JP3339225B2 - Method for producing palladium powder for paste - Google Patents

Method for producing palladium powder for paste

Info

Publication number
JP3339225B2
JP3339225B2 JP32570794A JP32570794A JP3339225B2 JP 3339225 B2 JP3339225 B2 JP 3339225B2 JP 32570794 A JP32570794 A JP 32570794A JP 32570794 A JP32570794 A JP 32570794A JP 3339225 B2 JP3339225 B2 JP 3339225B2
Authority
JP
Japan
Prior art keywords
powder
acid
paste
mixture
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32570794A
Other languages
Japanese (ja)
Other versions
JPH08176602A (en
Inventor
直希 石山
功 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP32570794A priority Critical patent/JP3339225B2/en
Publication of JPH08176602A publication Critical patent/JPH08176602A/en
Application granted granted Critical
Publication of JP3339225B2 publication Critical patent/JP3339225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、パラジウム(Pd)粉
末を用いた導電ペースト、特に積層セラミックコンデン
サー(以下MLCCと記す)の内部電極形成に用いられ
るPdペースト用のPd粉末の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a conductive paste using palladium (Pd) powder, in particular, a Pd powder for a Pd paste used for forming internal electrodes of a multilayer ceramic capacitor (hereinafter referred to as MLCC).

【0002】[0002]

【従来の技術】電子部品の軽薄短小化が進み、チップ部
品であるMLCCも小型化、大容量化の進歩がますます
要求されている。MLCCの小型化と大容量化のもっと
も効果的な手段は内部電極と誘電体層を薄くして多層化
をはかることである。
2. Description of the Related Art As electronic components become lighter and thinner, MLCCs, which are chip components, are increasingly required to be reduced in size and increased in capacity. The most effective means for reducing the size and increasing the capacity of the MLCC is to reduce the thickness of the internal electrodes and the dielectric layers to achieve a multilayer structure.

【0003】MLCCは通常次のようにして作成され
る。
[0003] An MLCC is usually created as follows.

【0004】まず、チタン酸バリウム(BaTiO3
等で代表される誘電体粉末とポリビニルブチラール等の
有機バインダーからなる誘電体グリーンシートを作成す
る。次にPdペーストをスクリーン印刷法などを用いて
グリーンシートの表面に印刷して内部電極を作成する。
これを乾燥した後内部電極とグリーンシートとが交互に
重なるように積層し、熱圧着し、次いで所望の大きさに
切断し、約1300℃で焼成してバインダーの除去と、
内部電極と誘電体との焼結を行う。そして、銀(Ag)
等の外部電極を形成する。
First, barium titanate (BaTiO 3 )
A dielectric green sheet made of a dielectric powder typified by the above and an organic binder such as polyvinyl butyral is prepared. Next, Pd paste is printed on the surface of the green sheet using a screen printing method or the like to form internal electrodes.
After drying, the internal electrode and the green sheet are laminated so that they alternately overlap with each other, thermocompression-bonded, cut into a desired size, and fired at about 1300 ° C. to remove the binder.
Sintering of the internal electrode and the dielectric is performed. And silver (Ag)
Etc. are formed.

【0005】ここで用いられるPdペーストは、電極形
成成分としてのPd粉末と、セルロース系樹脂やアクリ
ル系樹脂、溶剤としてトリメチルベンゼン、ターピネオ
ール等の有機バインダー成分からなり、スリーロールミ
ルによって混練し混合分散して製造される。
[0005] The Pd paste used here is composed of Pd powder as an electrode forming component, a cellulose resin or an acrylic resin, and an organic binder component such as trimethylbenzene or terpineol as a solvent. Manufactured.

【0006】このPd粉末は種々の製造方法が知られて
いる。中でも、Pd水溶液にヒドラジン等の還元剤を作
用させてPd粉末を析出させる湿式還元法はコスト、反
応装置の簡便さから広く用いられている。例えば、特開
平3−277706にはテトラアンミンパラジウム塩水
溶液とヒドラジン化合物水溶液との組み合わせが、特開
平1−225708には硝酸パラジウム水溶液とL−ア
スコルビン酸塩類水溶液との組み合わせが開示されてい
る。
Various production methods are known for this Pd powder. Above all, a wet reduction method in which a reducing agent such as hydrazine is allowed to act on an aqueous Pd solution to precipitate Pd powder is widely used because of its cost and simple reactor. For example, JP-A-3-277706 discloses a combination of an aqueous solution of a tetraammine palladium salt and a hydrazine compound aqueous solution, and JP-A-1-270808 discloses a combination of an aqueous solution of palladium nitrate and an aqueous solution of L-ascorbate.

