JP3340011B2 - Method of manufacturing substrate for plasma display device - Google Patents
Method of manufacturing substrate for plasma display deviceInfo
- Publication number
- JP3340011B2 JP3340011B2 JP34012495A JP34012495A JP3340011B2 JP 3340011 B2 JP3340011 B2 JP 3340011B2 JP 34012495 A JP34012495 A JP 34012495A JP 34012495 A JP34012495 A JP 34012495A JP 3340011 B2 JP3340011 B2 JP 3340011B2
- Authority
- JP
- Japan
- Prior art keywords
- display device
- plasma display
- mixture
- back plate
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2211/00—Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
- H01J2211/20—Constructional details
- H01J2211/34—Vessels, containers or parts thereof, e.g. substrates
- H01J2211/36—Spacers, barriers, ribs, partitions or the like
Landscapes
- Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
- Gas-Filled Discharge Tubes (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高精度かつ安価な
薄型の大画面用カラー表示装置等に用いられるプラズマ
表示装置用基板及びその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate for a plasma display device used for a high-precision and inexpensive thin color display device for a large screen and the like, and a method for manufacturing the same.
【0002】[0002]
【従来の技術】薄型の大画面用カラー表示装置等に用い
られるプラズマ表示装置は、微小な表示セルと呼ばれる
隔壁で囲まれた空間に、対向する電極を設け、前記空間
に希ガス等の放電可能なガスを封入した構造を成してお
り、対向する電極間に放電によりプラズマを発生させ、
該プラズマにより蛍光体を発光させて画面の発光素子と
して利用するものである。2. Description of the Related Art In a plasma display device used for a thin large-screen color display device or the like, opposed electrodes are provided in a space surrounded by partition walls called minute display cells, and discharge of rare gas or the like is performed in the space. It has a structure in which possible gas is sealed, and generates plasma by discharging between facing electrodes,
The phosphor emits light by the plasma and is used as a light emitting element of a screen.
【0003】具体的な構造を図3に示すように、背面板
10の一面に多数の隔壁11を形成して各隔壁11間を
セル13とし、このセル13の底面に電極12を備えた
ものを基板1とする。この基板1に対して、セル13の
内壁面13aに蛍光体を塗布し、一方電極15を備えた
正面板14を基板1の隔壁11上に接合して、セル13
にガスを封入することにより、プラズマ表示装置を構成
することができる。As shown in FIG. 3, a specific structure is shown in which a large number of partitions 11 are formed on one surface of a back plate 10 to form cells 13 between the partitions 11, and an electrode 12 is provided on the bottom surface of the cells 13. Is a substrate 1. The substrate 1 is coated with a phosphor on the inner wall surface 13a of the cell 13, and a front plate 14 provided with one electrode 15 is joined on the partition 11 of the substrate 1 to form a cell 13
By filling a gas into the plasma display device, a plasma display device can be configured.
【0004】ところで、前記プラズマ表示装置用の基板
1を製造する際には、予め背面板10上に多数の電極1
2を形成した後で各電極12間に隔壁11を形成する
が、この隔壁11の製造方法としては、印刷積層法やブ
ラスト法等が知られている。When the substrate 1 for the plasma display device is manufactured, a large number of electrodes 1 are formed on the back plate 10 in advance.
After the formation of the barrier ribs 2, the barrier ribs 11 are formed between the respective electrodes 12. As a method of manufacturing the barrier ribs 11, a printing lamination method, a blast method, or the like is known.
【0005】印刷積層法は、隔壁11を成す材料のペー
ストを用いて厚膜印刷法により背面板10上に所定パタ
ーンの隔壁11を印刷形成するもので、1回の印刷で形
成できる厚さが約10〜15μm程度であることから、
印刷・乾燥を繰り返しながら約100〜200μm程度
の高さを必要とする隔壁11を形成するものである(特
開平2−213020号公報参照)。In the printing lamination method, a partition 11 having a predetermined pattern is formed on the back plate 10 by printing using a paste of a material forming the partition 11 by a thick film printing method. Since it is about 10-15 μm,
While repeating printing and drying, the partition wall 11 having a height of about 100 to 200 μm is formed (see Japanese Patent Application Laid-Open No. 2-213020).
【0006】また、ブラスト法は、背面板10の全面に
所定厚さのガラス層を形成し、この表面に隔壁11形状
のレジストマスクを形成しておいて、サンドブラストに
て隔壁11以外の部分のガラス層を除去するようにした
ものである(特開平4−259728号公報参照)。In the blast method, a glass layer having a predetermined thickness is formed on the entire surface of the back plate 10, a resist mask having a shape of the partition 11 is formed on the surface thereof, and portions other than the partition 11 are sandblasted. The glass layer is removed (see JP-A-4-259728).
【0007】[0007]
【発明が解決しようとする課題】しかしながら、上記印
刷積層法では、所定の高さの隔壁11を形成するために
何回も印刷・乾燥工程を繰り返して積層しなければなら
ず、極めて工程数が多くなり、その上、積層毎に精度よ
く印刷する必要があるため、非常に歩留りが悪かった。
さらに、印刷時の位置ズレにより隔壁11が変形し易
く、かつ印刷製版の伸び等のために、隔壁11によって
形成される表示セルの寸法精度としては、1000セル
分の寸法を45列測定した時の測定値の最大差が0.3
5mm程度あり、高精細度化の要求を満足するものでは
なかった。However, in the above-described printing and laminating method, the printing and drying steps must be repeated many times in order to form the partition walls 11 having a predetermined height, and the number of steps is extremely small. In addition, the yield must be extremely low because printing must be performed with high accuracy for each lamination.
Furthermore, the partition 11 is easily deformed due to positional deviation at the time of printing, and the dimensional accuracy of the display cells formed by the partition 11 is measured when 45 columns of dimensions for 1000 cells are measured due to elongation of printing plate making. The maximum difference between the measured values is 0.3
It was about 5 mm, which did not satisfy the demand for higher definition.
【0008】また、上記ブラスト法においても、マスク
形成にフォトレジストを用いた後サンドブラストを行う
ため、工程が複雑であり、しかも高精度に隔壁11を形
成することは困難であった。さらに、ブラスト加工に用
いる研磨剤を回収し繰り返して使用する場合は、研磨剤
の摩耗劣化による研削力の低下や経時変化があり、安定
して量産することが困難であった。一方、研磨剤を回収
せずに使用する場合は、研磨剤のコストが高くなり、こ
の場合も大量生産は困難であった。In the above blasting method, since sandblasting is performed after using a photoresist for forming a mask, the process is complicated, and it is difficult to form the partition 11 with high accuracy. Furthermore, when the abrasive used for the blasting process is collected and used repeatedly, there is a decrease in grinding force due to abrasion deterioration of the abrasive and a change with time, and it has been difficult to stably mass-produce. On the other hand, if the polishing agent is used without being collected, the cost of the polishing agent is high, and mass production is also difficult in this case.
