畳する。転移終了後に画像
表示と音声出力を開始すると、電源投入から画像表示お
よび音声出力が開始されるまでのタイムラグは、使用者
に不安を与える要因にもなりかねない。そこで、電源投
入後に画像表示に先行して音声を出力することで、この
ような不安を与えることを避けることが望ましい。転移
駆動が終了すると、バックライトの点灯と表示駆動モー
ドへの移行とともに、転移の終了を告知する音声信号を
スピーカより出力させる。もちろん、バックライトの点
灯後に音声出力させてもよい。
For example, in a liquid crystal display device having a speaker, such as a liquid crystal television, the speaker is used as means for notifying the progress or end of the transition. When the main power of the apparatus is turned on, a voltage pulse is applied for a predetermined time (for example, 2 seconds). For example, during this transition driving, a sound signal notifying the progress of the transition is output from the speaker. That is, a sound is output from the speaker before the backlight is turned on after the transfer is completed, and it is recognized that the apparatus is being activated even during the transfer operation. In LCD television,
For example, when the main power supply is turned on, the output of the broadcast audio from the speaker is started, and the audio signal notifying the transition state is superimposed on the broadcast audio signal. When the image display and the sound output are started after the end of the transfer, the time lag from when the power is turned on to when the image display and the sound output are started may be a cause of anxiety to the user. Therefore, it is desirable to avoid such anxiety by outputting a sound prior to the image display after the power is turned on. When the transition drive is completed, the sound signal for notifying the end of the transition is output from the speaker along with turning on the backlight and shifting to the display drive mode. Of course, the sound may be output after the backlight is turned on.

【0048】また、バックライトが点灯されるまで転移
処理中あるいは転移完了を使用者に告知するための目印
として、小型ランプ、発光ダイオード、EL素子等を点
灯して、転移が終了した後にバックライトを点灯させて
もよい。これにより、使用者は故障と思わずに安心して
いられる。なお、構成が複雑にはなるものの、転移駆動
回路において転移完了時間を前もって設定するほか、液
晶パネルを視覚的に観察し、ベンド配向への転移の終了
を判定する手段を設けてもよい。バックライトは転移駆
動操作後に点灯するとしたが、必ずしも直後でなくても
よい。また、液晶パネルが表示駆動モードにあるときに
のみ点灯させてもよい。また、本発明では透過型の液晶
表示装置として説明したが、反射型の液晶表示装置の駆
動方法として、バックライトの代わりにフロントライト
を用いても何ら支障はない。
Also, the small lamp, light emitting diode, EL element, etc. are turned on as a mark for notifying the user that the transfer process is in progress or the transfer is completed until the backlight is turned on. May be turned on. As a result, the user can be relieved without thinking that the malfunction has occurred. Although the configuration becomes complicated, a transition drive circuit may set a transition completion time in advance, and a means for visually observing the liquid crystal panel and determining the end of the transition to the bend alignment may be provided. Although the backlight is turned on after the transition drive operation, it does not necessarily have to be immediately after. Alternatively, it may be turned on only when the liquid crystal panel is in the display drive mode. In the present invention, a transmissive liquid crystal display device has been described. However, as a driving method of a reflective liquid crystal display device, there is no problem in using a front light instead of a backlight.

【0049】《実施の形態3》本実施の形態では、より
確実かつ短時間で上記転移を完了させ、表示駆動モード
に移行することができる液晶表示装置の例について説明
する。
<< Embodiment 3 >> In this embodiment, an example of a liquid crystal display device capable of completing the above-mentioned transition more reliably and in a shorter time and shifting to the display driving mode will be described.

【0050】本実施の形態の液晶表示装置の構成の概略
を図5に示す。この液晶表示装置は、画素ごとにスイッ
チング素子が配されたいわゆるアクティブマトリックス
型の液晶パネル2と、一対の偏光板10と、光学補償用
の位相補償板8を有する。液晶パネル2は、対向する一
対の基板3aおよび3bを有する。アレイ基板3aには
画素電極4aと例えばTFTからなるスイッチング素子
18とが配されている。対向基板3bには対向電極4b
が配されている。画素電極4aと対向電極4bの表面
は、それぞれ液晶配向膜6aおよび6bにより被覆され
ている。液晶配向膜6aおよび6bは、ともにポリアミ
ック酸タイプのポリイミド配向膜材料(日産化学工業
(株)製、SE−7492)を印刷塗布し、焼成し、さ
らにラビング処理して形成したものである。液晶層7に
は、正の誘電率異方性のネマティック液晶材料が充填さ
れている。また、基板間隙を一定に保つための径約5ミ
クロンのスペ−サ(図示せず)が配されている。無電圧
印加状態で液晶分子が斜めに広がった配向領域からなる
いわゆるスプレイ配向を形成するように、それぞれの配
向膜6aおよび6bは、その表面上の液晶分子が約5〜
6度のプレチルト角を示し、分子軸が同一面内に位置す
るように、ラビング方向を互いに平行にして配されてい
る。
FIG. 5 schematically shows the structure of the liquid crystal display device of the present embodiment. This liquid crystal display device includes a so-called active matrix type liquid crystal panel 2 in which switching elements are arranged for each pixel, a pair of polarizers 10, and a phase compensator 8 for optical compensation. The liquid crystal panel 2 has a pair of substrates 3a and 3b facing each other. On the array substrate 3a, a pixel electrode 4a and a switching element 18 composed of, for example, a TFT are arranged. The counter electrode 4b is provided on the counter substrate 3b.
Is arranged. The surfaces of the pixel electrode 4a and the counter electrode 4b are covered with liquid crystal alignment films 6a and 6b, respectively. The liquid crystal alignment films 6a and 6b are both formed by printing and applying a polyamic acid type polyimide alignment film material (manufactured by Nissan Chemical Industries, Ltd., SE-7492), baking, and further rubbing. The liquid crystal layer 7 is filled with a nematic liquid crystal material having a positive dielectric anisotropy. In addition, a spacer (not shown) having a diameter of about 5 microns is provided for keeping the substrate gap constant. Each of the alignment films 6a and 6b has a liquid crystal molecule on its surface of about 5 to 5 so that the liquid crystal molecules form a so-called splay alignment composed of an alignment region in which the liquid crystal molecules are obliquely spread under no voltage application state.
The rubbing directions are arranged parallel to each other so that the pretilt angle is 6 degrees and the molecular axes are located in the same plane.

【0051】液晶パネル2に密着して配置された温度検
知器19は、液晶パネル2の温度を検出し、温度検知信
号を転移駆動回路13に出力する。なお、温度検知器1
9を液晶パネル2に密着して配置することが困難な場合
は、温度検知器19は液晶パネル2の近傍に配される。
すなわち、液晶パネルの周囲温度を液晶パネルの温度と
して代用してもよい。転移駆動回路13は、温度検知信
号に基づいて、液晶パネル2の画素電極4aと対向電極
4bの間に印加する転移用電圧パルスの条件を決定す
る。転移駆動回路13は、対向電極4bと画素電極4a
の間に図6に示すデューティサイクルが50%の転移用
電圧パルスを印加する。
The temperature detector 19 disposed in close contact with the liquid crystal panel 2 detects the temperature of the liquid crystal panel 2 and outputs a temperature detection signal to the transition drive circuit 13. In addition, the temperature detector 1
When it is difficult to arrange the temperature sensor 9 in close contact with the liquid crystal panel 2, the temperature detector 19 is arranged near the liquid crystal panel 2.
That is, the ambient temperature of the liquid crystal panel may be used as the temperature of the liquid crystal panel. The transition drive circuit 13 determines the condition of the transition voltage pulse applied between the pixel electrode 4a and the counter electrode 4b of the liquid crystal panel 2 based on the temperature detection signal. The transition drive circuit 13 includes a counter electrode 4b and a pixel electrode 4a.
During this time, a transition voltage pulse having a 50% duty cycle shown in FIG. 6 is applied.