【0007】ところで、これらの方法で作られたPd粉
末を用い、定速昇温で室温から1000℃まで熱重量測
定(TG−DTA)を行うと、焼成過程で約300℃以
上でPdOが生成し始め、約700℃でほぼ100%P
dOに相変化し、約820℃以上で再びPd相に戻るこ
とが確認できる。また空気中500℃の定温下における
時間当たりのの酸化率変化をTG測定した結果による
と、Pd粉末は酸化が時間とともに急激に進行すること
が確認されている。これは、Pdは熱力学的に大気中約
820℃以下ではPdOが安定相であり、約820℃以
上ではPdが安定相であるために起きる現象といわれて
いる。
When Pd powder produced by these methods is subjected to thermogravimetric measurement (TG-DTA) from room temperature to 1000 ° C. at a constant rate, PdO is formed at about 300 ° C. or more in the firing process. Almost 100% P at about 700 ℃
It can be confirmed that the phase changes to dO and returns to the Pd phase again at about 820 ° C. or higher. According to the result of TG measurement of the change in the oxidation rate per hour at a constant temperature of 500 ° C. in air, it was confirmed that the oxidation of the Pd powder progressed rapidly with time. This is said to be a phenomenon which occurs because PdO is a stable phase thermodynamically at about 820 ° C. or lower in the atmosphere, and Pd is a stable phase at about 820 ° C. or higher.

【0008】このため、このようなPd粉を用いたPd
ペーストでは酸化に対し敏感なために、MLCC製造焼
成過程でPd粉末の酸化と還元により、線膨張と急激な
収縮とを起こす。そして、線膨張は理論的には、820
℃近くで15%に及ぶ。
For this reason, Pd using such Pd powder
Since the paste is sensitive to oxidation, it undergoes linear expansion and rapid contraction due to oxidation and reduction of the Pd powder during the MLCC production firing process. And linear expansion is theoretically 820
It approaches 15% near ℃.

【0009】このようなPdの酸化還元による急激な体
積変化、並びにPdペーストのバインダー成分である高
分子樹脂の燃焼による急激な発熱が内部Pd電極と誘電
体層の界面で起こることが原因となって熱膨張差による
応力を引き起こし、界面で剥離、ふくれ、それによるク
ラックが生じるものと考えられている。これらの欠陥は
デラミネーションと呼ばれ、特に多層のMLCCを製造
するに当たって大きな問題となっている。
The rapid volume change due to the redox of Pd and the rapid heat generation due to the burning of the polymer resin as the binder component of the Pd paste occur at the interface between the internal Pd electrode and the dielectric layer. It is believed that the thermal expansion causes stress due to the difference in thermal expansion, and peeling, swelling and cracks occur at the interface. These defects are called delamination, and are a serious problem particularly in manufacturing a multilayer MLCC.

【0010】一般に結晶子が大きくなると耐酸化性が向
上することが知られている。したがってPd粉末がML
CC内部電極用材料として結晶子が大きなPd粉がPd
ペースト用として強く要請されている。
It is generally known that the larger the crystallite, the higher the oxidation resistance. Therefore, Pd powder is ML
Pd with large crystallite is Pd as material for CC internal electrode
There is a strong demand for pastes.

【0011】[0011]

【発明が解決しようとする課題】本発明は上記の問題点
を解決するためになされたものであり、焼成に伴なって
おこる酸化が少ない、Pdペースト原料として好適なP
d粉末の製造方法の提供を課題とする。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is preferable that Pd suitable as a Pd paste raw material is less oxidized during firing.
It is an object to provide a method for producing d powder.