【0009】従って、前記いずれの製造方法でも、高精
度で微細なピッチを有する大型のプラズマ表示装置用基
板1を簡単な工程で安価に製造することは困難であっ
た。Therefore, it is difficult to manufacture the large-sized plasma display device substrate 1 having a high precision and a fine pitch in a simple process at a low cost by any of the above manufacturing methods.
【0010】[0010]
【発明の目的】本発明は前記課題に鑑みなされたもの
で、その目的は、プラズマ表示装置用基板を、1回の簡
単な成形工程で、歩留り良く製造するとともに、変形の
ない平滑表面を有する高精度な隔壁を所定高さで得ら
れ、40インチ以上の大画面化が容易に実現でき、表示
セルのピッチが0.25mm未満の高精細度化が実現で
きるプラズマ表示装置用基板及びその製造方法を提供す
ることにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to produce a substrate for a plasma display device in one simple molding step with good yield and to have a smooth surface without deformation. A substrate for a plasma display device capable of obtaining high-precision partition walls at a predetermined height, easily realizing a large screen of 40 inches or more, and realizing high-definition display cells having a pitch of less than 0.25 mm, and manufacturing thereof It is to provide a method.
【0011】[0011]
【0012】[0012]
【0013】[0013]
【課題を解決するための手段】本発明のプラズマ表示装
置用基板の製造方法は、粒径0.2〜10μmのセラミ
ックス又はガラスの粉体と、該粉体に対して1〜15重
量部の溶媒と、有機性添加物から成るバインダーとの混
合物を、逆台形状をした隔壁用の凹部を有する成形型中
に充填し、これらの混合物をセラミックス又はガラスか
らなる背面板に接合して成形型を離型した後、焼成一体
化することにより、上記背面板上に台形状をした複数の
隔壁を備えて表示セルを構成する工程からなることを特
徴とする。According to the present invention, there is provided a method of manufacturing a substrate for a plasma display device, comprising the steps of: preparing a ceramic or glass powder having a particle size of 0.2 to 10 μm; A mixture of a solvent and a binder made of an organic additive is filled in a mold having an inverted trapezoid-shaped concave portion for a partition wall, and the mixture is joined to a back plate made of ceramics or glass to form a mold. After the mold is released from the mold, it is fired and integrated to form a display cell with a plurality of trapezoidal partitions on the back plate.
【0014】[0014]
【作用】本発明のプラズマ表示板用基板及びその製造方
法によれば、セラミックス又はガラスの粉体とバインダ
ーの混合物を成形型に充填して隔壁の成形体を得ること
から、隔壁の表面状態が良好で、かつ成形型の寸法精度
がそのまま成形体に反映され、1回の成形工程で大型の
基板を容易に製造できる。According to the plasma display panel substrate and the method of manufacturing the same of the present invention, a mixture of ceramics or glass powder and a binder is filled into a mold to obtain a molded body of the partition wall, so that the surface condition of the partition wall is reduced. Good and the dimensional accuracy of the mold is directly reflected on the molded body, and a large-sized substrate can be easily manufactured in one molding step.
【0015】[0015]
【発明の実施の形態】以下本発明の実施形態を説明す
る。Embodiments of the present invention will be described below.
【0016】図1に示すように、プラズマ表示装置用の
基板1はセラミックス又はガラスから成る背面板10の
一面にセラミックス又はガラスから成る複数の隔壁11
を備え、各隔壁11間にセル13が形成されたものであ
る。As shown in FIG. 1, a substrate 1 for a plasma display device has a plurality of partitions 11 made of ceramics or glass on one surface of a back plate 10 made of ceramics or glass.
And a cell 13 is formed between the partition walls 11.
【0017】そして、このセル13の底面に電極12を
備えており、セル13の内壁面13aに蛍光体が塗布さ
れた後、図3に示すように電極15を備えた正面板14
で隔壁11の上端を覆い、セル13にガスを封入するこ
とでプラズマ表示装置を構成することができる。そし
て、電極12、15間で放電することにより、セル13
の内壁面13aに塗布した蛍光体を発光させることがで
きる。An electrode 12 is provided on the bottom surface of the cell 13, and after a phosphor is applied to an inner wall surface 13a of the cell 13, a front plate 14 having an electrode 15 as shown in FIG.
By covering the upper end of the partition 11 with a gas and filling the cell 13 with gas, a plasma display device can be configured. Then, by discharging between the electrodes 12 and 15, the cell 13 is discharged.
The phosphor applied to the inner wall surface 13a can emit light.
【0018】次に、上記基板1の製造方法を説明する。Next, a method of manufacturing the substrate 1 will be described.
【0019】まず、図2(a)に示すように、隔壁11
の形状に合致した凹部20aを有する成形型20を用意
し、この成形型20の凹部20aに、隔壁11を成す材
質としてセラミックス又はガラス粉末と溶媒及び有機性
添加物のバインダーとの混合物21を充填する。First, as shown in FIG.
A mold 20 having a concave portion 20a conforming to the shape of the above is prepared, and the concave portion 20a of the mold 20 is filled with a mixture 21 of ceramics or glass powder as a material forming the partition wall 11 and a solvent and a binder of an organic additive. I do.
【0020】一方、セラミックス又はガラスから成る背
面板10を別に用意し、この背面板10に上記混合物2
1の成形体を接合一体化し、隔壁11を形成するが、具
体的には以下のように製造する。On the other hand, a back plate 10 made of ceramics or glass is separately prepared.
The molded body of No. 1 is joined and integrated to form the partition wall 11. Specifically, it is manufactured as follows.
【0021】まず、上記成形型20に充填した混合物2
1の表面に背面板10を押し当てて加圧接着し、混合物
21を反応硬化するか又は乾燥して固化させる。その
後、図2(b)に上下を逆にして示すように成形型20
を離型することによって、背面板10上に混合物21の
成形体からなる隔壁11を転写する。最後に全体を脱バ
インダー処理した後、同時焼成して一体化することによ
り、図1に示すプラズマ表示装置用基板1を製造するこ
とができる。First, the mixture 2 filled in the molding die 20
The back plate 10 is pressed against the surface of the substrate 1 and adhered under pressure, and the mixture 21 is cured by reaction or dried and solidified. Thereafter, as shown in FIG.