【0052】なお、転移操作開始直後に両電極間の初期
電圧をほぼ0V(0V±0.5V)とした初期期間を設
けている。また、電圧パルス間隔期間の電圧も初期期間
と同じくほぼ0V(0V±0.5V)にした。本実施の
形態の液晶表示装置と同様の液晶表示装置を用いて、−
10℃から60℃の雰囲気下で上記転移電圧パルスの電
圧値を−15V、−20Vまたは−30Vとし、その周
波数を0.5Hz、1Hz、3Hzまたは5Hzとし
て、液晶パネルの表示領域の全画素の転移が完了するま
での転移時間を評価した。これらの結果を表2から表4
に示す。
It is to be noted that an initial period is provided immediately after the start of the transfer operation, in which the initial voltage between the two electrodes is substantially 0 V (0 V ± 0.5 V). Further, the voltage in the voltage pulse interval period was set to almost 0 V (0 V ± 0.5 V) as in the initial period. Using a liquid crystal display device similar to the liquid crystal display device of this embodiment, −
In an atmosphere of 10 ° C. to 60 ° C., the voltage value of the transition voltage pulse is set to −15 V, −20 V, or −30 V, and the frequency is set to 0.5 Hz, 1 Hz, 3 Hz, or 5 Hz. The transfer time to completion of transfer was evaluated. Tables 2 to 4 show these results.
Shown in

【0053】[0053]

【表2】 [Table 2]

【0054】[0054]

【表3】 [Table 3]

【0055】[0055]

【表4】 [Table 4]

【0056】以下、この転移時間の温度依存性の結果に
基づいて本実施の形態の液晶表示装置について説明す
る。
Hereinafter, the liquid crystal display of the present embodiment will be described based on the result of the temperature dependence of the transition time.

【0057】[3.1 周波数変更]転移駆動操作回路
13は、たとえば温度検知器19が検知した液晶パネル
2の温度(またはその周囲の温度)と以下の表5に基づ
いて、液晶パネル2の電極間に印加する転移用電圧パル
スの周波数を決定する。
[3.1 Frequency Change] The transition drive operation circuit 13 determines the temperature of the liquid crystal panel 2 based on, for example, the temperature of the liquid crystal panel 2 (or the surrounding temperature) detected by the temperature detector 19 and Table 5 below. The frequency of the transfer voltage pulse applied between the electrodes is determined.

【0058】[0058]

【表5】 [Table 5]

【0059】パネル温度が低いほどその周波数が低くな
るように、転移用電圧パルスの周波数を連続的に変化さ
せる。これにより最長でも2秒間でベンド配向への転移
処理を完了させることができる。実際に、−10〜60
℃の温度範囲で対向電極4bと画素電極4aの間に電圧
パルスを印加したところ、20℃〜60℃の温度範囲で
は数Hzの周波数で1秒より短い時間でベンド配向への
転移が完了し、−10℃〜0℃の温度範囲では1Hz以
下の低周波数で2秒で転移が完了した。すなわち、液晶
パネルの温度を検知し、検知した温度に基づいて転移用
電圧パルスの周波数を決定することで、室温から高温雰
囲気までの広い温度領域で1秒より短い時間で、0℃以
下の低温雰囲気でも2秒という短い時間でベンド配向へ
の転移を完了させることができる。
The frequency of the transition voltage pulse is continuously changed so that the lower the panel temperature, the lower the frequency. Thereby, the transition process to the bend alignment can be completed in a maximum of 2 seconds. In fact, -10 to 60
When a voltage pulse was applied between the counter electrode 4b and the pixel electrode 4a in the temperature range of 20 ° C., the transition to the bend alignment was completed in a temperature range of 20 ° C. to 60 ° C. at a frequency of several Hz in less than 1 second. In the temperature range of -10 ° C to 0 ° C, the transition was completed in 2 seconds at a low frequency of 1 Hz or less. That is, by detecting the temperature of the liquid crystal panel and determining the frequency of the transition voltage pulse based on the detected temperature, the temperature can be reduced to 0 ° C. or less in a wide temperature range from room temperature to a high-temperature atmosphere in less than 1 second. The transition to bend alignment can be completed in a short time of 2 seconds even in an atmosphere.

【0060】従来のOCB型液晶表示装置のように全使
用温度領域において数Hzに固定された周波数の電圧パ
ルスを用いると高温では1秒以下であるが、低温では数
秒以上から数十秒必要とされたベンド配向への転移を、
低温から高温の雰囲気に渡って極めて短時間で完了させ
ることができ、より早い表示モードへの移行が可能にな
る。用いる液晶材料や液晶パネルの構成にも依存する
が、一般的に20℃〜60℃の高温領域では、周波数を
2〜5Hz、望ましくは2〜4Hzとすることで1秒以
下で転移を完了させさせることができ、−10℃〜0℃
の低温領域では、周波数を0.2〜1Hz、望ましくは
0.4〜0.6Hzとすることで2秒程度で転移を完了
させることができる。勿論、電圧値を−30Vとする必
要はなく、使用材料、セルギャップ等、液晶パネルの構
成によっては、異なる電圧値の電圧パルスを印加しても
よい。
When a voltage pulse having a frequency fixed to several Hz is used in the entire operating temperature range as in the conventional OCB type liquid crystal display device, it takes less than one second at a high temperature, but requires several seconds to several tens of seconds at a low temperature. Transition to the bend orientation
It can be completed in an extremely short time in a low-temperature to high-temperature atmosphere, and it is possible to shift to the display mode faster. Although it depends on the liquid crystal material used and the configuration of the liquid crystal panel, generally, in a high temperature range of 20 ° C. to 60 ° C., the frequency is set to 2 to 5 Hz, preferably 2 to 4 Hz to complete the transition in 1 second or less. -10 ° C to 0 ° C
In the low temperature region, the transition can be completed in about 2 seconds by setting the frequency to 0.2 to 1 Hz, preferably 0.4 to 0.6 Hz. Needless to say, the voltage value does not need to be -30 V, and voltage pulses having different voltage values may be applied depending on the material used, the cell gap, and the like, and the configuration of the liquid crystal panel.