【0012】[0012]

【課題を解決するための手段】本発明は、上記Pd粉末
を得るための製造方法として、300℃以上の熱処理を
加えた後も酸に可溶である化合物とPd粉を混合し、こ
の混合物を熱処理した後、酸によってPd以外の成分を
溶解させPd粉末だけを分別回収する事により耐酸化性
に優れたPd粉末を合成する。具体的には、粒径0.1
〜1μmのPd粉末と、酸易溶化合物と、有機溶媒とを
混練し、次いで有機溶媒を揮発除去し、得られたPd粉
末と酸易溶化合物との混合物を300℃以上で加熱処理
し、次いで放冷し、酸で前記化合物を溶解し、Pd粉末
を回収するものである。そして、好ましくは、酸易溶性
化合物として酸化ナトリウム、水酸化ナトリウム、酸化
カルシウム、炭酸ナトリウム、炭酸バリウム、炭酸スト
ロンチウム、酢酸カルシウム、硝酸カルシウム、塩化ナ
トリウム、塩化マグネシウム等のアルカリ金属あるいは
アルカリ土類金属の酸化物、水酸化物、無機塩、有機塩
等を用い、これらをPd粉末と重量比で等量以上加え、
有機溶媒としてエチノレアルコール等の低級アルコーノ
レやペースト用の溶媒、例えばαテルピネオールなどを
用いるものである。
According to the present invention, as a production method for obtaining the above-mentioned Pd powder, a compound which is soluble in an acid even after a heat treatment at 300 ° C. or higher is mixed with a Pd powder. After heat-treating , Pd powder excellent in oxidation resistance is synthesized by dissolving components other than Pd with an acid and separating and recovering only the Pd powder. Specifically, the particle size is 0.1
11 μm of Pd powder , an acid-soluble compound, and an organic solvent are kneaded, the organic solvent is volatilized and removed, and the obtained mixture of the Pd powder and the acid-soluble compound is heated at 300 ° C. or more, Then, the mixture is allowed to cool, the compound is dissolved with an acid, and the Pd powder is recovered. And preferably, as an easily acid-soluble compound, sodium oxide, sodium hydroxide, calcium oxide, sodium carbonate, barium carbonate, strontium carbonate, calcium acetate, calcium nitrate, sodium chloride, magnesium chloride and other alkali metals or alkaline earth metals. Using oxides, hydroxides, inorganic salts, organic salts, and the like, these are added in equal amounts or more in weight ratio with Pd powder,
As the organic solvent, a lower alcohol such as ethynole alcohol or a solvent for paste, for example, α-terpineol is used.

【0013】[0013]

【作用】以下に本発明について具体的に説明する。The present invention will be specifically described below.

【0014】本発明において処理対象とするPd粉末は
特に限定しないが、積層コンデンサの内部電極層の厚み
が1〜3μm程度である事を考慮すると粒径0.1〜1
μmのPd粉末とすることが望ましい。本発明の方法で
は、このPd粉末に酸易溶化合物と有機溶媒とを混練
し、次いで有機溶媒を揮発除去し、得られた混合物を3
00℃以上で加熱処理し、次いで放冷し、酸で前記化合
物を溶解し、Pd粉末を回収するが、このようにするこ
とによりPd粉末粒子の格子不整などの欠陥が減少し、
結晶性が改善できるからである。
The Pd powder to be treated in the present invention is not particularly limited. However, considering that the thickness of the internal electrode layer of the multilayer capacitor is about 1 to 3 μm, the particle diameter is 0.1 to 1 μm.
It is desirable to use a Pd powder of μm . In the method of the present invention, the Pd powder is kneaded with an acid-soluble compound and an organic solvent, and then the organic solvent is volatilized and removed.
Heat treatment at a temperature of 00 ° C. or higher, then allow to cool, dissolve the compound with an acid, and recover the Pd powder.By doing so, defects such as lattice irregularity of the Pd powder particles are reduced,
This is because the crystallinity can be improved.