Is released from the mold to transfer the partition walls 11 made of the molded body of the mixture 21 onto the back plate 10. Finally, after the whole is debindered, it is fired and integrated to obtain the plasma display device substrate 1 shown in FIG.
【0022】また他の方法としては、成形型20に充填
した混合物21を反応硬化又は乾燥固化した後、成形型
から離型し、混合物21の成形体を背面板10に接着す
る。最後に全体を脱バインダー処理した後、同時焼成し
て一体化することによってもプラズマ表示装置用基板1
を得ることができる。As another method, after the mixture 21 filled in the mold 20 is cured or dried and solidified, the mixture 21 is released from the mold, and the molded body of the mixture 21 is adhered to the back plate 10. Finally, after the whole is debindered, the substrate for plasma display device 1
Can be obtained.
【0023】さらに他の方法としては、成形型20に充
填した混合物21を反応硬化又は乾燥固化した後、成形
型から離型し、脱バインダー処理した後でこの成形体を
背面板10に接着する。最後に全体を同時焼成して一体
化することによってもプラズマ表示装置用基板1を得る
ことができる。As still another method, after the mixture 21 filled in the molding die 20 is cured or dried and solidified, it is released from the molding die, and after debinding, the molded body is adhered to the back plate 10. . Finally, the substrate 1 for a plasma display device can also be obtained by simultaneously firing and integrating the whole.
【0024】あるいは、成形型20に充填した混合物2
1を反応硬化又は乾燥固化した後、成形型から離型し、
脱バインダー処理して焼成した後でこの焼結体を背面板
10に接着、熱圧着又は同時焼成により接合することに
よってもプラズマ表示装置用基板1を得ることができ
る。Alternatively, the mixture 2 filled in the mold 20
After reaction hardening or drying and solidifying 1, release from the mold,
The substrate 1 for a plasma display device can also be obtained by bonding the sintered body to the back plate 10 by bonding, thermocompression bonding, or simultaneous firing after the binder has been removed and fired.
【0025】即ち、背面板10に混合物21の成形体を
接合するのは、互いの部材が未焼成体、脱バインダー状
態、焼結体のいずれの段階であっても良い。That is, the molded body of the mixture 21 may be joined to the back plate 10 at any stage of the unfired body, the binderless state, and the sintered body.
【0026】このような本発明の製造方法によれば、一
回で隔壁11を形成できるため製造工程を極めて簡略化
できる。しかも、隔壁11は成形型20の凹部20aの
形状が転写されるため、微細形状を高精度に成形でき
る。その結果、本発明の製造方法では、表示セル100
0セル分の寸法を45列測定した時の測定値の最大差が
0.05mm以下となるように高精度とすることができ
る。According to such a manufacturing method of the present invention, since the partition walls 11 can be formed at one time, the manufacturing process can be extremely simplified. Moreover, since the shape of the concave portion 20a of the mold 20 is transferred to the partition 11, a fine shape can be formed with high precision. As a result, in the manufacturing method of the present invention, the display cell 100
High accuracy can be achieved so that the maximum difference between the measured values when measuring 45 rows of dimensions for 0 cells is 0.05 mm or less.
【0027】なお、セル13の底面に備える電極12に
ついては、隔壁11を接合する前に予め背面板10の表
面に備えておけば良い。The electrode 12 provided on the bottom surface of the cell 13 may be provided on the surface of the back plate 10 before the partition 11 is joined.
【0028】ここで、隔壁11を成すセラミックス粉体
としては、アルミナ(Al2 O3 )、ジルコニア(Zr
O2 )等の酸化物系セラミックスや、窒化珪素(Si3
N4)、窒化アルミニウム(AlN)、炭化珪素(Si
C)等の非酸化物系セラミックス等、あるいはアパタイ
ト(Ca5 (PO4 )3 (F,Cl,OH))等のいず
れをも用いることができ、これらのセラミックス粉体に
は各種焼結助剤を所望量添加することができる。Here, as the ceramic powder forming the partition 11, alumina (Al 2 O 3 ), zirconia (Zr
Oxide ceramics such as O 2 ) and silicon nitride (Si 3
N 4 ), aluminum nitride (AlN), silicon carbide (Si
Non-oxide ceramics such as C.) or apatite (Ca 5 (PO 4 ) 3 (F, Cl, OH)) can be used. The desired amount of the agent can be added.
【0029】上記焼結助剤としては、アルミナ粉末には
シリカ(SiO2 )、カルシア(CaO)、イットリア
(Y2 O3 )及びマグネシア(MgO)等を、ジルコニ
ア粉末にはイットリア(Y2 O3 )やセリウム(C
e)、ジスプロシウム(Dy)、イッテルビウム(Y
b)等の希土類元素の酸化物を、また窒化珪素粉末には
イットリア(Y2 O3 )とアルミナ(Al2 O3 )等
を、窒化アルミニウム粉末には周期律表第3a族元素酸
化物(RE2 O3 )等を、炭化珪素粉末にはホウ素
(B)とカーボン(C)等を所望量添加することができ
る。As the sintering aid, silica (SiO 2 ), calcia (CaO), yttria (Y 2 O 3 ) and magnesia (MgO) are used for alumina powder, and yttria (Y 2 O) is used for zirconia powder. 3 ) and cerium (C
e), dysprosium (Dy), ytterbium (Y
b) or the like, an oxide of a rare earth element such as b), yttria (Y 2 O 3 ) and alumina (Al 2 O 3 ) for silicon nitride powder, and an oxide of a group 3a element of the periodic table in aluminum nitride powder ( RE 2 O 3 ) and the like, and boron (B) and carbon (C) can be added to the silicon carbide powder in desired amounts.
【0030】また、隔壁11をなすガラス粉体として
は、ケイ酸塩を主成分とし、鉛(Pb)、硫黄(S)、
セレン(Se)、明礬等の一種以上を含有した各種ガラ
スを用いることができる。The glass powder forming the partition walls 11 is mainly composed of silicate, and contains lead (Pb), sulfur (S),
Various glasses containing one or more of selenium (Se), alum, and the like can be used.
【0031】尚、これらセラミックス又はガラス粉体の
粒径は、数十ミクロンからサブミクロンのものが好適に
用いることができ、具体的には0.2〜10μm、好ま
しくは0.2〜5μmの範囲のものが良い。The particle size of these ceramics or glass powders is preferably in the range of several tens of microns to submicron, specifically, 0.2 to 10 μm, preferably 0.2 to 5 μm. Good things in the range.