【0061】また、短時間で転移を完了させるために
は、電圧パルスの印加に先立って、両電極間電圧を0V
にする初期期間を設けることが有用である。理想的には
0Vとすることが望ましいが、実質的には0V±0.5
V程度でも良い。また、繰り返されるパルス間の電極間
電圧を0V±0.5V、好ましくは0Vにすることも有
用である。この効果は、特に低温雰囲気において発揮さ
れる。転移操作をスタートする直前および電圧パルス間
隔期間に両電極間にたとえば約−1V程度の電位差があ
ると、その電位差によって液晶分子が安定した不均一ス
プレイ配向のまま維持されるためにパルス電圧の印加の
際の転移核(すなわちベンド配向に転移した微小領域)
の発生頻度が著しく低下する。そのため、両電極間電圧
を略0Vにする期間を設ける場合に比べてより多くのパ
ルス電圧の繰り返しが必要となる。また、同様の理由
で、充分な初期期間やパルス間隔期間を設けることが好
ましい。
In order to complete the transition in a short time, the voltage between the two electrodes must be set to 0V before the application of the voltage pulse.
It is useful to provide an initial period. Ideally, it is desirable to be 0V, but practically 0V ± 0.5
It may be about V. It is also useful to set the voltage between the electrodes between repeated pulses to 0V ± 0.5V, preferably 0V. This effect is exhibited particularly in a low-temperature atmosphere. Immediately before the start of the transfer operation and during the voltage pulse interval, if there is a potential difference of, for example, about -1 V between the two electrodes, the potential difference keeps the liquid crystal molecules in a stable non-uniform splay alignment. Transition nuclei at the time of crystallization
The frequency of occurrence of the occurrence is significantly reduced. Therefore, it is necessary to repeat the pulse voltage more than in a case where a period in which the voltage between both electrodes is substantially 0 V is provided. For the same reason, it is preferable to provide a sufficient initial period and a pulse interval period.

【0062】例えばデューティサイクルが50%で、周
波数が0.5Hzの電圧パルスにおいては、初期期間を
1秒とし、デューティサイクルが50%で、周波数が1
Hzの電圧パルスにおいては、初期期間を0.5秒とす
る。周波数が3Hzの電圧パルスにおいては、初期期間
を0.16秒とする。パネルの構成や液晶材料によって
も、実用的な初期期間は約0.2〜2秒の範囲内である
が、この初期期間を2〜5秒程度までに長くすることが
安定的な転移の進行のためには有用である。なお、転移
処理を開始する前、たとえば装置の主電源がOFFの時
に予め電極間電圧を0Vに維持しておくと、転移処理開
始後の初期期間を短くすることが出来る。
For example, for a voltage pulse having a duty cycle of 50% and a frequency of 0.5 Hz, the initial period is 1 second, the duty cycle is 50% and the frequency is 1
In the case of the voltage pulse of Hz, the initial period is set to 0.5 second. For a voltage pulse having a frequency of 3 Hz, the initial period is set to 0.16 seconds. Although the practical initial period is in the range of about 0.2 to 2 seconds depending on the configuration of the panel and the liquid crystal material, it is necessary to lengthen this initial period to about 2 to 5 seconds to achieve stable transition. Useful for. Note that if the inter-electrode voltage is maintained at 0 V before the start of the transfer process, for example, when the main power supply of the apparatus is turned off, the initial period after the start of the transfer process can be shortened.

【0063】[3.2 電圧値変更]パネル温度に応じ
て電圧パルスの電圧値を変更することによっても、同様
に短時間での転移が可能になる。転移駆動回路13は、
温度検知器19からの信号すなわちパネル温度に基づい
て、電極間に印加する転移用電圧パルスの周波数を0.
5Hzとした上で、その電圧値を以下の表6に示すよう
に決定する。すなわち、パネル温度が低くなるほど高く
なるよう転移用電圧パルスの電圧値を連続的に変化させ
る。
[3.2 Change of Voltage Value] By changing the voltage value of the voltage pulse in accordance with the panel temperature, the transition can be similarly performed in a short time. The transition drive circuit 13
Based on the signal from the temperature detector 19, that is, the panel temperature, the frequency of the transition voltage pulse applied between the electrodes is set to 0.
After setting the frequency to 5 Hz, the voltage value is determined as shown in Table 6 below. That is, the voltage value of the transition voltage pulse is continuously changed so as to increase as the panel temperature decreases.

【0064】[0064]

【表6】 [Table 6]

【0065】実際に上記表に基づいて決定した条件で両
電極間に電圧を印加したところ、20℃〜60℃の温度
範囲では−20V以上、−10℃〜20℃の温度範囲で
は−20V以下の電圧値の転移用電圧パルスを印加する
ことにより、全温度範囲内で1パルスの印加、すなわち
2秒で転移を完了させることができた。すなわち、以上
の様に、パネル温度を検出し、それに応じて決定された
電圧値の転移用電圧パルスを印加することにより、低温
から高温の広い温度範囲において2秒という短時間でベ
ンド配向への転移を完了させることができる。すなわ
ち、低温においてもごく短時間で表示駆動モードへの移
行が可能になる。なお、電圧パルスの電圧値および周波
数は、使用する液晶材料、セルの構成等によって決定さ
れる。
When a voltage was actually applied between the two electrodes under the conditions determined based on the above table, the voltage was -20 V or more in the temperature range of 20 ° C. to 60 ° C. and -20 V or less in the temperature range of -10 ° C. to 20 ° C. By applying a voltage pulse for transfer having a voltage value of, the transfer was completed in one pulse application, that is, 2 seconds within the entire temperature range. That is, as described above, by detecting the panel temperature and applying a transition voltage pulse having a voltage value determined according to the panel temperature, the bend orientation can be changed to a bend alignment in a short time of 2 seconds in a wide temperature range from a low temperature to a high temperature. The transfer can be completed. That is, it is possible to shift to the display drive mode in a very short time even at a low temperature. Note that the voltage value and frequency of the voltage pulse are determined by the liquid crystal material used, the configuration of the cell, and the like.

【0066】本実施の形態では転移用電圧パルスの周波
数を0.5Hzとし、実用的判断で、転移操作をスター
トした直後の初期期間を1秒としたが、この初期期間を
0.2〜5秒程度にすることが効果的である。初期期間
の時間範囲は材料、温度によっても異なるが、約0.2
〜5秒である。この初期期間を転移処理を開始する前に
設定しても良い。この場合、転移処理の開始前に実質的
に充分な初期期間を設けることができるため、転移処理
の開始後に設定する初期期間は短くてもよい。初期電圧
としては理想的な0Vが望ましいが、0V±0.5V程
度に設定しても良い。
In the present embodiment, the frequency of the transition voltage pulse is set to 0.5 Hz, and in practical judgment, the initial period immediately after the start of the transition operation is set to 1 second. It is effective to set it to about seconds. The time range of the initial period varies depending on the material and temperature, but is about 0.2.
~ 5 seconds. This initial period may be set before starting the transfer process. In this case, since a substantially sufficient initial period can be provided before the start of the transfer process, the initial period set after the start of the transfer process may be short. Although the ideal initial voltage is preferably 0V, it may be set to about 0V ± 0.5V.

【0067】[3.3 周波数および電圧値を変更]周
囲温度に応じて転移用電圧パルスの周波数および電圧値
の双方を変化させても、低温から高温に渡って短時間に
転移を完了させることが出来る。たとえば、以下の表7
に示すように周波数および電圧値を決定する。
[3.3 Changing Frequency and Voltage Value] Even when both the frequency and the voltage value of the transition voltage pulse are changed according to the ambient temperature, the transition can be completed in a short time from a low temperature to a high temperature. Can be done. For example, Table 7 below
The frequency and the voltage value are determined as shown in FIG.