【0015】本発明で用いることのできる酸易溶性化合
物は、300℃以上の熱処理を受けた後でも酸に可溶で
なければならない。この条件に当てはまる化合物として
は、アルカリ金属あるいはアルカリ土類金属の酸化物、
水酸化物、無機塩、有機塩等が挙げられる。具体的に
は、酸化ナトリウム、水酸化ナトリウム、酸化カルシウ
ム、炭酸ナトリウム、炭酸バリウム、炭酸ストロンチウ
ム、酢酸カルシウム、硝酸カルシウム、塩化ナトリウ
ム、塩化マグネシウム等である。これらの化合物とPd
粉末との混合比は熱処理時の燒結防止が可能であればよ
く、この目的が達成できる量であれば良い。好ましくは
重量で1:1以上とすることが望ましい。
The acid-soluble compound that can be used in the present invention must be soluble in an acid even after being subjected to a heat treatment at 300 ° C. or higher. Compounds that meet this condition include oxides of alkali metals or alkaline earth metals,
Hydroxides, inorganic salts, organic salts and the like. Specific examples include sodium oxide, sodium hydroxide, calcium oxide, sodium carbonate, barium carbonate, strontium carbonate, calcium acetate, calcium nitrate, sodium chloride, magnesium chloride and the like. These compounds and Pd
The mixing ratio with the powder only needs to be such that sintering can be prevented during the heat treatment, and may be an amount that can achieve this purpose. Preferably, the weight ratio is 1: 1 or more.

【0016】また、使用可能な有機溶媒としては、エチ
ルアルコール等の低級アルコールやペースト用の溶媒、
例えばαテルピネオールなどである。Pd粉末とこれら
化合物との混合・混練にはボールミル、らいかい機、V
字型ブレンダー、3本ロールミル等が使用可能である。
Examples of usable organic solvents include lower alcohols such as ethyl alcohol and solvents for pastes,
For example, α-terpineol is used. For mixing and kneading of Pd powder and these compounds, use a ball mill,
A letter-shaped blender, a three-roll mill or the like can be used.

【0017】熱処理に際しては、あらかじめ有機溶媒を
除去しておく。急激な加熱による突沸などを防止するた
めである。また、熱処理時にはPdが酸化しないように
酸素分圧を低くすることが望ましい。熱処理温度は少な
くとも300℃以上にすることが必要であり、300℃
以下の温度で熱処理しても耐酸化性向上が殆ど期待出来
ない。本発明の方法では、基本的に300℃以上になっ
たという熱履歴が重要であり、加熱時間の影響はさほど
受けない。
In the heat treatment, the organic solvent is removed in advance. This is to prevent bumping or the like due to rapid heating. It is also desirable to lower the oxygen partial pressure so that Pd is not oxidized during the heat treatment. The heat treatment temperature must be at least 300 ° C.
Even if heat treatment is performed at the following temperature, oxidation resistance can hardly be improved. In the method of the present invention, the heat history that the temperature has risen to 300 ° C. or more is important, and is not significantly affected by the heating time.

【0018】熱処理後に混合物を溶解するための酸はP
dを溶解しないものであればよく、塩酸が好適である。
溶解方法は特にこだわらず、酸溶液中に熱処理後の混合
物を投入することがもっとも簡便である。溶解後、固液
分離し、乾燥してPd粉のみを得る。
The acid for dissolving the mixture after heat treatment is P
Any compound that does not dissolve d may be used, and hydrochloric acid is preferred.
The dissolution method is not particularly limited, and it is most convenient to put the mixture after the heat treatment into the acid solution. After dissolution, solid-liquid separation and drying are performed to obtain only Pd powder.

【0019】[0019]

【実施例】次に本発明の実施例について述べる。Next, an embodiment of the present invention will be described.

【0020】(実施例1) (Pd粉末の製造)住友金属鉱山株式会社製Pd粉(製
品名 SFP−801P、平均粒径0.8μm)30g
と、関東化学株式会社製炭酸カルシウム粉末(試薬特
級)30gと、さらに溶媒としてαテルピネオール10
gを加え時計皿中でよく混練しペースト状にした。さら
にこのペースト状混合物を3本ロールミルにて混練し、
Pdペーストを得た。このPdペーストをガラス製ビー
カに移し、真空乾燥器中で約12時間乾燥させ溶媒を揮発
させ、Pd粉末と炭酸カルシウム粉末の混合物を得た。
(Example 1) (Production of Pd powder) 30 g of Pd powder (product name SFP-801P, average particle size 0.8 μm) manufactured by Sumitomo Metal Mining Co., Ltd.
And 30 g of calcium carbonate powder (special grade reagent) manufactured by Kanto Chemical Co., Ltd., and α-terpineol 10 as a solvent.
g and kneaded well in a watch glass to form a paste. Further, this paste-like mixture is kneaded with a three-roll mill,
A Pd paste was obtained. This Pd paste was transferred to a glass beaker and dried in a vacuum drier for about 12 hours to evaporate the solvent to obtain a mixture of Pd powder and calcium carbonate powder.