【0032】さらに、これらのセラミックス又はガラス
の粉末に添加する有機性添加物としては、尿素樹脂、メ
ラミン樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポ
リエステル樹脂、アルキド樹脂、ウレタン樹脂、エボナ
イト、ポリシロキ酸シリケート等が挙げられる。そして
これらの有機性添加物を反応硬化させる手段としては、
加熱硬化、紫外線照射硬化、X線照射硬化等がある。な
お、作業上、装置上の点からは加熱硬化が最適であっ
て、とりわけポットライフの点からは不飽和ポリエステ
ル樹脂が好適である。前記有機性添加物の含有量は、セ
ラミックス又はガラスの粉体と焼結助剤等との混合物の
流動性及び成形性を維持するためには、粘性が高くなら
ないようにする必要があり、一方、硬化時には十分な保
形性を有していることが望ましい。このような点から、
有機性添加物の含有量は、セラミックス又はガラスの粉
体100重量部に対して0.5重量部以上で、かつ硬化
による成形体の収縮という点からは35重量部以下がよ
り望ましく、なかでも焼成時の収縮を考慮すると、1〜
15重量部が最も好適である。Further, organic additives to be added to these ceramic or glass powders include urea resin, melamine resin, phenol resin, epoxy resin, unsaturated polyester resin, alkyd resin, urethane resin, ebonite, polysiloxysilicate. And the like. And as a means for reacting and curing these organic additives,
There are heat curing, ultraviolet irradiation curing, X-ray irradiation curing and the like. In terms of work, heat curing is most suitable from the viewpoint of the apparatus, and unsaturated polyester resin is particularly preferable from the viewpoint of pot life. The content of the organic additive, in order to maintain the fluidity and moldability of a mixture of ceramics or glass powder and a sintering aid, etc., it is necessary to prevent the viscosity from increasing, It is desirable to have sufficient shape retention during curing. From these points,
The content of the organic additive is preferably 0.5 part by weight or more based on 100 parts by weight of the ceramic or glass powder, and 35 parts by weight or less from the viewpoint of shrinkage of the molded article due to curing. Considering shrinkage during firing,
15 parts by weight are most preferred.
【0033】また、混合物21中に加えられる溶媒と
は、前記有機性添加物を相溶するものであれば特に限定
するものではなく、例えば、トルエン、キシレン、ベン
ゼン、フタル酸エステル等の芳香族溶剤や、ヘキサノー
ル、オクタノール、デカノール、オキシアルコール等の
高級アルコール類、あるいは酢酸エステル、グリセライ
ド等のエステル類を用いることができる。The solvent added to the mixture 21 is not particularly limited as long as it is compatible with the organic additive. For example, aromatic solvents such as toluene, xylene, benzene and phthalic acid ester can be used. Solvents, higher alcohols such as hexanol, octanol, decanol and oxyalcohol, and esters such as acetic acid ester and glyceride can be used.
【0034】とりわけ、前記フタル酸エステル、オキシ
アルコール等は好適に使用でき、更に、溶媒を緩やかに
揮発させるために、前記溶媒を2種類以上併用すること
も可能である また、前記溶媒の含有量は、成形性の点からは成形体の
保形性を維持するために、セラミックス又はガラスの粉
体100重量部に対して0.1重量部以上必要であり、
一方セラミックス又はガラスの粉体と有機性添加物の混
合物の粘性を低くすることが望ましいことからは35重
量部以下がより望ましく、乾燥時と焼成時の収縮を考慮
すると1〜15重量部であることが最も望ましい。In particular, the above-mentioned phthalic acid esters, oxyalcohols and the like can be suitably used. Further, in order to volatilize the solvent slowly, it is possible to use two or more of the above-mentioned solvents in combination. From the viewpoint of moldability, in order to maintain the shape retention of the molded body, 0.1 parts by weight or more is required for 100 parts by weight of ceramic or glass powder,
On the other hand, since it is desirable to lower the viscosity of the mixture of the ceramic or glass powder and the organic additive, it is more preferably 35 parts by weight or less, and from 1 to 15 parts by weight in consideration of shrinkage during drying and firing. Is most desirable.
【0035】なお本発明における成形型20は、有機性
添加物を硬化させる時に何ら支障無きものであれば良
く、材質は特に限定されないが、例えば金属や樹脂、あ
るいはゴム等が使用でき、必要ならば離型性向上や磨耗
防止のために、表面被覆等の表面処理を行ってもよい。The molding tool 20 in the present invention is not particularly limited as long as it does not hinder the curing of the organic additive. The material is not particularly limited. For example, metal, resin, rubber, or the like can be used. For example, a surface treatment such as surface coating may be performed to improve the releasability and prevent abrasion.
【0036】また、上記背面板10は、未焼成のグリー
ンシートあるいは焼結体で、材質は特に限定しないが、
例えば各種セラミックグリーンシートや各種ガラス基
板、磁器基板等で隔壁11の材質と熱膨張率が近似して
いることが望ましい。なお、ガラス基板としては、例え
ばソーダライムガラスやその歪み点を向上するために無
機フィラーを分散させた物など比較的安価なガラスを使
用できる。The back plate 10 is an unfired green sheet or sintered body, and the material is not particularly limited.
For example, it is desirable that the material of the partition 11 and the coefficient of thermal expansion of various ceramic green sheets, various glass substrates, and porcelain substrates are similar. In addition, as the glass substrate, for example, relatively inexpensive glass such as soda lime glass and a material in which an inorganic filler is dispersed to improve its strain point can be used.
【0037】また、前記混合物21と背面板10とを圧
着する際の接着性向上のために、シランカップリング剤
やチタネートカップリング剤、アルミネートカップリン
グ剤等の各種カップリング剤を使用することができ、な
かでも反応性が高いことからシランカップリング剤が好
適である。In order to improve the adhesion when the mixture 21 and the back plate 10 are pressed, various coupling agents such as a silane coupling agent, a titanate coupling agent, and an aluminate coupling agent are used. Silane coupling agents are preferred because of their high reactivity.
【0038】さらに、混合物21と背面板10との圧着
は、均一に圧力を加えるという点からは静水圧の装置を
用いるのが望ましく、加圧条件としては、成形型20を
変形させない圧力範囲となり、該圧力範囲は成形型20
の強度に左右されるが、例えばシリコンゴム製の成形型
20を用いた場合、約100g/cm2 程度の加圧条件
で行うのが望ましい。Further, it is desirable to use a hydrostatic device in order to uniformly apply pressure to the mixture 21 and the back plate 10, and the pressing condition is a pressure range where the mold 20 is not deformed. , The pressure range is the mold 20
Although it depends on the strength of the mold, for example, when a molding die 20 made of silicon rubber is used, it is desirable to carry out under a pressure condition of about 100 g / cm 2 .
【0039】また、混合物21において、セラミックス
又はガラス粉体の分散性の向上のために、例えば、ポリ
エチレングリコールエーテル、アルギルスルホン酸塩、
ポリカルボン酸塩、アルキルアンモニウム塩等の界面活
性剤を添加してもよく、その含有量としては分散性の向
上及び熱分解性の点から、セラミックス又はガラス粉体
100重量部に対して0.05〜5重量部が望ましい。In the mixture 21, for improving the dispersibility of the ceramic or glass powder, for example, polyethylene glycol ether, argyl sulfonate,
A surfactant such as a polycarboxylate or an alkylammonium salt may be added. The content of the surfactant is preferably 0.1 to 100 parts by weight of the ceramic or glass powder from the viewpoint of improving dispersibility and thermal decomposability. It is preferably from 0.5 to 5 parts by weight.
【0040】さらに、混合物21中のバインダーには硬
化反応促進剤または重合開始剤等と称される硬化触媒を
添加することができる。前記硬化触媒としては、有機過
酸化物やアゾ化合物を使用することができ、例えば、ケ
トンパーオキサイド、ジアシルパーオキサイド、パーオ
キシケタール、パーオキシエステル、ハイドロパーオキ
サイド、パーオキシカーボネート、t−ブチルパーオキ
シ−2−エチルヘキサノエート、ビス(4−t−ブチル
シクロヘキシル)パーオキシジカーボネート、ジクミル
パーオキサイド等の有機過酸化物や、アゾビス、イソブ
チロニトリル等のアゾ化合物が挙げられる なお、図1、2には台形状の隔壁11を示したが、本発
明はこの例に限るものではない。Further, a curing catalyst called a curing reaction accelerator or a polymerization initiator can be added to the binder in the mixture 21. As the curing catalyst, an organic peroxide or an azo compound can be used, for example, ketone peroxide, diacyl peroxide, peroxyketal, peroxyester, hydroperoxide, peroxycarbonate, t-butyl peroxide. Organic peroxides such as oxy-2-ethylhexanoate, bis (4-t-butylcyclohexyl) peroxydicarbonate and dicumyl peroxide, and azo compounds such as azobis and isobutyronitrile are included. 1 and 2, the trapezoidal partition 11 is shown, but the present invention is not limited to this example.
【0041】[0041]
【実施例】実施例1 本発明のプラズマ表示装置用基板及びその製造方法を評
価するために、平均粒径が0.2〜5μmのアルミナ
(Al2 O3 )、ジルコニア(ZrO2 )、窒化珪素
(Si3 N4 )及び窒化アルミニウム(AlN)をそれ
ぞれ主成分とし、前記公知の焼結助剤を必要に応じて添
加混合したものをセラミッスクス粉体とし、該セラミッ
クス粉体100重量部に対して表1のNo.1〜7に示
すようなバインダー組成物をそれぞれ添加混合し攪拌混
合機で混合して粘度を調整し、混合物21を調製した。
尚、表1に示すバインダー組成物の種類は、表2に記載
した物質名の通りである。 EXAMPLE 1 In order to evaluate a substrate for a plasma display device of the present invention and a method of manufacturing the same, alumina (Al 2 O 3 ), zirconia (ZrO 2 ), and nitride having an average particle size of 0.2 to 5 μm were used. A mixture of silicon (Si 3 N 4 ) and aluminum nitride (AlN) as main components and the above-mentioned known sintering aids added and mixed as necessary to obtain a ceramics powder, based on 100 parts by weight of the ceramic powder No. of Table 1 Mixtures 21 were prepared by adding and mixing the binder compositions as shown in Nos. 1 to 7 and mixing with a stirring mixer to adjust the viscosity.
In addition, the kind of the binder composition shown in Table 1 is as the substance name shown in Table 2.
【0042】[0042]
【表1】 [Table 1]
【0043】[0043]
【表2】 [Table 2]
【0044】かくして得られた混合物21を真空装置で
脱泡した後、シリコン樹脂で作成した成形型20の凹部
20aにドクターブレードを用いてシート成形の要領で
注入充填した。この凹部20aは逆台形状であり、焼結
後の隔壁11の寸法がセルピッチ寸法で0.22mm、
隔壁11の幅が0.05mm、セル上面開口寸法が0.
17mm、セル底面寸法が0.05mm、セル高さが
0.10mmとなるように設計したものである。尚、前
記脱泡処理は、成形型20に混合物21を充填した後に
行っても良い。After the mixture 21 thus obtained was defoamed by a vacuum device, it was injected and filled into the recess 20a of the mold 20 made of silicone resin by using a doctor blade in the manner of sheet molding. The concave portion 20a has an inverted trapezoidal shape, and the size of the partition wall 11 after sintering is 0.22 mm in cell pitch size.
The width of the partition 11 is 0.05 mm, and the opening size of the cell upper surface is 0.1 mm.
It is designed such that the cell bottom dimension is 17 mm, the cell bottom dimension is 0.05 mm, and the cell height is 0.10 mm. The defoaming treatment may be performed after filling the mixture 21 into the mold 20.
【0045】その後、前記成形型20に充填した混合物
21表面に、混合物21と同系のセラミックス焼結体か
ら成る背面板10を載置し、該平板を成形型20と共に
100g/cm2 の圧力で加圧しながら加熱炉等に収容
し、100℃の温度で45分間保持して加熱硬化させ
た。Thereafter, a back plate 10 made of a ceramic sintered body similar to the mixture 21 is placed on the surface of the mixture 21 filled in the molding die 20, and the flat plate is put together with the molding die 20 at a pressure of 100 g / cm 2 . It was housed in a heating furnace or the like while applying pressure, and was held at a temperature of 100 ° C. for 45 minutes to be heated and cured.
【0046】硬化完了後、前記成形型20から背面板1
0と密着した混合物21の成形体を離型し、該成形体を
120℃の温度で5時間乾燥し、次いで、窒素雰囲気中
で、まず250℃の温度で3時間保持した後、500℃
に昇温してその温度で12時間保持して脱バインダーし
た。その後、アルミナを主成分とするものは大気中、1
600℃の温度に2時間保持、ジルコニアの場合には大
気中、1450℃の温度に2時間保持、窒化珪素の場合
は窒素雰囲気中、1650℃の温度で10時間保持、窒
化アルミニウムの場合には窒素雰囲気中、1800℃の
温度で3時間保持してそれぞれ焼成一体化し、本発明の
プラズマ表示装置用基板1を得た。After the curing is completed, the back plate 1
The molded body of the mixture 21 in close contact with 0 was released from the mold, the molded body was dried at a temperature of 120 ° C. for 5 hours, and then kept in a nitrogen atmosphere at a temperature of 250 ° C. for 3 hours, and then 500 ° C.
, And kept at that temperature for 12 hours to remove the binder. After that, those containing alumina as the main component
Hold at a temperature of 600 ° C. for 2 hours, in the case of zirconia, in the air, at a temperature of 1450 ° C. for 2 hours, in the case of silicon nitride, in a nitrogen atmosphere, at a temperature of 1650 ° C. for 10 hours, in the case of aluminum nitride The substrate was held at a temperature of 1800 ° C. for 3 hours in a nitrogen atmosphere and fired and integrated to obtain a substrate 1 for a plasma display device of the present invention.
【0047】一方比較例として、前記と同じアルミナを
主成分とするセラミックス粉体に、表1のNo.8に示
すようにメチルセルロースとαテルピネオールを加えて
混練した印刷用ペーストを用い、厚膜印刷法で印刷を繰
り返して前記と同じ仕様の隔壁11を有するプラズマ表
示装置用基板1を作製した。On the other hand, as a comparative example, the same ceramic powder mainly containing alumina as described above As shown in 8, using a printing paste obtained by adding and kneading methylcellulose and α-terpineol, printing was repeated by a thick film printing method to produce a plasma display device substrate 1 having partition walls 11 having the same specifications as above.
【0048】かくして得られた本発明実施例及び比較例
のプラズマ表示装置用基板1を用いて、隔壁11の表面
粗さを接触式の表面粗さ計(サーフコーダSE−230
0)により測定し、また隔壁11の寸法精度は1000
セル間の長さをマイクロメータで45列測定して、測定
値間の最大差により評価した。その結果を表3に示す。Using the thus obtained plasma display device substrates 1 of the present invention and the comparative example, the surface roughness of the partition walls 11 was measured using a contact type surface roughness meter (Surfcoder SE-230).
0), and the dimensional accuracy of the partition 11 is 1000
The length between cells was measured in 45 rows with a micrometer, and evaluated by the maximum difference between the measured values. Table 3 shows the results.
【0049】[0049]
【表3】 [Table 3]
【0050】この結果より、比較例である厚膜印刷法で
成形した隔壁11を有するNo.8は、隔壁11の表面
粗さがRmaxで6.7μmと粗く、寸法精度も測定値
間の最大差が0.35mmで、かつ表示セルの形状に一
部潰れが認められる。From these results, it is found that No. 1 having the partition wall 11 formed by the thick film printing method as a comparative example. In No. 8, the surface roughness of the partition wall 11 is as rough as Rmax of 6.7 μm, the dimensional accuracy is 0.35 mm, the maximum difference between the measured values, and the shape of the display cell is partially collapsed.
【0051】それに対して、本発明実施例であるNo.
1〜7では、いずれのセラミックス粉体を用いたもので
も、隔壁11の表面粗さはRmaxで1.8μm以下と
小さく、また測定値間の最大差が0.05mm以下と寸
法精度にも優れ、表示セルの形状に潰れは認められなか
った。On the other hand, in the embodiment of the present invention, No.
In Nos. 1 to 7, the surface roughness of the partition walls 11 is as small as 1.8 μm or less in Rmax, and the maximum difference between the measured values is 0.05 mm or less, which is excellent in dimensional accuracy. No collapse was found in the shape of the display cell.
【0052】なお、本発明は前記実施例に限定されるも
のではなく、セラミック粉体の主成分として、アパタイ
ト(Ca5 (PO4 )3 (F、Cl、OH))やガラス
(Na2 O・CaO・5SiO2 )等を用いても同様の
効果が得られることを確認した。The present invention is not limited to the above-described embodiment, but includes apatite (Ca 5 (PO 4 ) 3 (F, Cl, OH)) and glass (Na 2 O) as main components of the ceramic powder. It has been confirmed that the same effect can be obtained even when CaO.5SiO 2 ) is used.
【0053】また、本発明における表示セルを構成する
隔壁11を成すための成形型20の形状は、前記実施例
では断面が逆台形状の凹部20aで説明したが、何らこ
の形状に限定されるものではない。The shape of the molding die 20 for forming the partition wall 11 constituting the display cell according to the present invention has been described in the above embodiment with the concave portion 20a having an inverted trapezoidal cross section, but is not limited to this shape. Not something.
【0054】実施例2 次に、上記本発明実施例のうちNo.1、6の混合物2
1を用いて、実施例1と同様に成形型を用いて隔壁11
を成形し、背面板10に接合した。 Embodiment 2 Next, in the embodiment of the present invention described above, Mixture 2 of 1, 6
1 and a partition 11 using a molding die in the same manner as in Example 1.
And bonded to the back plate 10.
【0055】このとき、隔壁11をなす混合物21を未
焼成の状態、または焼成後の状態でそれぞれ接合し、か
つ背面板10として未焼成セラミックス板、焼成セラミ
ック板、ガラス板の3種類を用いた。それぞれ、焼成一
体化させた時の剥離やクラックの有無について調べたと
ころ表4の通りであった。At this time, the mixture 21 forming the partition walls 11 was joined in an unfired state or a fired state, respectively, and three types of unfired ceramic plate, fired ceramic plate, and glass plate were used as the back plate 10. . The presence or absence of peeling or cracking upon firing and integration was examined, as shown in Table 4.
【0056】この結果より、セラミックス粉体から成る
混合物21を未焼成の状態でガラス製の背面板10に接
合すると、焼成時の温度が異なるためにクラックが生じ
た。これに対し、セラミックス粉体から成る混合物21
を予め焼成しておけば、ガラス製の背面板10に接合し
一体化させることが可能であった。As a result, when the mixture 21 composed of the ceramic powder was joined to the glass back plate 10 in an unfired state, cracks occurred due to the different firing temperatures. On the other hand, the mixture 21 composed of ceramic powder
Was previously fired, it was possible to join and integrate with the back plate 10 made of glass.
【0057】[0057]
【表4】 [Table 4]
【0058】実施例3 隔壁11を成す混合物21として、表5に示すように平
均粒径0.2〜10μm(好ましくは0.2〜5μm)
のガラス粉体と各種溶媒、有機性添加物と若干の分散剤
を加えたスラリーを作製し、この混合物21を成形型2
0の凹部20aに充填し、脱泡した。 Example 3 As a mixture 21 constituting the partition walls 11, as shown in Table 5, the average particle size was 0.2 to 10 μm (preferably 0.2 to 5 μm).
Of glass powder, various solvents, organic additives, and a small amount of a dispersing agent were prepared.
0 was filled in the recess 20a and defoamed.
【0059】この表面にガラス製の背面板10を載せて
加圧、乾燥後、混合物21が固化し背面板10に接合し
たことを確認して成形型20を離型した。その後、全体
を500〜700℃で焼成し、プラズマ表示装置用基板
1を作製した。The back plate 10 made of glass was placed on this surface, and after pressing and drying, it was confirmed that the mixture 21 was solidified and joined to the back plate 10, and then the mold 20 was released. Thereafter, the whole was baked at 500 to 700 ° C. to produce a substrate 1 for a plasma display device.
【0060】[0060]
【表5】 [Table 5]
【0061】一方、比較例として、従来の印刷方式によ
り、ガラス製の背面板10上に隔壁11を形成すべくス
クリーン印刷、乾燥を10回繰り返した後、500〜7
00℃で焼成してプラズマ表示装置用基板1を作製した
(No.7)。On the other hand, as a comparative example, screen printing and drying were repeated 10 times by a conventional printing method to form a partition 11 on a glass back plate 10, and then 500 to 7 times.
By firing at 00 ° C., a substrate 1 for a plasma display device was manufactured (No. 7).
【0062】以上のようにして得られたNo.1〜7の
試料について、隔壁11の形状、クラックの有無を双眼
顕微鏡で観察した結果を表6に示す。No. obtained as described above. Table 6 shows the results of observing the shape of the partition wall 11 and the presence or absence of cracks of the samples 1 to 7 with a binocular microscope.
【0063】この結果より、比較例であるNo.7は隔
壁11の形状が不明確であった。これに対し、本発明実
施例(No.1〜6)では、No.6が溶媒量が多いた
めに若干隔壁11に潰れが発生したものの、全般に隔壁
11の形状が良好でありクラックも発生しなかった。し
たがって、背面板10や隔壁11にガラスを用いた場合
でも良好にプラズマ表示装置用基板1を製造できること
がわかった。From the results, it was found that the comparative examples No. In No. 7, the shape of the partition wall 11 was unclear. On the other hand, in the examples of the present invention (Nos. 1 to 6), In No. 6, although the partition wall 11 was slightly crushed due to the large amount of the solvent, the partition wall 11 was generally good in shape and no crack was generated. Therefore, it was found that the plasma display device substrate 1 could be manufactured favorably even when glass was used for the back plate 10 and the partition 11.
【0064】[0064]
【表6】 [Table 6]
【0065】[0065]
【発明の効果】叙上の如く、本発明のプラズマ表示装置
用基板及びその製造方法は、セラミックス又はガラス粉
体とバインダーとの混合物を成形型中に充填して得た成
形体と、セラミックス又はガラスからなる背面板とを接
合一体化したものであることから、1回の成形工程で製
造でき、かつ成形型の寸法精度がそのまま成形体に転写
されることから、表面状態が良好な隔壁が得られ、大型
化が容易に実現できる。その結果、製造工程の短縮及び
簡略化と高い製品歩留りを実現でき、高精細度化が実現
できるプラズマ表示装置用基板及びその製造方法を提供
することができる。As described above, the substrate for a plasma display device and the method of manufacturing the same according to the present invention provide a molded article obtained by filling a mixture of a ceramic or a glass powder and a binder into a molding die, a ceramic or a ceramic. Since the back plate made of glass is joined and integrated, it can be manufactured in one molding step, and the dimensional accuracy of the mold is transferred to the molded body as it is, so that a partition wall with a good surface condition can be formed. Thus, the size can be easily increased. As a result, it is possible to provide a plasma display device substrate and a method for manufacturing the same capable of realizing a high definition with a shortened and simplified manufacturing process and a high product yield.
【図1】本発明のプラズマ表示装置用基板を示す一部破
断斜視図である。FIG. 1 is a partially broken perspective view showing a substrate for a plasma display device of the present invention.
【図2】(a)(b)は本発明のプラズマ表示装置用基
板の製造方法を説明するための図である。FIGS. 2A and 2B are views for explaining a method of manufacturing a substrate for a plasma display device according to the present invention.
【図3】従来のプラズマ表示装置用基板を示す断面図で
ある。FIG. 3 is a cross-sectional view showing a conventional substrate for a plasma display device.
1:基板 10:背面板 11:隔壁 12:電極 13:セル 14:電極 15:正面板 20:成形型 21:混合物 1: Substrate 10: Back plate 11: Partition wall 12: Electrode 13: Cell 14: Electrode 15: Front plate 20: Mold 21: Mixture
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−28373(JP,A) 特開 平3−254857(JP,A) 特開 平1−137534(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01J 17/16 H01J 9/02 H01J 9/24 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-53-28373 (JP, A) JP-A-3-254857 (JP, A) JP-A-1-137534 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01J 17/16 H01J 9/02 H01J 9/24
Claims (1)
ガラスの粉体と、該粉体に対して1〜15重量部の溶媒
と、有機性添加物から成るバインダーとの混合物を、逆
台形状をした隔壁用の凹部を有する成形型中に充填し、
これらの混合物をセラミックス又はガラスからなる背面
板に接合して成形型を離型した後、焼成一体化すること
により、上記背面板上に台形状をした複数の隔壁を備え
て表示セルを構成する工程からなるプラズマ表示装置用
基板の製造方法。 1. A ceramic or glass powder having a particle size of 0.2 to 10 μm and a solvent in an amount of 1 to 15 parts by weight based on the powder.
When a mixture of a binder made of an organic additive, reverse
Filled into a mold having a trapezoidal concave portion for partition,
After releasing the mold by joining these mixtures to the back plate made of ceramic or glass, firing integrated
By providing a plurality of trapezoidal partitions on the back plate
A method for manufacturing a substrate for a plasma display device , comprising the steps of:
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34012495A JP3340011B2 (en) | 1995-09-06 | 1995-12-27 | Method of manufacturing substrate for plasma display device |
FR9610919A FR2738393B1 (en) | 1995-09-06 | 1996-09-06 | PLASMA DISPLAY SUBSTRATE AND METHOD FOR THE PRODUCTION THEREOF |
US08/714,837 US6023130A (en) | 1995-09-06 | 1996-09-06 | Plasma display substrate and a production method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22939395 | 1995-09-06 | ||
JP7-229393 | 1995-09-06 | ||
JP34012495A JP3340011B2 (en) | 1995-09-06 | 1995-12-27 | Method of manufacturing substrate for plasma display device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09134676A JPH09134676A (en) | 1997-05-20 |
JP3340011B2 true JP3340011B2 (en) | 2002-10-28 |
Family
ID=26528774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34012495A Ceased JP3340011B2 (en) | 1995-09-06 | 1995-12-27 | Method of manufacturing substrate for plasma display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3340011B2 (en) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990012634A (en) * | 1997-07-30 | 1999-02-25 | 엄길용 | Manufacturing Method of Plasma Display Device |
KR19990012635A (en) * | 1997-07-30 | 1999-02-25 | 엄길용 | Manufacturing Method of Plasma Display Device |
KR100488294B1 (en) * | 1997-11-29 | 2005-07-29 | 오리온전기 주식회사 | Bulkhead Forming Device for Plasma Display Device |
JP3866413B2 (en) * | 1998-05-18 | 2007-01-10 | スリーエム カンパニー | Photosensitive molding material and method for producing PDP substrate using the same |
JP3701123B2 (en) * | 1998-06-24 | 2005-09-28 | 株式会社日立製作所 | Method for manufacturing original mold for partition transfer intaglio and method for forming partition for plasma display panel |
EP1017083A1 (en) * | 1998-12-21 | 2000-07-05 | Thomson Plasma | Plasma display having a porous structure |
US6352763B1 (en) | 1998-12-23 | 2002-03-05 | 3M Innovative Properties Company | Curable slurry for forming ceramic microstructures on a substrate using a mold |
US6247986B1 (en) | 1998-12-23 | 2001-06-19 | 3M Innovative Properties Company | Method for precise molding and alignment of structures on a substrate using a stretchable mold |
JP3204319B2 (en) | 1999-01-22 | 2001-09-04 | 日本電気株式会社 | Display panel manufacturing method |
WO2000048218A1 (en) | 1999-02-12 | 2000-08-17 | Toppan Printing Co., Ltd. | Plasma display panel, method and device for production therefor |
US6843952B1 (en) | 1999-03-25 | 2005-01-18 | 3M Innovative Properties Company | Method of producing substrate for plasma display panel and mold used in the method |
US6878333B1 (en) | 1999-09-13 | 2005-04-12 | 3M Innovative Properties Company | Barrier rib formation on substrate for plasma display panels and mold therefor |
JP3321129B2 (en) | 1999-11-17 | 2002-09-03 | 富士通株式会社 | Three-dimensional structure transfer method and apparatus |
KR100607240B1 (en) * | 1999-12-17 | 2006-08-01 | 엘지전자 주식회사 | Composition For Barrier Ribs in Plasma Display Panel |
JP4719332B2 (en) * | 2000-03-31 | 2011-07-06 | 太陽ホールディングス株式会社 | Photo-curable paste composition |
US6821178B2 (en) | 2000-06-08 | 2004-11-23 | 3M Innovative Properties Company | Method of producing barrier ribs for plasma display panel substrates |
KR20020024723A (en) * | 2000-09-26 | 2002-04-01 | 조선제 | Barrier forming method for plasma display panel |
KR20020078268A (en) * | 2001-04-09 | 2002-10-18 | 정해도 | Manufacturing method for PDP's Barrier Rib |
KR20030017248A (en) * | 2001-08-24 | 2003-03-03 | 주식회사 유피디 | Fabrication method of additive soft mold for barrier rib in plasma display panel and method of forming barrier rib using the mold |
US7176492B2 (en) | 2001-10-09 | 2007-02-13 | 3M Innovative Properties Company | Method for forming ceramic microstructures on a substrate using a mold and articles formed by the method |
US7033534B2 (en) | 2001-10-09 | 2006-04-25 | 3M Innovative Properties Company | Method for forming microstructures on a substrate using a mold |
KR100482323B1 (en) * | 2002-02-04 | 2005-04-13 | 엘지전자 주식회사 | Fabricating method and apparatus of spacer in field emission display |
TW200535901A (en) * | 2004-02-17 | 2005-11-01 | Tdk Corp | Method for producing spacer for flat panel display |
WO2005090043A1 (en) * | 2004-03-22 | 2005-09-29 | Pioneer Corporation | Method and device for forming recessed and projected pattern |
TW200830931A (en) * | 2007-01-08 | 2008-07-16 | Tatung Co Ltd | Method for manufacturing the spacer for field emission device and base material utilized for the spacer |
WO2009031571A1 (en) * | 2007-09-06 | 2009-03-12 | Sony Corporation | Optical extraction element, method for manufacturing the optical extraction element, and display device |
-
1995
- 1995-12-27 JP JP34012495A patent/JP3340011B2/en not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
JPH09134676A (en) | 1997-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3340011B2 (en) | Method of manufacturing substrate for plasma display device | |
US6023130A (en) | Plasma display substrate and a production method thereof | |
TW398017B (en) | Method for manufacturing flat plate with precise bulkhead, flat plate with precise bulkhead, method for manufacturing plasma display unit substrate and plasma display unit substrate and plasma display unit substrate | |
JPH10128634A (en) | Sucker and its manufacture | |
JP3340004B2 (en) | Method of manufacturing substrate for plasma display device | |
JP3274972B2 (en) | Method for manufacturing optical element holding member | |
JP3593707B2 (en) | Aluminum nitride ceramics and method for producing the same | |
JP3472413B2 (en) | Plasma display device substrate and plasma display device using the same | |
KR20200069398A (en) | Multi-layered structure for sintering of thin ceramic plate and manufacturing method of thin ceramic plate using the same | |
JP3472426B2 (en) | Plasma display panel substrate and plasma display panel using the same | |
JP3089973B2 (en) | Method for sintering glass ceramic laminate | |
JP3493277B2 (en) | Method for manufacturing plasma display panel substrate, plasma display panel substrate obtained by the method, and plasma display panel | |
JP3497693B2 (en) | Substrate for plasma display | |
JPH10208628A (en) | Manufacture of substrate for plasma display panel | |
JP3524321B2 (en) | Method for manufacturing plate-like body having precision partition, plate-like body having precision partition, method for manufacturing substrate for plasma display device, and substrate for plasma display device | |
JP3524322B2 (en) | Method for manufacturing plate-like body having precision partition, plate-like body having precision partition, method for manufacturing substrate for plasma display device, and substrate for plasma display device | |
JPH09265905A (en) | Manufacture of substrate for plasma display panel | |
JP3497694B2 (en) | Substrate for plasma display | |
JPH10214559A (en) | Manufacture of plasma display panel substrate | |
JPH10302618A (en) | Substrate for plasma display device | |
JPH11283512A (en) | Substrate for plasma display device and its manufacture | |
JPH1128822A (en) | Flow passage member, its manufacture, ink jet printer head employing the same, and manufacture thereof | |
JP3563576B2 (en) | Method of manufacturing ink jet printer head | |
JPH05163072A (en) | Production of multi-layer ceramic sintered compact | |
JPH10125219A (en) | Manufacture of plasma display panel barrier plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RVOP | Cancellation by post-grant opposition |