【0068】[0068]

【表7】 [Table 7]

【0069】電圧パルスのデューティサイクル即ちパル
ス幅が異なると、転移時間は大幅に変化する。また、パ
ネル温度に応じて転移時間が最短になるときのデューテ
ィサイクルは異なる。したがって、上記の周波数および
電圧値に代えてパルス幅を温度に応じて変化させても、
転移時間を短くすることができる。上記のように、パネ
ル温度に応じて、電圧周波数、電圧値等の条件を連続的
に変化させると、最適な電圧パルス条件を得ることがで
きるが、そのための転移駆動制御回路の構成が複雑にな
る。そこで、たとえば、表8に示すように、使用保証温
度範囲を2つに分割し、分割されたそれぞれの温度範囲
に対して転移用電圧パルスの条件を設定すると、低温で
の転移時間が若干長くなるものの転移駆動制御回路の構
成が簡略化される。
If the duty cycle, ie, the pulse width, of the voltage pulse is different, the transition time will vary significantly. Also, the duty cycle at which the transition time is minimized differs according to the panel temperature. Therefore, even if the pulse width is changed according to the temperature in place of the above-described frequency and voltage value,
The transition time can be shortened. As described above, when the conditions such as the voltage frequency and the voltage value are continuously changed according to the panel temperature, the optimum voltage pulse condition can be obtained. However, the configuration of the transition drive control circuit for that purpose becomes complicated. Become. Therefore, for example, as shown in Table 8, when the guaranteed use temperature range is divided into two and the condition of the transition voltage pulse is set for each of the divided temperature ranges, the transition time at a low temperature is slightly longer. However, the configuration of the transition drive control circuit is simplified.

【0070】[0070]

【表8】 [Table 8]

【0071】もちろん、使用保証温度範囲を3つ以上の
温度範囲に分割してもよい。以上の様に、パネル温度に
応じて決定した電圧値、電圧周波数、パルス幅またはこ
れらの複数を含む転移用電圧パルスを印加することによ
り、広い温度範囲において転移時間を短縮することがで
きる。
Of course, the guaranteed use temperature range may be divided into three or more temperature ranges. As described above, the transition time can be shortened in a wide temperature range by applying the transition voltage pulse including the voltage value, the voltage frequency, the pulse width, or a plurality of these values determined according to the panel temperature.

【0072】[3.4 最低温度に固定]上記実施の形
態では、パネル温度に応じて転移用電圧パルスの条件を
決定する方法について説明したが、本実施の形態ではよ
り簡略な構成で、低温雰囲気下でも転移時間を短縮する
ことができる駆動方法の例について説明する。低温雰囲
気下では、高温雰囲気下と比べて転移の完了により長時
間を要する。そこで、装置の最低使用温度である−10
℃において最短である2秒で転移を完了させることがで
きる条件の転移用電圧パルス、すなわち電圧値を−30
Vとし電圧周波数を0.5Hzとした転移用電圧パルス
を両電極間に印加することによって、少なくとも転移時
間を−10℃から60℃までの広範囲の温度範囲で2秒
で転移させることが出来た。
[3.4 Fixed to Minimum Temperature] In the above-described embodiment, the method of determining the condition of the transition voltage pulse according to the panel temperature has been described. An example of a driving method capable of shortening the transition time even in an atmosphere will be described. In a low temperature atmosphere, it takes a longer time to complete the transition than in a high temperature atmosphere. Therefore, the minimum operating temperature of the device is -10.
The voltage pulse for transition under the condition that the transition can be completed in 2 seconds which is the shortest at 2 ° C., that is, the voltage value is −30.
By applying a transition voltage pulse between both electrodes at V and a voltage frequency of 0.5 Hz, it was possible to transition in at least 2 seconds over a wide temperature range from −10 ° C. to 60 ° C. in transition time. .

【0073】上記実施の形態では、転移用電圧パルスの
周波数を0.5Hzとすることで、1パルスの負の転移
用電圧パルスの印加、すなわち2秒で転移を完了させる
ことができたが、液晶材料や液晶パネルの構成によって
最適な周波数は異なる。一般に、周波数を0.2〜1H
zの範囲、望ましくは0.4〜0.6Hzの範囲より選
択することで、より短い時間で転移を完了させることが
できる。なお、条件によっては、転移用電圧パルスを1
パルス以上印加する必要がある。なお、上記実施形態で
は最低使用温度を−10℃としたが、装置の構成によっ
て使用が保証される最低温度は異なる。
In the above embodiment, by setting the frequency of the transition voltage pulse to 0.5 Hz, the application of one negative transition voltage pulse, that is, the transition can be completed in 2 seconds, The optimum frequency differs depending on the liquid crystal material and the configuration of the liquid crystal panel. Generally, the frequency is 0.2-1H
By selecting from the range of z, desirably from 0.4 to 0.6 Hz, the transition can be completed in a shorter time. Depending on the conditions, the voltage pulse for transition may be 1
It is necessary to apply more than a pulse. In the above embodiment, the minimum use temperature is set to -10 ° C, but the minimum use temperature is guaranteed depending on the configuration of the apparatus.

【0074】[0074]

【発明の効果】本発明によると、液晶分子の初期配向が
表示のための配向と異なる液晶表示装置において、その
表示のための液晶配向の転移を確実かつ短時間で終了さ
せることができる液晶表示装置およびその駆動方法を提
供することができる。
According to the present invention, in a liquid crystal display device in which the initial alignment of liquid crystal molecules is different from the alignment for display, the transition of the alignment of the liquid crystal for display can be completed reliably and in a short time. An apparatus and a driving method thereof can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】液晶配向膜の成長速度を示す特性図であって、
(a)は液晶配向膜のラビング方向とベンド配向相の成
長速度の関係を示し、(b)は印加電圧とベンド配向相
の成長速度の関係を示す。
FIG. 1 is a characteristic diagram showing a growth rate of a liquid crystal alignment film,
(A) shows the relationship between the rubbing direction of the liquid crystal alignment film and the growth rate of the bend alignment phase, and (b) shows the relationship between the applied voltage and the growth rate of the bend alignment phase.

【図2】転移用電圧パルスの波形を示す特性図である。FIG. 2 is a characteristic diagram showing a waveform of a transition voltage pulse.

【図3】本発明の一実施例の液晶表示装置の構成を示す
概略図である。
FIG. 3 is a schematic diagram illustrating a configuration of a liquid crystal display device according to one embodiment of the present invention.

【図4】本発明の他の実施例の液晶表示装置の構成を示
す概略図である。
FIG. 4 is a schematic diagram showing a configuration of a liquid crystal display device according to another embodiment of the present invention.

【図5】本発明のさらに他の実施例の液晶表示装置の構
成を示す概略図である。
FIG. 5 is a schematic view showing a configuration of a liquid crystal display device according to still another embodiment of the present invention.

【図6】同実施例で液晶層に印加する転移用電圧パルス
の波形を示す特性図である。
FIG. 6 is a characteristic diagram illustrating a waveform of a transition voltage pulse applied to a liquid crystal layer in the same example.

【図7】OCB型液晶表示装置の構成を示す要部の概略
した縦断面図である。
FIG. 7 is a schematic longitudinal sectional view of a main part showing a configuration of an OCB type liquid crystal display device.

【符号の説明】[Explanation of symbols]

1 液晶表示装置 2 液晶パネル 3a アレイ基板 3b 対向基板 4a 画素電極 4b 対向電極 6a、6b 液晶配向膜 7 液晶層 7a 液晶分子 8 位相補償板 9 バックライト 10 偏光板 11 制御部 12 表示駆動回路 13 転移駆動回路 14 バックライト制御回路 15 スイッチ 16 制御回路 17 カバー 18 スイッチング素子 19 温度検知器 DESCRIPTION OF SYMBOLS 1 Liquid crystal display device 2 Liquid crystal panel 3a Array substrate 3b Counter substrate 4a Pixel electrode 4b Counter electrode 6a, 6b Liquid crystal alignment film 7 Liquid crystal layer 7a Liquid crystal molecule 8 Phase compensator 9 Backlight 10 Polarizer 11 Control part 12 Display drive circuit 13 Transition Drive circuit 14 Backlight control circuit 15 Switch 16 Control circuit 17 Cover 18 Switching element 19 Temperature detector

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI G09G 3/20 G09G 3/20 670L 3/34 3/34 J 3/36 3/36 (72)発明者 上村 強 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 中尾 健次 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 田中 好紀 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 津田 圭介 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 沼田 幸雄 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 中村 美香 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 小林 淳一 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平9−185037(JP,A) 特開 平7−5427(JP,A) 実開 平2−10408(JP,U)────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification symbol FI G09G 3/20 G09G 3/20 670L 3/34 3/34 J 3/36 3/36 (72) Inventor Tsuyoshi Uemura Kadoma, Osaka 1006 Kadoma, Ichidai-shi Matsushita Electric Industrial Co., Ltd. Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Mika Nakamura 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Junichi Kobayashi 1006 Kadoma Kadoma, Kadoma City, Osaka Matsushita Electric (56) References JP-A-9-185037 (JP, A) JP-A-7-5427 (JP, A) JP-A-2-10408 (JP, U)

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一対の基板と、前記一対の基板に挟持さ
れ、初期配向状態がスプレイ配向状態であり、表示時の
配向状態がベンド配向状態である液晶と、前記液晶に電
圧を印加するための電圧印加手段とを含む液晶パネル
と、前記液晶パネルの表示のために前記液晶パネルに光
を照射するバックライトとを備えた液晶表示装置の駆動
方法であって、 前記液晶がスプレイ配向状態にあるときに、前記液晶に
0.5Hz以下の交流電圧を印加して前記液晶を前記ベ
ンド配向状態に転移させる転移ステップと、 前記バックライトを点灯する点灯ステップとを含み、 前記転移ステップが行われている時は、前記点灯ステッ
プが行われないことを特徴とする液晶表示装置の駆動方
法。
1. A pair of substrates, a liquid crystal sandwiched between the pair of substrates, an initial alignment state being a splay alignment state, and an alignment state at the time of display being a bend alignment state, and a voltage applied to the liquid crystal. And a backlight for irradiating the liquid crystal panel with light for displaying the liquid crystal panel, wherein the liquid crystal is in a splay alignment state. At one time, a transition step of applying an AC voltage of 0.5 Hz or less to the liquid crystal to transition the liquid crystal to the bend alignment state, and a lighting step of lighting the backlight, wherein the transition step is performed. A driving method of the liquid crystal display device, wherein the lighting step is not performed.
【請求項2】 前記転移ステップは、前記液晶層の転移
のための前記電圧の印加の開始より所定時間経過する
と、前記転移が終了したと判定して前記電圧の印加を終
了して前記転移ステップが終了する請求項1記載の液晶
表示装置の駆動方法。
2. The method according to claim 1, wherein when a predetermined time has elapsed from the start of the application of the voltage for the transition of the liquid crystal layer, the transition is determined to be completed, and the application of the voltage is terminated. 2. The method of driving a liquid crystal display device according to claim 1, wherein:
【請求項3】 前記液晶表示装置が前記液晶パネルの表
示部を覆うカバーをさらに具備し、前記カバーの開放に
同期して前記転移ステップを開始する請求項1記載の液
晶表示装置の駆動方法。
3. The method of driving a liquid crystal display device according to claim 1, wherein the liquid crystal display device further comprises a cover for covering a display unit of the liquid crystal panel, and the transition step is started in synchronization with opening of the cover.
【請求項4】 前記液晶表示装置が前記液晶パネルを覆
うカバーをさらに具備し、表示駆動中に前記カバーの閉
鎖に同期して前記バックライトを消灯しかつ前記液晶層
の配向状態を維持するために前記液晶層に電圧を印加す
るステップと、 前記液晶材料の配向状態を維持するための前記電圧の印
加中に前記カバーの開放に同期して前記バックライトを
点灯しかつ前記電圧の印加を終了するステップとをさら
に含む請求項1記載の液晶表示装置の駆動方法。
4. The liquid crystal display device further comprises a cover for covering the liquid crystal panel, for turning off the backlight and maintaining the alignment state of the liquid crystal layer in synchronization with the closing of the cover during display driving. Applying a voltage to the liquid crystal layer, turning on the backlight in synchronization with opening of the cover during application of the voltage for maintaining the alignment state of the liquid crystal material, and terminating the application of the voltage. And driving the liquid crystal display device.
【請求項5】 表示駆動中に所定時間、使用者からの入
力信号が認められない場合に、前記バックライトを消灯
しかつ前記液晶層の配向状態を維持するために前記液晶
層に電圧を印加するステップをさらに含む請求項1記載
の液晶表示装置の駆動方法。
5. A voltage is applied to the liquid crystal layer in order to turn off the backlight and maintain the alignment state of the liquid crystal layer when no input signal from the user is recognized for a predetermined time during display driving. The method according to claim 1, further comprising the step of:
【請求項6】 前記液晶材料の配向状態を維持するため
の前記電圧の印加中に前記使用者からの入力信号が認め
られると、前記電圧の印加を終了しかつバックライトを
点灯させるステップをさらに含む請求項記載の液晶表
示装置の駆動方法。
6. The method according to claim 1, further comprising, when an input signal from the user is detected during application of the voltage for maintaining the alignment state of the liquid crystal material, ending the application of the voltage and turning on a backlight. 6. The driving method for a liquid crystal display device according to claim 5, comprising:
【請求項7】 一対の基板と、前記一対の基板に挟持さ
れ、初期配向状態がスプレイ配向状態であり、表示時の
配向状態がベンド配向状態である液晶と、前記液晶に電
圧を印加するための電圧印加手段とを含む液晶パネル
と、前記液晶パネルの表示のために前記液晶パネルに光
を照射するバックライトとを備え、 前記液晶をスプレイ配向状態からベンド配向状態に転移
させるために前記電圧印加手段を駆動して前記スプレイ
状態の液晶に0.5Hz以下の電圧を印加する転移制御
手段と、 前記転移制御手段による転移動作が行われている時は、
前記バックライトを点灯させないバックライト制御手段
とを具備する液晶表示装置。
7. A pair of substrates, a liquid crystal sandwiched between the pair of substrates, an initial alignment state being a splay alignment state, and an alignment state at the time of display being a bend alignment state; and applying a voltage to the liquid crystal. And a backlight for irradiating the liquid crystal panel with light for display on the liquid crystal panel, wherein the voltage is applied to transition the liquid crystal from a splay alignment state to a bend alignment state. A transition control unit that drives an application unit to apply a voltage of 0.5 Hz or less to the liquid crystal in the spray state, and when a transition operation is performed by the transition control unit,
A liquid crystal display device comprising: a backlight control unit that does not turn on the backlight.
【請求項8】 前記転移制御手段が、前記液晶層の前記
転移のための前記電圧の印加の開始から所定時間経過す
ると前記転移が終了したと判定する請求項記載の液晶
表示装置。
8. The liquid crystal display device according to claim 7 , wherein said transition control means determines that said transition has ended when a predetermined time has elapsed from the start of application of said voltage for said transition of said liquid crystal layer.
【請求項9】 前記液晶パネルを覆うカバーをさらに具
備し、前記転移制御手段が、前記カバーの開放に同期し
て前記液晶層を転移させるための前記電圧の印加を開始
する請求項記載の液晶表示装置。
9. comprising further a cover for covering the liquid crystal panel, the transition control means, in synchronism with the opening of the cover according to claim 7, wherein starting the application of the voltage for transferring the liquid crystal layer Liquid crystal display.
【請求項10】 前記液晶パネルの表示部を覆うカバー
と、前記カバーの閉鎖に同期して前記バックライトを消
灯しかつ前記液晶層の配向状態を維持するために前記転
移制御手段より前記液晶層に電圧を印加し、前記カバー
の開放に同期して前記バックライトを点灯しかつ前記電
圧の印加を終了するスイッチとをさらに具備する請求項
記載の液晶表示装置。
10. A cover for covering a display portion of the liquid crystal panel, and the transition control means for turning off the backlight in synchronization with closing of the cover and maintaining an alignment state of the liquid crystal layer. And a switch for applying a voltage to the backlight, turning on the backlight in synchronization with opening of the cover, and terminating the application of the voltage.
8. The liquid crystal display device according to 7 .
【請求項11】 前記転移制御手段が、表示駆動中に所
定時間、使用者からの入力信号が認められない場合に、
前記液晶層の配向状態を維持するために前記電圧印加手
段を駆動し、前記バックライト制御手段に前記バックラ
イトを消灯させる請求項記載の液晶表示装置。
11. The image forming apparatus according to claim 1, wherein the transition control unit determines that an input signal from a user is not recognized for a predetermined time during display driving.
8. The liquid crystal display device according to claim 7 , wherein the voltage application unit is driven to maintain the alignment state of the liquid crystal layer, and the backlight control unit turns off the backlight.
【請求項12】 前記電圧印加手段による前記液晶層を
転移させるための電圧の印加を強制的に開始させるスイ
ッチをさらに具備する請求項記載の液晶表示装置。
12. The liquid crystal display device according to claim 7 , further comprising a switch for forcibly starting application of a voltage for shifting the liquid crystal layer by the voltage applying unit.
JP2000392075A 1999-12-27 2000-12-25 Liquid crystal display device and driving method thereof Expired - Fee Related JP3349141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000392075A JP3349141B2 (en) 1999-12-27 2000-12-25 Liquid crystal display device and driving method thereof