【0021】次に、この混合物を磁器製坩堝に入れ、雰
囲気調整が可能な電気炉にいれた。電気炉内を真空にし
た後、電気炉内に窒素ガスを導入し、表1に示した条件
で熱処理を行った。なお、炉内の酸素分圧はジルコニア
センサーで計測した。
Next, this mixture was placed in a porcelain crucible and placed in an electric furnace capable of adjusting the atmosphere. After the inside of the electric furnace was evacuated, nitrogen gas was introduced into the electric furnace, and heat treatment was performed under the conditions shown in Table 1. The oxygen partial pressure in the furnace was measured with a zirconia sensor.

【0022】熱処理後炉内より混合物を取り出し、この
混合物を500mlの10%塩酸溶液中に投入し、混合
物中のCaOを溶解した。投入後30分間撹拌し、ろ過
し、Pd粉を分離回収した。回収したPd粉を再び50
0mlの10%塩酸溶液中に投入し、ろ過し500ml
の蒸留水で3回リパルプ洗浄し、次いで純水で3回の掛
け水洗浄し、80℃の熱風乾燥を行ないPd粉末を得
た。
After the heat treatment, the mixture was taken out of the furnace, and the mixture was poured into 500 ml of a 10% hydrochloric acid solution to dissolve CaO in the mixture. After the addition, the mixture was stirred for 30 minutes, filtered, and Pd powder was separated and collected. Collect the recovered Pd powder again to 50
Pour into 0 ml of 10% hydrochloric acid solution, filter and 500 ml
Was washed three times with distilled water and then washed three times with pure water, and dried with hot air at 80 ° C. to obtain Pd powder.

【0023】(Pd粉末の評価)得られたPd粉末より
ランダムに50個の粒子を選択し、走査型電子顕微鏡に
より粒子径を測定した。そして、平均を求め、これをP
d粉末の平均粒径とした。
(Evaluation of Pd Powder) Fifty particles were randomly selected from the obtained Pd powder, and the particle diameter was measured by a scanning electron microscope. Then, the average is obtained, and this is calculated as P
d The average particle diameter of the powder was used.

【0024】また。残留カルシウムはICP分析法で測
定した。
Also. Residual calcium was measured by ICP analysis.

【0025】Pd粉末の酸化特性は熱重量分析装置(T
G−DTA)により最大酸化重量増加量(W(%))で
評価した。最大酸化重量増加量(%)は次式に従った。
The oxidation characteristics of the Pd powder were determined using a thermogravimetric analyzer (T
G-DTA) to evaluate the maximum oxidized weight increase (W (%)). The maximum oxidation weight increase (%) was in accordance with the following equation.

【0026】 W(%)=(Woxd−Wint)×100/Wint ここにおいて、Wは最大酸化重量増加量であり、Woxd
は測定中に測定された最大重量、Wintは測定前の重量
である。そして、測定条件は、試料量 20mg、昇温
速度 20℃/min、測定温度範囲 25℃から125
0℃、空気流量 100ml/minである。
W (%) = (W oxd −W int ) × 100 / W int Here, W is the maximum oxidized weight increase, and W oxd
Is the maximum weight measured during the measurement, and W int is the weight before the measurement. The measurement conditions were as follows: a sample amount of 20 mg, a heating rate of 20 ° C./min, and a measuring temperature range of 25 ° C. to 125 ° C.
0 ° C., air flow rate 100 ml / min.

【0027】なお、パラジウムの最大重量増加量は理論
的には15%である。
The maximum weight increase of palladium is theoretically 15%.

【0028】結晶子径の測定は粉末X線回折装置(理学
電機株式会社製 RAD−rVD)を使用し、Cuター
ゲットとDS(発散スリット)1deg.、RS(受光
スリット)0.3mm、SS(散乱スリット)1de
g.のスリットを使用し、電圧40kV、150mA、
スキャンスピード2deg./min.で測定した。測
定面はPd(111)ピークを測定し、コンピュータソ
フト(RAD−Bシステムアプリケーションソフト K
α1,Kα2のピーク分離プログラム)により分離した
Kα1プロファイルを用いてScherrer法により
結晶子径を算出した。なお、Scherrerの式 R=
0.9・λ/(B・cosθ)ノおけるBはB2=Bm2−Bs2を
採用し、Rは結晶子径、λはX線の波長、θは回折角、
Bmは測定したピークの半値幅、Bsは標準試料により
あらかじめ求めた光学系による拡がりである。標準試料
には粒径約0.25μmのαー石英を約800℃でアニ
ールしたものを使用した。なおこの方法は結晶子径が1
000オンク゛ストローム以上になると誤差が大きく正確な値は
求められない。
The crystallite diameter was measured using a powder X-ray diffractometer (RAD-rVD, manufactured by Rigaku Corporation) and a Cu target and 1 deg. DS (divergence slit). , RS (light receiving slit) 0.3 mm, SS (scattering slit) 1 de
g. Using a slit of voltage 40kV, 150mA,
Scan speed 2 deg. / Min. Was measured. The measurement surface measures the Pd (111) peak and uses computer software (RAD-B system application software K
The crystallite diameter was calculated by the Scherrer method using the Kα1 profile separated by the α1, Kα2 peak separation program). The Scherrer equation R =
For B in 0.9 · λ / (B · cos θ), B2 = Bm2-Bs2 is adopted, R is crystallite diameter, λ is X-ray wavelength, θ is diffraction angle,
Bm is the half width of the measured peak, and Bs is the spread by the optical system obtained in advance from the standard sample. As a standard sample, α-quartz having a particle size of about 0.25 μm annealed at about 800 ° C. was used. In this method, the crystallite diameter is 1
If it exceeds 2,000 angstroms, an error is large and an accurate value cannot be obtained.

【0029】得られた結果を表1に併せて記載した。比
較のために未処理品である住友金属鉱山株式会社製SF
P−801P、SFP−501Pの値も記載した。この
表1からも分かるように残留カルシウムはほとんど認め
られず、結晶子径もいずれも900オンク゛ストローム以上であ
り最大酸化率も未処理品に比較し40%近く減少してい
ることが分かる。
The obtained results are shown in Table 1. Sumitomo Metal Mining Co., Ltd.'s unprocessed SF for comparison
The values of P-801P and SFP-501P are also described. As can be seen from Table 1, almost no residual calcium was recognized, and the crystallite size was all 900 Å or more, and the maximum oxidation rate was reduced by almost 40% as compared with the untreated product.

【0030】 (実施例2)Pd粉末(SFP-801P)30gと炭酸カルシウ
ム(関東化学製 試薬特級),炭酸ストロンチウム(関東
化学製 試薬特級)、炭酸バリウム(関東化学 試薬特
級)とエチルアルコール100gを表2の配合に従いミキ
サーに投入し30分混合し混合スラリー作製した。この
スラリーを容器に移し真空乾燥器で80℃で一時間乾燥
させPd粉末と炭酸塩の混合体を得た。この混合物を表
2に記載した温度条件で熱処理を行い、実施例1と同様
な条件で洗浄を行いPd粉末を得た。
[0030] (Example 2) 30 g of Pd powder (SFP-801P), calcium carbonate (Kanto Chemical's special grade reagent), strontium carbonate (Kanto Chemical's special grade reagent), barium carbonate (Kanto Chemical special grade reagent) and 100 g of ethyl alcohol are shown in Table 2. According to the blending, the mixture was charged into a mixer and mixed for 30 minutes to prepare a mixed slurry. This slurry was transferred to a container and dried at 80 ° C. for 1 hour in a vacuum dryer to obtain a mixture of Pd powder and carbonate. This mixture was heat-treated under the temperature conditions shown in Table 2, and washed under the same conditions as in Example 1 to obtain a Pd powder.

【0031】得られたPd粉末を実施例1と同様にして
粒子径とアルカリ土類金属含有量と最大酸化重量増加量
を求めた。アルカリ土類金属含有量はいずれも<0.0
5%であり、粒径はNo15が1.1μmであったのみ
で、他はいずれも0.8μmであった。得られた結果を
表2に併せ示した。
The obtained Pd powder was measured for particle diameter, alkaline earth metal content and maximum oxidized weight increase in the same manner as in Example 1. The alkaline earth metal content was <0.0
The particle size of No. 15 was only 1.1 μm, and the other particles were all 0.8 μm. The obtained results are also shown in Table 2.

【0032】 表2より、本実施例によるPd粉も結晶性が極めて高
く、結晶子径は800オンク゛ストローム以上であり、最大酸化
量も9%以下できわめて優れた耐酸化性を示すことが分
かる。
[0032] From Table 2, it can be seen that the Pd powder of this example also has extremely high crystallinity, a crystallite diameter of 800 Å or more, and a maximum oxidation amount of 9% or less, exhibiting extremely excellent oxidation resistance.

【0033】[0033]

【発明の効果】以上の結果から、本発明によって得られ
たPd粉末は、結晶子径が大きく耐酸化特性に優れると
いう特徴があるために、この粉末をMLCC内部電極用
銀ペーストとして用いた場合にMLCCの最大の欠陥で
ある内部Pd電極と誘電体層の界面で生じるデラミネー
ションを防止する効果が期待出来る。
From the above results, the Pd powder obtained by the present invention is characterized by having a large crystallite diameter and excellent oxidation resistance. Therefore, when this powder is used as a silver paste for an MLCC internal electrode. In addition, an effect of preventing delamination occurring at the interface between the internal Pd electrode and the dielectric layer, which is the largest defect of the MLCC, can be expected.

フロントページの続き (56)参考文献 特開 平6−306401(JP,A) 特開 平6−96995(JP,A) 特開 平5−98305(JP,A) 特開 平6−290633(JP,A) 特開 平6−168839(JP,A) 特開 昭51−20761(JP,A) 特開 昭56−13401(JP,A) 特開 昭52−81005(JP,A) 特開 昭55−152101(JP,A) 特開 昭62−107001(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22F 1/00 - 1/02 H01B 13/00 H01G 4/12 Continuation of the front page (56) References JP-A-6-306401 (JP, A) JP-A-6-96995 (JP, A) JP-A-5-98305 (JP, A) JP-A-6-290633 (JP) JP-A-6-168839 (JP, A) JP-A-51-20761 (JP, A) JP-A-56-13401 (JP, A) JP-A-52-81005 (JP, A) 55-152101 (JP, A) JP-A-62-107001 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B22F 1/00-1/02 H01B 13/00 H01G 4 / 12

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粒径0.1〜1μmのPd粉末と、酸易
溶化合物と、有機溶媒とを混練し、次いで有機溶媒を揮
発除去し、得られたPd粉末と酸易溶化合物との混合物
を300℃以上で加熱処理し、次いで放冷し、酸で前記
化合物を溶解し、Pd粉末を回収することを特徴とする
ペースト用パラジウム粉末の製造方法。
A kneaded mixture of a Pd powder having a particle size of 0.1 to 1 μm, an acid-soluble compound and an organic solvent, and then the organic solvent is volatilized and removed. A method for producing a palladium powder for a paste, comprising heating a mixture at a temperature of 300 ° C. or higher, then allowing it to cool, dissolving the compound with an acid, and collecting a Pd powder.
【請求項2】 酸易溶化合物としてアルカリ金属ある
いはアルカリ土類金属の酸化物、水酸化物、無機塩、有
機塩のなかの少なくとも1種を用い、有機溶媒として低
級アルコール、テルピネオールの少なくとも1種を用い
ることを特徴とする請求項1記載の製造方法。
2. Use is made of at least one of oxides, hydroxides, inorganic salts and organic salts of alkali metals or alkaline earth metals as readily acid-soluble compounds, and at least one of lower alcohols and terpineols as organic solvents. The method according to claim 1, wherein:
【請求項3】 酸易溶性化合物が酸化ナトリウム、水
酸化ナトリウム、酸化カルシウム、炭酸ナトリウム、炭
酸バリウム、炭酸ストロンチウム、酢酸カルシウム、硝
酸カルシウム、塩化ナトリウム、塩化マグネシウムの内
の少なくとも1種であり、これらをPd粉末に、重量比
でPd粉末の等量以上加えることを特徴とする請求項1
または2記載の製造方法。
3. The acid-soluble compound is at least one of sodium oxide, sodium hydroxide, calcium oxide, sodium carbonate, barium carbonate, strontium carbonate, calcium acetate, calcium nitrate, sodium chloride, and magnesium chloride. Is added to the Pd powder in an amount equal to or greater than the weight of the Pd powder.
Or the production method according to 2.
JP32570794A 1994-12-27 1994-12-27 Method for producing palladium powder for paste Expired - Fee Related JP3339225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32570794A JP3339225B2 (en) 1994-12-27 1994-12-27 Method for producing palladium powder for paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32570794A JP3339225B2 (en) 1994-12-27 1994-12-27 Method for producing palladium powder for paste

Publications (2)

Publication Number Publication Date
JPH08176602A JPH08176602A (en) 1996-07-09
JP3339225B2 true JP3339225B2 (en) 2002-10-28

Family

ID=18179814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32570794A Expired - Fee Related JP3339225B2 (en) 1994-12-27 1994-12-27 Method for producing palladium powder for paste

Country Status (1)

Country Link
JP (1) JP3339225B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513932B2 (en) * 1999-08-20 2010-07-28 Tdk株式会社 Manufacturing method of multilayer ceramic electronic component
EP2987571B1 (en) * 2014-08-19 2018-08-15 Heraeus Deutschland GmbH & Co. KG Method for the production of active palladium (0) powder, active palladium (0) powder and its use in making a palladium salt

Also Published As

Publication number Publication date
JPH08176602A (en) 1996-07-09

Similar Documents

Publication Publication Date Title
JP4081987B2 (en) Metal powder manufacturing method, metal powder, conductive paste using the same, and multilayer ceramic electronic component using the same
US6632524B1 (en) Nickel powder, method for preparing the same and paste for use in making electrodes for electronic parts
JP2615977B2 (en) Dielectric ceramic composition, multilayer ceramic capacitor using the same, and method of manufacturing the same
US5082810A (en) Ceramic dielectric composition and method for preparation
JP2001023852A (en) Laminated ceramic electronic component
JP4706398B2 (en) Method for producing dielectric ceramic composition
JP2010043345A (en) Nickel powder or alloy powder composed mainly of nickel and method for producing the same, conductive paste, and multilayer ceramic capacitor
JP5831055B2 (en) Plate-like ruthenium oxide powder and method for producing the same, and thick film resistor composition using the same
WO2000018701A1 (en) Unreduced dielectric ceramic material, process for producing the same, and layer-built ceramic capacitor
JP3947118B2 (en) Surface-treated metal ultrafine powder, method for producing the same, conductive metal paste, and multilayer ceramic capacitor
JP3339225B2 (en) Method for producing palladium powder for paste
JP5237781B2 (en) Method for producing noble metal powder for conductive paste
JP3473548B2 (en) Method for producing metal powder, metal powder, conductive paste using the same, and multilayer ceramic electronic component using the same
JP4684657B2 (en) Method for producing barium titanyl oxalate powder and method for producing titanium-based perovskite ceramic raw material powder
JPH07242845A (en) Electrically-conductive coating compound for electrode and its production
JP3474170B2 (en) Nickel powder and conductive paste
JP3653447B2 (en) Coated metal powder and method for producing the same, coated metal powder paste and ceramic laminated part
JP4111000B2 (en) Ru-Ti-O fine powder, method for producing the same, and thick film resistor composition using the same
JP4285315B2 (en) Ru-MO powder, method for producing the same, and thick film resistor composition using the same
JP3586148B2 (en) Non-reducing dielectric ceramic material, method for producing the same, and laminated ceramic capacitor
JPH07309661A (en) Ceramic composition, sintering method, sintering ceramic body and multilayer capacitor
JPH07278620A (en) Production of palladium powder
JP2004277263A (en) Method for producing dielectric porcelain composition, and ceramic capacitor using the dielectric porcelain composition produced thereby
JP3132106B2 (en) Manufacturing method of non-reducing dielectric porcelain
JP2004176120A (en) Electrically conductive powder, production method therefor, and electrically conductive paste obtained by using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070816

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees