JP3336058B2 - Ground injection agent and its injection method - Google Patents

Ground injection agent and its injection method

Info

Publication number
JP3336058B2
JP3336058B2 JP1190593A JP1190593A JP3336058B2 JP 3336058 B2 JP3336058 B2 JP 3336058B2 JP 1190593 A JP1190593 A JP 1190593A JP 1190593 A JP1190593 A JP 1190593A JP 3336058 B2 JP3336058 B2 JP 3336058B2
Authority
JP
Japan
Prior art keywords
ground
silica sol
injection
powder
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1190593A
Other languages
Japanese (ja)
Other versions
JPH06219796A (en
Inventor
英明 馬場
広光 岳上
彰 関根
清一 下林
栄治 三好
啓一 唐津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Nippon Steel Cement Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Nittetsu Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd, Nittetsu Cement Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP1190593A priority Critical patent/JP3336058B2/en
Publication of JPH06219796A publication Critical patent/JPH06219796A/en
Application granted granted Critical
Publication of JP3336058B2 publication Critical patent/JP3336058B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高炉スラグを主材とす
る水硬性混合微粉末と、シリカゾル(水性コロイダルシ
リカ)と助剤とを主剤に用いる地盤注入用薬液であっ
て、浸透性に非常に優れ、砂地盤の強化、軟弱地盤の強
化などに用いられる地盤注入剤及びその注入工法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid for ground injection using a hydraulic mixed fine powder mainly composed of blast furnace slag, silica sol (aqueous colloidal silica) and an auxiliary agent as a main material, and having a permeability. The present invention relates to a ground injection agent which is very excellent and is used for strengthening sandy ground and soft ground, and a method of injecting the same.

【0002】[0002]

【従来の技術】従来、地盤注入剤としては、水ガラスを
主剤としたものが多用され、その硬化剤(ゲル化剤)には
ポルトランドセメント、消石灰、鉄鋼スラグ等のカルシ
ウム塩類や、硫酸水素ナトリウム、硫酸マグネシウム、
リン酸等の各種酸類、グリオキザール、エチレンカーボ
ネートなどの有機酸、エステル類が使用されてきた。ま
た、水ガラスのアルカリを嫌ってシリカゾルを主剤とし
た地盤注入剤も幾つか提案されている。
2. Description of the Related Art Conventionally, as a ground injecting agent, a material mainly containing water glass is often used, and its hardening agent (gelling agent) includes calcium salts such as portland cement, slaked lime, steel slag, and sodium hydrogen sulfate. , Magnesium sulfate,
Various acids such as phosphoric acid, organic acids such as glyoxal and ethylene carbonate, and esters have been used. There have also been proposed some ground injection agents containing silica sol as a main component, which dislikes the alkali of water glass.

【0003】例えば、シリカゾルに、消石灰やセメント
(特開昭57−164186号公報、特開昭59−66482号公報)、
スルファミン酸マグネシウム等のアルカリ土類金属塩
(特開昭63−168485号公報)、塩化ナトリウムや硫酸水素
ナトリウム等のアルカリ金属塩(特開昭59−152985号公
報)、アルミニウム塩等の3価の金属塩(特開昭59−1529
84号公報)、等の電解質を加えて硬化させる方法が提案
されている。
For example, slaked lime or cement is added to silica sol.
(JP-A-57-164186, JP-A-59-66482),
Alkaline earth metal salts such as magnesium sulfamate
(JP-A-63-168485), alkali metal salts such as sodium chloride and sodium hydrogensulfate (JP-A-59-152985), and trivalent metal salts such as aluminum salts (JP-A-59-152985).
No. 84), and a method of curing by adding an electrolyte.

【0004】また、セメントにゼオライトを添加するセ
メントの硬化促進法が特開平2−8981号公報に記載され
ている。
A method of accelerating the hardening of cement by adding zeolite to cement is described in JP-A-2-8981.

【0005】また、セメントのゲルタイム調節剤につい
ては既に多くの文献に紹介されており、アルカリ金属炭
酸塩、アルカリ金属リン酸塩、アルカリ金属カルボン酸
塩が実用化されている。
[0005] Further, gel time regulators for cement have already been introduced in many documents, and alkali metal carbonates, alkali metal phosphates and alkali metal carboxylate salts have been put to practical use.

【0006】[0006]

【発明が解決しようとする課題】水ガラスを使用する方
法は、既に多数の文献で紹介されているように、注入し
た材料に含まれる多量のナトリウム塩の存在のため耐久
性に問題があり、仮設材としての価値しか認められてい
ない。
The method using water glass has a problem in durability due to the presence of a large amount of sodium salt contained in the injected material, as already introduced in many documents. Only the value as a temporary material is recognized.

【0007】更に、溶出してくる塩類のために地下水の
汚染や地下埋設物の腐食が問題になる。酸性水ガラスを
使用した場合にもこれらの欠点は全く同じである。
[0007] In addition, contamination of groundwater and corrosion of underground buried objects become problems due to the salts eluted. These disadvantages are exactly the same when acid water glass is used.

【0008】そこで、アルカリ金属塩を実質的に含まな
いか、全く含まないシリカゾルの利用が注目されてきて
いるが、電解質としての金属塩類はシリカゾルをゲル化
させ、流動性のない固体に変えることはできるが、ゲル
強度は通常1kg/cm2以下であって、このゲルには
経時的な強度の増加はないため流水や地盤の変動に対す
る耐久性は期待できない。
Accordingly, attention has been paid to the use of silica sol containing substantially no alkali metal salt or no alkali metal salt. However, metal salts as an electrolyte make the silica sol gel and convert it into a non-fluid solid. However, the gel strength is usually 1 kg / cm 2 or less, and since this gel does not increase in strength over time, it cannot be expected to have durability against running water or ground fluctuation.

【0009】また、耐久性に実績のあるセメント物質
と、セメントに対して有害物質を実質的に含まないシリ
カゾルの2成分よりなる地盤注入剤は、耐久性注入剤と
して期待されている。
[0009] A ground injection comprising two components, a cement material having a proven durability and a silica sol substantially containing no harmful substance to cement, is expected as a durable injection.

【0010】しかし、セメントとシリカゾルよりなる地
盤注入剤は空洞充填を行うことによる地盤強化に有効と
されているが、地震による砂地盤の液状化現象の防止や
海水の影響を受ける地盤の改良などの地盤注入剤として
は有効ではない。
[0010] However, a ground filler made of cement and silica sol is effective in strengthening the ground by filling the cavities. However, it prevents the liquefaction of the sand ground caused by an earthquake and improves the ground affected by seawater. It is not effective as a ground injection agent.

【0011】この理由は、通常のセメント粒子が30〜
40μmであるため、砂層の細かい間隙への浸透性が悪
いためであると思われる。
The reason for this is that ordinary cement particles have
This is probably due to poor permeability to fine gaps in the sand layer due to 40 μm.

【0012】従って、特に、微粉化したセメント粒子の
スラリーを用いてもシリカゾルとの反応が早く、強度発
現のないゲルが生じて、むしろ砂層への浸透注入は行わ
れず、また、注入が可能であったとしても地下水の流れ
のあるときには殆ど適用できない。
Therefore, in particular, even when a slurry of finely divided cement particles is used, the reaction with the silica sol is quick, and a gel having no strength is generated, and the permeation and injection into the sand layer is not performed, and the injection is possible. If at all, it is hardly applicable when there is a flow of groundwater.

【0013】のみならず、従来のシリカゾルを用いる懸
濁系の注入剤において、特に、海水の影響を受けた地盤
にあっては、海水中のMg2+やCa2+がシリカゾルの凝
析に作用するためか、前記と同様強度を発現しないゲル
が生じて殆ど実用に耐える地盤改良はなされない。
[0013] In addition, in the conventional suspension-type injection agent using silica sol, particularly in the ground affected by seawater, Mg 2+ and Ca 2+ in the sea water cause coagulation of the silica sol. Because of the action, a gel which does not exhibit strength as described above is produced, and the ground improvement which can hardly be practically used is made.

【0014】本発明者らは、上記の事実に鑑み、鋭意研
究を重ねたところ、シリカゾルに対し、特定の高炉スラ
グ含有微粉末と助剤を用いることにより上記問題の解決
が企図できることを知見し、本発明を完成した。
In view of the above facts, the present inventors have conducted intensive studies and found that the above problem can be solved by using a specific blast furnace slag-containing fine powder and an auxiliary agent for silica sol. Thus, the present invention has been completed.

【0015】すなわち、本発明の目的は通常の地盤は勿
論のこと砂層や海水浸漬を受けた軟弱地盤などに対し優
れた硬化能と浸透性をもって地盤改良できる無公害耐久
性の地盤注入剤及びその注入工法を提供することにあ
る。
That is, an object of the present invention is to provide a non-polluting and durable ground injection agent capable of improving the ground with excellent hardening ability and permeability to not only ordinary ground but also sand layers or soft ground immersed in seawater, and the like. It is to provide an injection method.

【0016】[0016]

【課題を解決するための手段】すなわち、本発明により
提供される地盤注入剤は、高炉スラグ粉末50〜90重
量部及びポルトランドセメントクリンカー粉末10〜5
0重量部の混合粉末であって、ブレーン比表面積が70
00〜8500cm /gの範囲内である水硬性混合微
粉末スラリー、シリカゾル及び助剤としてアルカリ金
属炭酸塩と可溶性リン化合物の混合物を基本成分とする
ことを構成上の特徴とするものである。
That is, the ground injection agent provided by the present invention is a blast furnace slag powder of 50 to 90 weights.
Parts and Portland cement clinker powder 10-5
0 parts by weight of the mixed powder having a Blaine specific surface area of 70
It is characterized in that the basic component is a slurry of a hydraulically-mixed fine powder within a range of from 00 to 8500 cm 2 / g , a silica sol, and a mixture of an alkali metal carbonate and a soluble phosphorus compound as an auxiliary agent. .

【0017】以下、本発明を詳述する。本発明は、上記
のように三つの成分を基本とする懸濁タイプの地盤注入
剤である。まず、使用するシリカゾルとしては、水ガラ
スを原料としてイオン交換法、解膠法、酸中和法、電気
透析法等で製造されたものであるが、製造法の例として
は米国特許第2,577,484号明細書、米国特許第3,711,419
号明細書、米国特許第2,572,578号明細書、特開昭52−3
3899号公報、米国特許第3,668,088号明細書、特開平1
−317115号公報等の方法がある。
Hereinafter, the present invention will be described in detail. The present invention is a suspension type ground injection agent based on three components as described above. First, as the silica sol to be used, an ion exchange method using water glass as a raw material, a deflocculation method, an acid neutralization method, one produced by an electrodialysis method, etc., as an example of the production method, U.S. Patent No. 2,577,484 Description, U.S. Patent No. 3,711,419
No., U.S. Pat.No.2,572,578, JP-A-52-3
No. 3899, U.S. Pat.No. 3,668,088,
No. 317115 and the like.

【0018】他にも、例えば米国特許第3,650,977号明
細書や特公昭46−7367号公報記載の金属シリコンの酸化
による製法や、米国特許第2,951,044号明細書や特開昭6
2−127216号公報記載の微細シリカ粉末の水分散による
製法に係るシリカゾルも使用できる。
In addition, for example, the production method by oxidation of metallic silicon described in US Pat. No. 3,650,977 and Japanese Patent Publication No. 46-7367, US Pat. No. 2,951,044 and JP
Silica sol according to the production method of fine silica powder by water dispersion described in JP-A-2-127216 can also be used.

【0019】シリカゾルは、粒子径の大きいものはゲル
強度が弱く、多くの場合、実用的には3〜100nmの
平均粒子径を有するものが使用できるが、平均径50n
m以下、通常10〜20nmのものが実用上好ましい。
特に、3〜10nmの小粒子グレードのシリカゾルはゾ
ル強度が高く特に好ましい。なお、3nm未満の平均粒
子径を有するグレードのシリカゾルは水ガラスのように
アルカリ安定化剤の含有量が多く、本発明の目的には適
合し難い。
As the silica sol, those having a large particle diameter have low gel strength, and in many cases, those having an average particle diameter of 3 to 100 nm can be practically used.
m or less, usually 10 to 20 nm is practically preferable.
Particularly, silica sol of small particle grade of 3 to 10 nm has high sol strength and is particularly preferable. It should be noted that silica sol of a grade having an average particle diameter of less than 3 nm has a large content of an alkali stabilizer like water glass, and is hardly suitable for the purpose of the present invention.

【0020】なお、シリカゾルは、通常、コロイドの安
定化のため微量のアルカリイオン(または水素イオン)を
含有するが、本発明に使用するシリカゾルのアルカリ含
有量は、SiO2/M2O(Mはアルカリ金属を表す)のモ
ル比で5〜500のものが好ましい。
The silica sol usually contains a small amount of alkali ion (or hydrogen ion) for stabilizing the colloid. The alkali content of the silica sol used in the present invention is SiO 2 / M 2 O (M Represents an alkali metal) in a molar ratio of 5 to 500.

【0021】本発明は、上記シリカゾルに対する懸濁質
として、高炉スラグを主材とする水硬性混合微粉末のス
ラリーを用いることが重要なところである。
In the present invention, it is important to use a slurry of hydraulically mixed fine powder mainly composed of blast furnace slag as a suspension for the silica sol.

【0022】本発明において、かかる水硬性混合微粉末
としては、高炉スラグにポルトランドセメントクリンカ
ーを助剤として適量配合した微粉末(以下、「混合高炉
スラグ粉末」という)をいう。
In the present invention, such a hydraulic mixed fine powder refers to a fine powder obtained by blending Portland cement clinker with blast furnace slag in an appropriate amount as an aid (hereinafter referred to as “mixed blast furnace slag powder”).

【0023】ここで、高炉スラグ粉末とは、急冷高炉ス
ラグであり、地盤注入剤の強度面からみてガラス化率9
0%以上、塩基度1.6以上が好ましい。また、ポルト
ランドセメントクリンカーとは、普通ポルトランドセメ
ント前駆体として得られるクリンカーをいい、これに石
膏を混合して得られるポルトランドセメントを意味しな
Here, the blast furnace slag powder is a quenched blast furnace slag and has a vitrification ratio of 9 from the viewpoint of the strength of the ground injection agent.
0% or more and a basicity of 1.6 or more are preferable. Portland cement clinker refers to clinker usually obtained as a portland cement precursor, and does not mean portland cement obtained by mixing gypsum with this .

【0024】このような混合高炉スラグ粉末は、その原
料選択と下記の混合比率の許容し得る範囲との設定によ
って、地盤の性状に応じ、注入剤の浸透性、ゲルタイム
の安定性及び強度発現性からみて、使用条件の自由度が
あって、実用性の点から極めて信頼性が高い。
Such mixed blast-furnace slag powder is prepared by selecting the raw materials and setting an acceptable range of the following mixing ratio, and depending on the properties of the ground, the permeability of the injection agent, the stability of the gel time, and the strength development. In view of this, there is a degree of freedom in use conditions, and the reliability is extremely high in terms of practicality.

【0025】この混合高炉スラグ粉末の配合割合は、地
盤の性状によって変化し得るが、多くの場合、高炉スラ
グ粉末50〜90重量部で、残部すなわち10〜50重
量部がポルトランドセメントクリンカーであり、特に、
高炉スラグ粉末75〜90重量部、ポルトランドセメン
トクリンカー10〜25重量部の配合組成が好ましい。
The mixing ratio of the mixed blast furnace slag powder can vary depending on the properties of the ground, but in many cases, 50 to 90 parts by weight of the blast furnace slag powder and the rest, ie, 10 to 50 parts by weight, are Portland cement clinker. In particular,
A blending composition of 75 to 90 parts by weight of blast furnace slag powder and 10 to 25 parts by weight of Portland cement clinker is preferred.

【0026】高炉スラグ粉末の配合量を増やすことによ
り、ポルトランドセメントクリンカーの影響が少なくな
るため、ミルクの撹拌条件によるゲルタイムの安定性、
ミルクの分散性、地盤注入剤の浸透性が地盤の性状に左
右されず向上する。
By increasing the amount of the blast furnace slag powder, the influence of Portland cement clinker is reduced.
The dispersibility of milk and the permeability of the ground injection agent are improved without being affected by the properties of the ground.

【0027】また、この混合高炉スラグ粉末は、少なく
とも一般のセメント粒子の粉末度より微細な粉末度を有
するものでなければならず、特に、ブレーン比表面積に
よる粉末度が7000〜8500cm2/gの範囲にあ
る超微粉末が好ましい。
The mixed blast furnace slag powder must have a fineness at least finer than that of general cement particles. In particular, the blast furnace slag powder has a fineness based on a Blaine specific surface area of 7000 to 8500 cm 2 / g. Ultrafine powders in the range are preferred.

【0028】混合高炉スラグ粉末のブレーン比表面積を
大きくすると、相対的に粒子径が小さくなり、後記の助
剤との作用と相俟って、砂層への浸透性、地盤注入剤強
度が向上する。ブレーン比表面積7000cm2/g未
満の粉末度では良好な浸透性が得られないとか、ゲルタ
イムを延ばすと地盤注入剤の材料分離も生ずる傾向にあ
る。
When the specific surface area of the blended blast furnace slag powder is increased, the particle diameter becomes relatively small, and the permeability to the sand layer and the strength of the ground injection agent are improved in combination with the action of the auxiliary agent described below. . When the fineness is less than 7000 cm 2 / g, good permeability cannot be obtained, or when the gel time is prolonged, material separation of the ground injection agent tends to occur.

【0029】逆に、ブレーン比表面積が8500cm2
/gを越えると、ミルクの粘性も高く、ポルトランドセ
メントクリンカー粉末の活性が強くなり、粒子間の凝集
を助長するため、浸透性の改善効果が得られないばかり
でなく、ゲルタイムの安定性にも欠ける。また、粉砕能
力も工業的にみて難しくなる。
On the contrary, the Blaine specific surface area is 8500 cm 2
/ G, the viscosity of milk is high, the activity of Portland cement clinker powder becomes strong, and coagulation between particles is promoted, so that not only the effect of improving permeability but also the stability of gel time can be obtained. Chip. In addition, the crushing ability becomes industrially difficult.

【0030】このような混合高炉スラグ粉末のうちの好
ましい態様の粉末は、ポルトランドセメントと高炉スラ
グの混合物である高炉セメントとも異なり、通常のセメ
ントJIS規格にない組成のものであるが、上記の諸特
性のゆえに、これをスラリーとしてシリカゾルに対して
用いると、通常のセメントスラリー系のものに比べて良
好な耐海水性、長期強度増進が期待できるので、海岸に
近い砂状地盤の液状化防止に好適である。
The powder of a preferred embodiment of such mixed blast furnace slag powder is different from blast furnace cement which is a mixture of portland cement and blast furnace slag, and has a composition which is not in the ordinary cement JIS standard. Because of its properties, when it is used for silica sol as a slurry, it can be expected to have better seawater resistance and long-term strength enhancement than that of ordinary cement slurry type, so it can prevent liquefaction of sandy ground near the coast. It is suitable.

【0031】本発明は、上記のようにシリカゾル−混合
高炉スラグ粉末系に助剤としてアルカリ金属炭酸塩と可
溶性リン化合物との混合物を適量含有させてなるところ
が他の重要な特徴となっている。
Another important feature of the present invention is that the silica sol-mixed blast furnace slag powder system contains an appropriate amount of a mixture of an alkali metal carbonate and a soluble phosphorus compound as an auxiliary as described above.

【0032】アルカリ金属炭酸塩としてはナトリウム及
び/またはカリウムの炭酸塩、重炭酸塩、セスキ炭酸塩
などが挙げられ、また、可溶性リン化合物としては、例
えば、リン酸、ナトリウム及び/またはカリウムの第1
リン酸塩、第2リン酸塩、正リン酸塩、ピロリン酸塩、
トリポリリン酸塩などが挙げられ、それらは1種または
2種以上であってもよい。これらのうち、特に、弱酸性
の混合物が好ましい。
The alkali metal carbonate includes sodium and / or potassium carbonate, bicarbonate, sesquicarbonate and the like. The soluble phosphorus compound includes, for example, phosphoric acid, sodium and / or potassium 1
Phosphates, secondary phosphates, orthophosphates, pyrophosphates,
Tripolyphosphate and the like may be mentioned, and they may be used alone or in combination of two or more. Of these, a weakly acidic mixture is particularly preferred.

【0033】上記助剤において、アルカリ金属炭酸塩と
可溶性リン化合物との配合割合は地盤の性状や海水の影
響により一様ではないが、多くの場合モル比(PO4 3-
CO3 2-)で0.05〜1の範囲にある。
In the above assistants, the mixing ratio of the alkali metal carbonate and the soluble phosphorus compound is not uniform due to the properties of the ground and the influence of seawater, but in many cases, the molar ratio (PO 4 3− /
CO 3 2- ) is in the range of 0.05 to 1.

【0034】本発明に係る地盤注入剤は、以上の成分で
構成されるが、必要に応じて、公知のセメント分散剤
や、平均粒子径が1μm以下の合成シリカや合成ゼオラ
イトの如き無機微粉末を配合したものであってもよい。
また、クエン酸、酒石酸、グルコン酸などのカルボン酸
またはそのアルカリ金属塩などのキレート剤を含有させ
てもよい。特に、無機微粉末を配合した場合には、地盤
注入剤のゲル強度をより改善させるために適用範囲が拡
大するので好ましい。
The ground injection agent according to the present invention comprises the above-mentioned components. If necessary, a known cement dispersant or an inorganic fine powder such as synthetic silica or synthetic zeolite having an average particle diameter of 1 μm or less may be used. May be blended.
Further, a chelating agent such as a carboxylic acid such as citric acid, tartaric acid, and gluconic acid or an alkali metal salt thereof may be contained. In particular, it is preferable to mix inorganic fine powder because the range of application is expanded to further improve the gel strength of the ground injection agent.

【0035】本発明に係る地盤注入剤における基本成分
の使用割合は、地盤の性状に応じて適宜設定すべきであ
るが、多くの場合、シリカゾル(SiO2換算):混合高
炉スラグ粉末:助剤の重量比は1:1〜10:0.05
〜1が実用的範囲であり、特に、1:2〜6:0.1〜
1の範囲が好ましい。
The use ratio of the basic component in the ground injection agent according to the present invention should be appropriately set according to the properties of the ground. In many cases, silica sol (in terms of SiO 2 ): mixed blast furnace slag powder: auxiliary Weight ratio of 1: 1 to 10: 0.05
Is a practical range, and in particular, 1: 2 to 6: 0.1.
A range of 1 is preferred.

【0036】上記の地盤注入剤を用いる本発明の注入工
法は、シリカゾル、混合高炉スラグ粉末及び助剤の混合
物とからなるスラリーを適宜混合して一液一系統式で加
圧注入する1ショット方式、二液一系統式で注入する
1.5ショット方式、二液二系統式で注入する2ショッ
ト方式のいずれかで行われる。特に好ましくは、混合高
炉スラグ粉末のスラリーとシリカゾル及び助剤との混合
液とを1ショット方式または1.5ショット方式で地盤
に加圧注入する方法である。なお、注入圧は地盤の性状
により異なるけれども、多くの場合、0.1〜1.0kg
/cm2の範囲にある。
The injection method of the present invention using the above ground injection agent is a one-shot system in which a slurry comprising a mixture of a silica sol, a mixed blast furnace slag powder and an auxiliary agent is appropriately mixed and pressure-injected in a one-liquid one-system system. The injection is performed in one of a 1.5-shot system in which injection is performed in a two-liquid system and a two-shot system in which injection is performed in a two-liquid system. Particularly preferred is a method in which a slurry of mixed blast furnace slag powder, a mixed solution of silica sol and an auxiliary agent is pressure-injected into the ground by a one-shot method or a 1.5-shot method. Although the injection pressure varies depending on the properties of the ground, in many cases, the injection pressure is 0.1 to 1.0 kg.
/ Cm 2 .

【0037】[0037]

【作用】本発明に係る地盤注入剤の硬化反応に関する作
用機構の詳細は明確ではないが、恐らく次のようなこと
が推定される。即ち、シリカゾルは混合高炉スラグ粉末
から遊離してくるCa2+またはMg2+がシリカゾルのゲ
ル化反応に基づく硬化により初期強度を発現し、次い
で、混合高炉スラグ粉末の水和反応によりその強度を漸
次増大させ、長期強度を維持するものと思われる。
The details of the mechanism of the hardening reaction of the ground injection agent according to the present invention are not clear, but it is presumed to be as follows. That is, the silica sol develops initial strength by Ca 2+ or Mg 2+ released from the mixed blast furnace slag powder by hardening based on the gelation reaction of the silica sol, and then increases its strength by the hydration reaction of the mixed blast furnace slag powder. It is expected to increase gradually and maintain long-term strength.

【0038】本発明に係る地盤注入剤は、このような硬
化反応を砂層中または海水浸漬地盤であっても効果的に
可能として軟弱地盤を硬化改良するが、これはシリカゾ
ルに対し混合スラグ粉末の物性と助剤との相乗作用によ
る効果が大きい。
The soil injection agent according to the present invention effectively enables such a hardening reaction even in a sand layer or seawater immersed ground, and improves hardening of soft ground. The effect due to the synergistic action between the physical properties and the auxiliaries is great.

【0039】その1つは、高炉スラグ粉末を主材とし、
かつ該粉末をできるだけ細かく、好ましくはブレーン比
表面積が7000〜8500cm2/gの粉末度に設定
することにより砂層間隙でも充分に注入浸透後硬化作用
を発揮する。
One of them is mainly blast furnace slag powder,
In addition, by setting the powder as fine as possible, preferably a fineness of 7000 to 8500 cm 2 / g, the hardening effect after injection and permeation is sufficiently exhibited even in the gap between sand layers.

【0040】他の1つは、海水の影響のある地盤であっ
ても、助剤の存在が上記硬化反応を主体的に行わせるこ
とにある。その理由の詳細な機構は不明であるけれども
恐らく次のようなことが推定できる。一般に、海水など
に浸漬した地盤にシリカゾルを用いた懸濁タイプの地盤
注入剤は殆ど実用性がないが、これは既に地盤の水分中
に存在するMg2+やCa2+が懸濁粒子から溶出するこれ
らのカチオンよりも速やかに反応してゲル化し、粒子と
の反応を阻害するためと考えられる。
Another is that the presence of the auxiliary agent causes the above-mentioned hardening reaction to take place mainly even in the ground affected by seawater. Although the detailed mechanism of the reason is unknown, it is possible to presume the following. In general, a suspension type ground injection agent using silica sol for ground immersed in seawater or the like has almost no practicality, but this is because Mg 2+ or Ca 2+ already existing in ground water is from suspended particles. This is probably because these cations react more quickly than these eluted cations to form a gel and inhibit the reaction with the particles.

【0041】しかして、上記助剤が存在すると既に存在
するMg2+やCa2+をCO3 2-やPO4 3-が速やかに反応
して不溶性塩として捕捉することにより懸濁粒子から溶
出するカチオンと主体的に反応させることができ、硬化
現象を生起させる。更に、助剤の緩衝作用により、この
硬化反応を幅広く制御することができるので、注入剤の
ゲルタイムを実用的範囲で任意に設定することができ
る。
[0041] Thus, the elution from the suspended particles by trapping the said aid is present the Mg 2+ and Ca 2+ already present as CO 3 2- and PO 4 3- promptly react to an insoluble salt Cations, which can cause a hardening phenomenon. Furthermore, the curing reaction can be controlled widely by the buffering action of the auxiliary agent, so that the gel time of the injection can be arbitrarily set within a practical range.

【0042】[0042]

【実施例】以下、実施例及び比較例を挙げて本発明を更
に具体的に説明する。 実施例1〜5、比較例1〜8 高炉スラグ(ガラス化率=98%、塩基度=1.88:新
日本製鉄室蘭製鉄所製)と普通ポルトランドセメントク
リンカー(日鐡セメント製)を用いて、高炉スラグの配合
割合を80重量部とし、ブレーン比表面積8400cm
2/gの混合高炉スラグ粉末を試製した。混合高炉スラ
グ粉末とシリカゾル(シリカドール30:日本化学製)を
用いて下記の条件の地盤注入剤を調製し、下記注入方法
と評価方法にて砂層への浸透性、サンドゲルの強度試験
を行った。
The present invention will now be described more specifically with reference to examples and comparative examples. Examples 1 to 5 and Comparative Examples 1 to 8 Using blast furnace slag (vitrification rate = 98%, basicity = 1.88: manufactured by Nippon Steel Muroran Works) and ordinary Portland cement clinker (manufactured by Nittetsu Cement) The blast furnace slag mixing ratio was 80 parts by weight, and the specific surface area of the brane was 8400 cm.
A 2 / g mixed blast furnace slag powder was trial manufactured. A ground injection agent under the following conditions was prepared using the mixed blast furnace slag powder and silica sol (Silica Doll 30: manufactured by Nippon Chemical), and a penetration test into a sand layer and a sand gel strength test were performed by the following injection method and evaluation method. .

【0043】(1)注入方法 浸透性は予めφ5×30cmのアクリル管下部に間隙率
n=43.8%、透水係数2.3×10-2cm/秒を有す
る長さ10cmの豊浦標準砂(0.3〜0.1mm)層を作
り、海水を浸漬しておいた。所要時間ミルクを撹拌後、
シリカゾル溶液を同量入れて10秒撹拌し、アクリル管
上部より地盤注入剤を流し、自然浸透させた。
(1) Injection method A 10 cm long Toyoura standard sand having a porosity n = 43.8% and a water permeability of 2.3 × 10 -2 cm / sec was previously placed under an acrylic pipe of φ5 × 30 cm. (0.3-0.1 mm) layer was made and soaked in seawater. After stirring the milk for the required time,
The same amount of the silica sol solution was added and stirred for 10 seconds, and a ground injection agent was allowed to flow from the upper portion of the acrylic pipe to allow natural permeation.

【0044】(2)評価方法 (2.1)ゲルタイム 成分混合した地盤注入剤をビーカーに入れ、マグネチッ
クスターラーで撹拌を続けると粘度が次第に増大する。
この際、地盤注入剤をビーカーに入れた時点から、粘度
が増大し、やがてゲル化してビーカーを90度傾けても
流動性が消失して流下しなくなるまでの時間をゲルタイ
ムとして測定する。
(2) Evaluation method (2.1) Gel time If the ground injection agent mixed with the components is put into a beaker and stirring is continued with a magnetic stirrer, the viscosity gradually increases.
At this time, the gel time is measured as the time from when the ground injection agent is put into the beaker, until the viscosity increases, the gel is eventually formed, and the fluidity disappears even when the beaker is tilted by 90 degrees and the flow does not flow down.

【0045】(2.2)圧縮強度 サンドゲルの圧縮強度は10cmの浸透長が得られた条
件について、24時間後に脱型し、水中養生(20℃)を
行い、φ5×10cmの供試体について、アームスラー
型強度試験機を用い、材令=7日で一軸圧縮強度を測定
した。
(2.2) Compressive strength The compressive strength of the sand gel was set to a condition that a penetration length of 10 cm was obtained, the mold was removed after 24 hours, cured in water (20 ° C.), and a specimen of φ5 × 10 cm was arm-slurred. Using a mold strength tester, the uniaxial compressive strength was measured in the age of 7 days.

【0046】[0046]

【表1】 [Table 1]

【0047】本実施例及び比較例の結果を表1に示し
た。上の結果から判るように、助剤として炭酸ナトリウ
ムを単独またはリン酸1カリウムが一定量以下の場合に
は、海水と接触すると同時に凝集するため砂層への浸透
は不可であった。一方、リン酸1カリウムが一定量以上
の場合には海水浸漬層への浸透は可能であるが、硬化体
の圧縮強度が低かったり、硬化しない場合もある。海水
浸漬層に浸透し、実用的な強度を得るためには、炭酸水
素ナトリウムとリン酸1カリウムの如き混合物を適量用
いることが最も有効である。
Table 1 shows the results of this example and the comparative example. As can be seen from the above results, when sodium carbonate was used alone as an auxiliary agent or when the amount of monopotassium phosphate was not more than a certain amount, it was not possible to penetrate into the sand layer because it coagulated simultaneously with contact with seawater. On the other hand, when the amount of mono-potassium phosphate is a certain amount or more, it can be penetrated into the seawater immersion layer, but the cured product may have low compressive strength or may not be cured. In order to penetrate the seawater immersion layer and obtain practical strength, it is most effective to use an appropriate amount of a mixture such as sodium hydrogen carbonate and monopotassium phosphate.

【0048】比較例9〜10、実施例6〜7 シリカゾル(SiO2:30重量%、pH9.8、平均粒
子径:13nm)と助剤よりなる液(A液)と混合高炉ス
ラグ粉末からなるB液を表2の組成割合で各種地盤注入
剤を調製した。得られた各種地盤注入剤についてA液と
B液とを混合して淡水または海水を浸漬させた標準砂
(豊浦産)に0.25kg/cm2の注入圧で注入して硬化
供試体を作成し、そのときのゲルタイム及び圧縮強度を
測定した地盤注入剤の性能を評価したところ表2の結果
が得られた。
Comparative Examples 9 to 10 and Examples 6 to 7 A mixture consisting of silica sol (SiO 2 : 30% by weight, pH 9.8, average particle diameter: 13 nm), an auxiliary agent (liquid A), and a mixed blast furnace slag powder. Various ground injection agents were prepared from the solution B at the composition ratios shown in Table 2. Standard sand obtained by mixing solution A and solution B with various types of obtained ground injection agent and immersing fresh water or seawater
(Toyoura) was injected with 0.25 kg / cm 2 injection pressure to prepare a cured specimen, and the gel time and compressive strength were measured at that time. Was done.

【0049】[0049]

【表2】 [Table 2]

【0050】上の結果から判るように、助剤として炭酸
水素ナトリウムを単独で用いる場合は、淡水浸漬層への
浸透は問題ないが、海水浸漬層へは浸透不可であり、本
発明にかかる地盤注入剤はいずれも良好な結果が得られ
た。
As can be seen from the above results, when sodium bicarbonate is used alone as an auxiliary, there is no problem in penetration into the freshwater immersion layer, but it cannot penetrate into the seawater immersion layer. All injections gave good results.

【0051】実施例8〜11 実施例6〜7で用いたと同じシリカゾル、混合高炉スラ
グ粉末及び助剤を配合して得られる地盤注入剤につい
て、A液とB液とに分けて同様に海水で浸漬した標準砂
(豊浦産)に0.4kg/cm2の注入圧で注入して硬化体
を作成し、そのときのゲルタイム及び圧縮強度を測定し
て地盤注入剤の性能を評価したところ、表3の結果が得
られた。
Examples 8 to 11 The ground injecting agent obtained by blending the same silica sol, mixed blast furnace slag powder and auxiliary as used in Examples 6 and 7 was divided into Liquid A and Liquid B and was similarly treated with seawater. Standard sand soaked
(Toyoura) was injected at an injection pressure of 0.4 kg / cm 2 to prepare a cured product, and the gel time and compressive strength at that time were measured to evaluate the performance of the ground injection agent. Obtained.

【0052】[0052]

【表3】 [Table 3]

【0053】上の結果から助剤として炭酸水素ナトリウ
ムとリン酸1カリウムの混合物を適量用いることによっ
てゲルタイムが1分以下で、しかも海水が浸漬している
砂層に注入可能の地盤注入剤であることが判った。
From the above results, by using an appropriate amount of a mixture of sodium bicarbonate and monopotassium phosphate as an auxiliary agent, the gel time should be 1 minute or less and be a ground injection agent that can be injected into a sand layer immersed in seawater. I understood.

【0054】実施例12〜14 実施例8〜11で用いたと同じシリカゾル、混合高炉ス
ラグ粉末及び助剤を配合して得られる地盤注入剤につい
て、1ショット工法により海水で浸漬した砂層に注入し
て硬化体を作成し、その時のゲルタイム及び圧縮強度を
測定して地盤注入剤の性能を評価したところ、表4の結
果が得られた。
Examples 12 to 14 The same ground sol obtained by mixing the same silica sol, mixed blast furnace slag powder and auxiliaries as used in Examples 8 to 11 was injected into a sand layer immersed in seawater by the one-shot method. When a cured product was prepared and the gel time and compressive strength at that time were measured to evaluate the performance of the ground injection agent, the results in Table 4 were obtained.

【0055】[0055]

【表4】 [Table 4]

【0056】上の結果から判るように、助剤として炭酸
水素ナトリウムとリン酸1カリウムの混合物を適量用い
ることによって、ゲルタイムが1時間程度、しかも、海
水が浸漬している砂層に注入可能であった。
As can be seen from the above results, by using an appropriate amount of a mixture of sodium hydrogen carbonate and monopotassium phosphate as an auxiliary agent, the gel time can be about 1 hour, and the gel time can be injected into a sand layer immersed in seawater. Was.

【0057】実施例15〜17、比較例11〜15 実施例12〜14で用いたと同じシリカゾル、混合高炉
スラグ粉末と下記の表5に記載の助剤を配合して得られ
る地盤注入剤について、A液とB液とに分けて実施例1
〜5と同様に海水で浸漬した標準砂(豊浦産)に地盤注入
剤を流し、自然浸透させ、砂層への浸透性、サンドゲル
の強度試験を行った。その結果を表5に示す。
Examples 15 to 17 and Comparative Examples 11 to 15 The ground pouring agent obtained by blending the same silica sol and mixed blast furnace slag powder as used in Examples 12 to 14 with the auxiliaries shown in Table 5 below: Example 1 divided into solution A and solution B
In the same manner as in Nos. 1 to 5, a ground injection agent was poured into standard sand (from Toyoura) immersed in seawater to allow natural permeation, and a penetration test into the sand layer and a sand gel strength test were performed. Table 5 shows the results.

【0058】[0058]

【表5】 [Table 5]

【0059】実施例18 実施例6の地盤注入剤を次の1.5ショット工法により
海水を浸漬させた砂層に注入した。透水係数8.35×
10-3cm/秒、間隙率42.5%の砂層に地盤注入剤
をプランジャー型ポンプ(商品名ダブコンポンプ、DP
O4型、島崎製作所)を用いて注入圧0.5kg/cm2
にて24リットル注入した。注入段階では何ら問題もな
く、海水を浸漬させた砂層に浸透注入できた。注入7日
後の改質砂層は透水係数3.5×10-7cm/秒であ
り、圧縮強度(サンドゲル)は14.5kg/cm2であっ
た。この結果から本発明の地盤注入剤が実用においても
充分性能を満足するものであることが確認できた。
Example 18 The ground injection agent of Example 6 was injected into a sand layer immersed in seawater by the following 1.5 shot method. 8.35 × permeability
A plunger type pump (trade name: Dabcon Pump, DP) is applied to a sand layer having a density of 10 −3 cm / sec and a porosity of 42.5%.
O4 type, Shimazaki Seisakusho) using an injection pressure of 0.5 kg / cm 2
At 24 liters. At the injection stage, there was no problem, and it was possible to infiltrate the sand layer soaked with seawater. Seven days after the injection, the modified sand layer had a water permeability of 3.5 × 10 −7 cm / sec and a compressive strength (sand gel) of 14.5 kg / cm 2 . From these results, it was confirmed that the ground injection agent of the present invention sufficiently satisfies the performance in practical use.

【0060】[0060]

【発明の効果】本発明に係る地盤注入剤及びこれを用い
た注入工法は、一般の地盤は勿論のこと、砂層あるいは
海水浸漬地盤であっても、幅広く軟弱地盤の改良に適用
することができる。また、地盤注入剤のゲルタイムの点
からみても適用性の幅が広い。他方、本発明に係る地盤
注入剤は、シリカゾル及び高炉スラグを主体的に用いる
ものであるから、従来のような水ガラスやセメントがも
たらすアルカリ公害も著しくなくなり、かつ安全に取り
扱えるので都市土木の大深度土木工事においても実用性
の高い地盤注入剤として期待できる。
Industrial Applicability The ground injection agent and the injection method using the same according to the present invention can be widely applied to the improvement of soft ground not only for general ground but also for sand layers or seawater immersed ground. . Further, the applicability is wide in terms of the gel time of the ground injection agent. On the other hand, since the ground injection agent according to the present invention mainly uses silica sol and blast furnace slag, alkali pollution caused by water glass and cement as in the prior art is significantly reduced, and it can be handled safely. It can be expected as a highly practical soil injection agent even in deep civil engineering work.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C09K 17/10 C09K 17/10 P (72)発明者 関根 彰 東京都江東区亀戸9丁目15番1号 日本 化学工業株式会社研究開発本部内 (72)発明者 下林 清一 北海道室蘭市仲町64番地 日鐵セメント 株式会社研究開発部内 (72)発明者 三好 栄治 東京都江東区亀戸9丁目15番1号 日本 化学工業株式会社研究開発本部内 (72)発明者 唐津 啓一 北海道室蘭市仲町64番地 日鐵セメント 株式会社研究開発部内 (56)参考文献 特開 平5−140557(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 28/08 C04B 22/06 C04B 22/10 C04B 22/16 C09K 17/00 - 17/52 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification code FI C09K 17/10 C09K 17/10 P (72) Inventor Akira Sekine 9-15-1, Kameido, Koto-ku, Tokyo Japan Chemical Industry Co., Ltd. Research and Development Division (72) Inventor Seiichi Shimobayashi 64 Nakamachi, Muroran, Hokkaido Nippon Steel Cement Co., Ltd. (72) Inventor Eiji Miyoshi 9-15-1, Kameido, Koto-ku, Tokyo Japan Chemical Industry Co., Ltd. Research and Development Division (72) Inventor Keiichi Karatsu 64 Nakamachi, Muroran, Hokkaido Nippon Steel Cement Co., Ltd. Research and Development Department (56) References JP-A-5-140557 (JP, A) (58) Fields surveyed (Int. Cl 7, DB name) C04B 28/08 C04B 22/06 C04B 22/10 C04B 22/16 C09K 17/00 -. 17/52

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高炉スラグ粉末50〜90重量部及びポ
ルトランドセメントクリンカー粉末10〜50重量部の
混合粉末であって、ブレーン比表面積が7000〜85
00cm /gの範囲内である水硬性混合微粉末スラ
リー、シリカゾル及び助剤としてアルカリ金属炭酸塩と
可溶性リン化合物の混合物を基本成分とすることを特徴
とする地盤注入剤。
1. A blast furnace slag powder of 50 to 90 parts by weight and
10-50 parts by weight of landland cement clinker powder
A mixed powder having a Blaine specific surface area of 7000 to 85
00cm 2 / g hydraulic mixing fine powder of the slide <br/> Lee is in the range of, silica sol and ground infusion, characterized in that the basic component of the mixture of alkali metal carbonates and soluble phosphorus compound as an aid .
【請求項2】 シリカゾル(SiO換算):水硬性混
合微粉末:助剤が重量比で1:1〜10:0.05〜1
の割合の組成を有する請求項記載の地盤注入剤。
2. Silica sol (in terms of SiO 2 ): hydraulic mixed fine powder: auxiliary in a weight ratio of 1: 1 to 10: 0.05 to 1
Ground infusate according to claim 1 having the composition ratio.
【請求項3】 請求項1または2記載の地盤注入剤の注
入工法において、水硬性混合微粉末のスラリーとシリカ
ゾル及び助剤との混合液とを1ショット方式または1.
5ショット方式で地盤に注入することを特徴とする地盤
注入剤の注入工法。
3. The method for injecting a ground injection agent according to claim 1 or 2, wherein a slurry of the hydraulically mixed fine powder and a mixed solution of silica sol and an auxiliary are subjected to a one-shot method or a method of 1.
A method of injecting a ground injection agent, which is injected into the ground by a 5-shot method.
JP1190593A 1993-01-27 1993-01-27 Ground injection agent and its injection method Expired - Lifetime JP3336058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1190593A JP3336058B2 (en) 1993-01-27 1993-01-27 Ground injection agent and its injection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1190593A JP3336058B2 (en) 1993-01-27 1993-01-27 Ground injection agent and its injection method

Publications (2)

Publication Number Publication Date
JPH06219796A JPH06219796A (en) 1994-08-09
JP3336058B2 true JP3336058B2 (en) 2002-10-21

Family

ID=11790748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1190593A Expired - Lifetime JP3336058B2 (en) 1993-01-27 1993-01-27 Ground injection agent and its injection method

Country Status (1)

Country Link
JP (1) JP3336058B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102633507A (en) * 2011-02-15 2012-08-15 三和耐火工业股份有限公司 Silicasol casting material for blast furnace sprue
CN102633506A (en) * 2011-02-15 2012-08-15 三和耐火工业股份有限公司 Silica sol guniting material for main runner of blast furnace
JP6675030B1 (en) * 2019-06-20 2020-04-01 株式会社フッコー Blast furnace slag paint

Also Published As

Publication number Publication date
JPH06219796A (en) 1994-08-09

Similar Documents

Publication Publication Date Title
KR100414856B1 (en) A cement grouting materials of micro-fine hybrid silicates with high penetrable, strong and durable
JPS6197381A (en) Injectable curable fine grout
JP3336058B2 (en) Ground injection agent and its injection method
JP2003119464A (en) Slug-based grouting material
JP2869852B2 (en) Ground injection method
JP2847337B2 (en) Ground injection liquid
JPS6289791A (en) Method for water-tightness of soil and preparation for performing said method
JPH06145662A (en) Ground grouting agent and its grouting execution method
JPH10102058A (en) Grout
KR100413340B1 (en) A grouting method by using grouting materials of micro-fine hybrid silicates cement with high penetrable, strong and durable
JPH1161125A (en) Grouting material
JP3150380B2 (en) Ground injection agent and its injection method
JP3186829B2 (en) Materials for civil engineering
JP2884395B2 (en) Ground consolidated material
JP3142325B2 (en) Ground injection agent and its injection method
JP3575561B2 (en) Ground consolidated material
JP2009040661A (en) Back filling, back filling material for under water work using granulated blast furnace slag and method of manufacturing the same
JP2860716B2 (en) Grout injection
JPH05140557A (en) Grouting agent and grouting method
JP2853772B2 (en) Ground injection agent
JP3396789B2 (en) Ground injection material
JP2808252B2 (en) Ground consolidated material
JPH11157895A (en) Irritant for retarding soil stabilizer and retarding stabilizer containing the same
JP2853773B2 (en) Ground injection agent
JPH1053763A (en) Slag-based grout

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020723

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130802

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130802

Year of fee payment: 11