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP36983899 1999-12-27
JP2000032908 2000-02-10
JP2000-32908 2000-04-17
JP11-369838 2000-04-17
JP2000-114869 2000-04-17
JP2000114869 2000-04-17
JP2000392075A JP3349141B2 (en) 1999-12-27 2000-12-25 Liquid crystal display device and driving method thereof

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2001291587A Division JP4342129B2 (en) 1999-12-27 2001-09-25 Driving method of OCB type liquid crystal display device
JP2001291588A Division JP4138285B2 (en) 1999-12-27 2001-09-25 Liquid crystal display device and driving method thereof
JP2001291586A Division JP4078054B2 (en) 1999-12-27 2001-09-25 Liquid crystal display

Publications (2)

Publication Number Publication Date
JP2002006284A JP2002006284A (en) 2002-01-09
JP3349141B2 true JP3349141B2 (en) 2002-11-20

Family

ID=27341793

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2000392075A Expired - Fee Related JP3349141B2 (en) 1999-12-27 2000-12-25 Liquid crystal display device and driving method thereof
JP2001291588A Expired - Fee Related JP4138285B2 (en) 1999-12-27 2001-09-25 Liquid crystal display device and driving method thereof
JP2001291587A Expired - Fee Related JP4342129B2 (en) 1999-12-27 2001-09-25 Driving method of OCB type liquid crystal display device
JP2001291586A Expired - Fee Related JP4078054B2 (en) 1999-12-27 2001-09-25 Liquid crystal display

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2001291588A Expired - Fee Related JP4138285B2 (en) 1999-12-27 2001-09-25 Liquid crystal display device and driving method thereof
JP2001291587A Expired - Fee Related JP4342129B2 (en) 1999-12-27 2001-09-25 Driving method of OCB type liquid crystal display device
JP2001291586A Expired - Fee Related JP4078054B2 (en) 1999-12-27 2001-09-25 Liquid crystal display

Country Status (6)

Country Link
US (3) US6476792B2 (en)
EP (2) EP1229510B1 (en)
JP (4) JP3349141B2 (en)
KR (2) KR100457189B1 (en)
CN (1) CN1203352C (en)
TW (1) TW526378B (en)

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7145536B1 (en) 1999-03-26 2006-12-05 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US6927825B1 (en) * 1999-05-14 2005-08-09 Sanyo Electric Co., Ltd. Liquid crystal display using liquid crystal with bend alignment and driving method thereof
KR100666823B1 (en) * 2000-07-06 2007-01-09 엘지.필립스 엘시디 주식회사 Method for liquid crystal drving of tft lcd
JP4895450B2 (en) * 2000-11-10 2012-03-14 三星電子株式会社 Liquid crystal display device and driving device and method thereof
KR100381963B1 (en) * 2000-12-26 2003-04-26 삼성전자주식회사 Liquid crystal display having reduced flicker and method for reducing flicker for the same
TW546624B (en) * 2001-03-30 2003-08-11 Matsushita Electric Ind Co Ltd Display device
GB0121663D0 (en) * 2001-09-07 2001-10-31 Delphi Tech Inc Control method for a liquid crystal display
KR100840311B1 (en) * 2001-10-08 2008-06-20 삼성전자주식회사 Liquid crystal display and driving method thereof
DE60234758D1 (en) * 2001-10-23 2010-01-28 Panasonic Corp Liquid crystal display device and driving method therefor
KR100843685B1 (en) 2001-12-27 2008-07-04 엘지디스플레이 주식회사 Method and apparatus for driving liquid crystal display
JP2005539253A (en) * 2002-09-16 2005-12-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Active matrix display with variable duty cycle
KR100915232B1 (en) * 2002-11-06 2009-09-02 삼성전자주식회사 A circuit for generating an on/off timing for a backlight
KR100923349B1 (en) * 2002-12-12 2009-10-22 엘지디스플레이 주식회사 Ferroelectric liquid crystal display
WO2004063801A1 (en) * 2003-01-08 2004-07-29 Toshiba Matsushita Display Technology Co., Ltd. Liquid crystal display
CN100399121C (en) * 2003-01-08 2008-07-02 东芝松下显示技术有限公司 Liquid crystal display unit
CN100392479C (en) * 2003-08-04 2008-06-04 富士通株式会社 Liquid crystal display device
WO2005081052A1 (en) 2004-02-20 2005-09-01 Toshiba Matsushita Display Technology Co., Ltd. Liquid crystal display device
WO2005081054A1 (en) 2004-02-20 2005-09-01 Toshiba Matsushita Display Technology Co., Ltd. Liquid crystal display device
US7163149B2 (en) * 2004-03-02 2007-01-16 Symbol Technologies, Inc. System and method for illuminating and reading optical codes imprinted or displayed on reflective surfaces
KR100759457B1 (en) * 2004-05-18 2007-09-20 삼성에스디아이 주식회사 A liquid crystal display and a driving method thereof
KR100623713B1 (en) * 2004-12-10 2006-09-19 삼성에스디아이 주식회사 Liquid Crystal Display Device and Method for Driving the same
TWI311301B (en) * 2004-12-13 2009-06-21 Chi Mei Optoelectronics Corporatio Method for driving liquid crystal display
KR100700645B1 (en) * 2005-01-10 2007-03-27 삼성에스디아이 주식회사 Liquid Crystal Display Device and Method of Driving the same
JP2006349931A (en) 2005-06-15 2006-12-28 Toshiba Matsushita Display Technology Co Ltd Liquid crystal display device
KR101071262B1 (en) 2005-07-21 2011-10-10 삼성전자주식회사 Liquid crystal display
TW200705005A (en) * 2005-07-22 2007-02-01 Ind Tech Res Inst Liquid crystal display
US20070057891A1 (en) * 2005-09-09 2007-03-15 Jung-Chieh Cheng Method for the transition of liquid crystal display
JP4561557B2 (en) * 2005-09-22 2010-10-13 株式会社デンソー Liquid crystal display device and vehicle periphery monitoring device
KR100683801B1 (en) 2005-12-07 2007-02-15 삼성에스디아이 주식회사 Apparatus for transient driving of optically compensated birefringence liquid crystal display and method thereof
KR100751352B1 (en) 2005-12-07 2007-08-22 삼성에스디아이 주식회사 Method for transient driving of optically compensated birefringence liquid crystal display and apparatus thereof
KR100730175B1 (en) 2005-12-07 2007-06-19 삼성에스디아이 주식회사 Method for transient driving of optically compensated birefringence liquid crystal display and apparatus thereof
KR100751354B1 (en) * 2005-12-09 2007-08-22 삼성에스디아이 주식회사 Apparatus of supplying power for optically compensated birefringence liquid crystal display
CN101317209B (en) * 2006-01-11 2010-12-15 深圳Tcl新技术有限公司 Contrast improving system using illumination control with asymmetric delay
JP4805701B2 (en) * 2006-03-17 2011-11-02 シチズンホールディングス株式会社 Liquid crystal device
TWI327303B (en) * 2006-03-17 2010-07-11 Chimei Innolux Corp Optically compensated bend liquid crystal display device
US20070273625A1 (en) * 2006-05-26 2007-11-29 Jung-Chieh Cheng Method and apparatus for transiting display panel
WO2008035588A1 (en) * 2006-09-20 2008-03-27 Sharp Kabushiki Kaisha Liquid crystal display device, its drive method, liquid crystal panel drive device, and liquid crystal panel drive method
KR101272333B1 (en) 2006-09-27 2013-06-10 삼성디스플레이 주식회사 LIQUID CRYSTAL DISPLAY and DRIVING MATHOD THEREOF
TWI442368B (en) 2006-10-26 2014-06-21 Semiconductor Energy Lab Electronic device, display device, and semiconductor device and method for driving the same
US8390566B2 (en) * 2006-11-03 2013-03-05 Apple Inc. Wallpaper for electronic devices
US20100001666A1 (en) * 2006-12-21 2010-01-07 Koninklijke Philips Electronics N.V. Micro-electro-mechanical system with actuators
WO2008117569A1 (en) * 2007-03-23 2008-10-02 Sharp Kabushiki Kaisha Liquid crystal panel, liquid crystal display, and display method for liquid crystal panel
US20110102695A1 (en) * 2007-09-07 2011-05-05 Takashi Katayama Liquid crystal display device driving method and liquid crystal display device
US8436954B2 (en) 2007-09-07 2013-05-07 Sharp Kabushiki Kaisha Method of driving liquid crystal display device, and liquid crystal display device
JP5072973B2 (en) * 2007-10-15 2012-11-14 富士通株式会社 Display device having dot matrix type display element and driving method thereof
JP2009158275A (en) * 2007-12-26 2009-07-16 Toshiba Corp Light emission controller and liquid crystal display device
CN101896857B (en) 2008-02-19 2012-02-15 三菱电机株式会社 Vehicle-mounted display device
US8698728B2 (en) * 2009-11-02 2014-04-15 Atmel Corporation Apparatus for integrated backlight and dynamic gamma/VCOM control on silicon chips
JP2011215400A (en) * 2010-03-31 2011-10-27 Toshiba Mobile Display Co Ltd Liquid crystal shutter, method for driving the same, and image display system
TW201216249A (en) * 2010-10-07 2012-04-16 Jasper Display Corp Improved pixel circuit and display system comprising same
JP5315315B2 (en) * 2010-10-12 2013-10-16 群創光電股▲ふん▼有限公司 Liquid crystal display device and electronic apparatus having the same
JP6050054B2 (en) 2011-09-09 2016-12-21 株式会社半導体エネルギー研究所 Semiconductor device
TWI470318B (en) * 2011-11-02 2015-01-21 Himax Display Inc Liquid crystal display panel and pixel driving method thereof
US10043794B2 (en) 2012-03-22 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
JP6186781B2 (en) * 2013-03-19 2017-08-30 セイコーエプソン株式会社 Control device, electro-optical device, electronic apparatus, and control method
JP6757629B2 (en) * 2016-08-30 2020-09-23 東京応化工業株式会社 Substrate heating device, substrate heating method and infrared heater
KR102628240B1 (en) * 2016-09-07 2024-01-25 삼성디스플레이 주식회사 Input sensor and display device including the same
US11030942B2 (en) 2017-10-13 2021-06-08 Jasper Display Corporation Backplane adaptable to drive emissive pixel arrays of differing pitches
US10951875B2 (en) 2018-07-03 2021-03-16 Raxium, Inc. Display processing circuitry
CN109164618A (en) * 2018-11-09 2019-01-08 惠科股份有限公司 Display panel assembly and display device
US11710445B2 (en) 2019-01-24 2023-07-25 Google Llc Backplane configurations and operations
US11637219B2 (en) 2019-04-12 2023-04-25 Google Llc Monolithic integration of different light emitting structures on a same substrate
US11238782B2 (en) 2019-06-28 2022-02-01 Jasper Display Corp. Backplane for an array of emissive elements
US11626062B2 (en) 2020-02-18 2023-04-11 Google Llc System and method for modulating an array of emissive elements
CN111601484B (en) * 2020-06-11 2021-08-27 Oppo广东移动通信有限公司 Synchronizer, foldable shell assembly and foldable electronic equipment
US11538431B2 (en) 2020-06-29 2022-12-27 Google Llc Larger backplane suitable for high speed applications
CN117769738A (en) 2021-07-14 2024-03-26 谷歌有限责任公司 Backboard and method for pulse width modulation
CN114371577B (en) * 2021-12-23 2023-10-24 长沙惠科光电有限公司 Side-entry type liquid crystal display panel, alignment method thereof and liquid crystal display device

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3666947A (en) 1971-01-06 1972-05-30 Xerox Corp Liquid crystal imaging system having an undisturbed image on a disturbed background and having a radiation absorptive material dispersed throughout the liquid crystal
US3666948A (en) 1971-01-06 1972-05-30 Xerox Corp Liquid crystal thermal imaging system having an undisturbed image on a disturbed background
GB1426896A (en) * 1972-05-30 1976-03-03 Matsushita Electric Ind Co Ltd Liquid crystal display system
JPS60156048A (en) * 1984-01-25 1985-08-16 Matsushita Electric Ind Co Ltd Large-sized liquid crystal display device
US4923285A (en) * 1985-04-22 1990-05-08 Canon Kabushiki Kaisha Drive apparatus having a temperature detector
JP2592958B2 (en) * 1989-06-30 1997-03-19 キヤノン株式会社 Liquid crystal device
JPH03103427A (en) 1989-09-19 1991-04-30 Furukawa Electric Co Ltd:The Production of plasma-polymerized film
US5414441A (en) * 1991-01-11 1995-05-09 Ncr Corporation Temperature compensation apparatus for liquid crystal display
US5303171A (en) * 1992-04-03 1994-04-12 Zenith Data Systems Corporation System suspend on lid close and system resume on lid open
US5648793A (en) * 1992-01-08 1997-07-15 Industrial Technology Research Institute Driving system for active matrix liquid crystal display
JPH05264956A (en) * 1992-03-17 1993-10-15 Casio Comput Co Ltd Double layer stn type liquid crystal display device
JP3103427B2 (en) 1992-04-01 2000-10-30 ダイヤメディカルシステム株式会社 Bioelectricity detector
DE69314921T2 (en) * 1992-12-25 1998-03-19 Canon Kk Liquid crystal display device
JPH075427A (en) 1993-06-16 1995-01-10 Sony Corp Liquid crystal display device
EP0666009B1 (en) * 1993-06-30 1999-11-03 Koninklijke Philips Electronics N.V. Matrix display systems and methods of operating such systems
JPH0784254A (en) 1993-09-18 1995-03-31 Tatsuo Uchida Liquid crystal display element for wide visual field angle and high-speed display
US5592193A (en) * 1994-03-10 1997-01-07 Chunghwa Picture Tubes, Ltd. Backlighting arrangement for LCD display panel
US5668651A (en) * 1994-03-18 1997-09-16 Sharp Kabushiki Kaisha Polymer-wall LCD having liquid crystal molecules having a plane-symmetrical bend orientation
US6115021A (en) * 1994-07-04 2000-09-05 Sharp Kabushiki Kaisha Method and apparatus for driving a liquid crystal panel using a ferroelectric liquid crystal material having a negative dielectric anisotropy
JP3429387B2 (en) * 1995-03-31 2003-07-22 株式会社エンプラス Sidelight type surface light source device
JP3240367B2 (en) * 1995-11-13 2001-12-17 シャープ株式会社 Active matrix type liquid crystal image display
JP3074640B2 (en) * 1995-12-22 2000-08-07 インターナショナル・ビジネス・マシーンズ・コーポレ−ション Driving method of liquid crystal display device
US6005648A (en) * 1996-06-25 1999-12-21 Semiconductor Energy Laboratory Co., Ltd. Display device
JPH10206822A (en) * 1997-01-20 1998-08-07 Internatl Business Mach Corp <Ibm> Voltage application driving system
EP1070981A4 (en) * 1998-04-08 2004-04-28 Matsushita Electric Ind Co Ltd Liquid crystal display device and splay-bent transition time evaluating method
KR100293810B1 (en) * 1998-05-29 2001-10-26 박종섭 Ips mode liquid crystal display device having no color shift
JP2000292776A (en) * 1999-04-09 2000-10-20 Canon Inc Liquid crystal device
TW546624B (en) * 2001-03-30 2003-08-11 Matsushita Electric Ind Co Ltd Display device

Also Published As

Publication number Publication date
EP1113412A2 (en) 2001-07-04
KR20030086950A (en) 2003-11-12
KR20010081976A (en) 2001-08-29
US6476792B2 (en) 2002-11-05
US7202849B2 (en) 2007-04-10
EP1229510A3 (en) 2002-11-20
JP2002156618A (en) 2002-05-31
CN1303022A (en) 2001-07-11
EP1113412A3 (en) 2002-07-17
TW526378B (en) 2003-04-01
KR100457189B1 (en) 2004-11-16
JP4078054B2 (en) 2008-04-23
US20030090442A1 (en) 2003-05-15
KR100505924B1 (en) 2005-08-03
JP2002214611A (en) 2002-07-31
JP4138285B2 (en) 2008-08-27
EP1229510B1 (en) 2012-04-25
JP2002006284A (en) 2002-01-09
EP1113412B1 (en) 2014-05-21
US20010020925A1 (en) 2001-09-13
JP4342129B2 (en) 2009-10-14
CN1203352C (en) 2005-05-25
EP1229510A2 (en) 2002-08-07
US20070176888A1 (en) 2007-08-02
JP2002162616A (en) 2002-06-07

Similar Documents

Publication Publication Date Title
JP3349141B2 (en) Liquid crystal display device and driving method thereof
JPH1124041A (en) Liquid crystal display device
TWI253037B (en) A liquid crystal display with image flicker and shadow elimination functions applied when power-off and an operation method of the same
WO2005012984A1 (en) Liquid crystal display device
JP2005099212A (en) Driving method of liquid crystal display, and liquid crystal display
JP2002250909A (en) Liquid crystal display device and its driving method
JP2002014321A (en) Display device and electronic equipment provided the same
JP3305959B2 (en) Driving method of liquid crystal display device
JP2977356B2 (en) Driving method of active matrix liquid crystal display device
JP4509676B2 (en) Liquid crystal display
KR100768196B1 (en) Method for transient driving of optically compensated birefringence liquid crystal display and apparatus thereof
Liu et al. 88‐1: E‐book with Animation Playing Capability Based on Liquid Crystal Display Technology
JPH1020280A (en) Driving method of liquid crystal display element
JP2003287738A (en) Method for driving liquid crystal display device
JP2003185993A (en) Liquid crystal display device and method for driving liquid crystal display device
JP2003255389A (en) Liquid crystal display
JP2000321577A (en) Liquid crystal display device
JPH05203913A (en) Ferroelectric liquid crystal display device
WO2008035588A1 (en) Liquid crystal display device, its drive method, liquid crystal panel drive device, and liquid crystal panel drive method
JP2002202492A (en) Active matrix type liquid crystal display device
JP2003156765A (en) Reflection type display unit and electronic equipment equipped with the same
JP2004144950A (en) Method for manufacturing liquid crystal display element, and liquid crystal display device
JPH09311325A (en) Liquid crystal device and information transfer device therewith
JP2005148292A (en) Bistable nematic liquid crystal display
JP2008170963A (en) Liquid crystal display device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070913

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130913

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees