JP3331846B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP3331846B2
JP3331846B2 JP34207195A JP34207195A JP3331846B2 JP 3331846 B2 JP3331846 B2 JP 3331846B2 JP 34207195 A JP34207195 A JP 34207195A JP 34207195 A JP34207195 A JP 34207195A JP 3331846 B2 JP3331846 B2 JP 3331846B2
Authority
JP
Japan
Prior art keywords
layer
electrode
main surface
igbt
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34207195A
Other languages
Japanese (ja)
Other versions
JPH09186315A (en
Inventor
恭彦 河野
森  睦宏
純平 宇留野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP34207195A priority Critical patent/JP3331846B2/en
Publication of JPH09186315A publication Critical patent/JPH09186315A/en
Application granted granted Critical
Publication of JP3331846B2 publication Critical patent/JP3331846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、帰還ダイオード及
び過電圧抑制ダイオードを内蔵したIGBT、特にイン
バータ用IGBTに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an IGBT including a feedback diode and an overvoltage suppression diode, and more particularly to an IGBT for an inverter.

【0002】[0002]

【従来の技術】近年、地球的規模でのエネルギー枯渇が
大きな問題となっており、電気システムの省エネルギー
化が強く求められている。また、産業機器の高度化,複
雑化に伴い、モーター等の駆動機器の高性能化,小型
化,低騒音化,使い勝手の向上等が望まれている。これ
らの要求に応えるために駆動機器のインバータ化が進め
られており、エアコンや照明等の民生用機器分野から、
鉄鋼,電車等の大電力分野に至るまで、インバータが広
く適用されてきている。
2. Description of the Related Art In recent years, energy depletion on a global scale has become a major problem, and there is a strong demand for energy saving in electrical systems. Also, with the advancement and complexity of industrial equipment, it is desired that drive equipment such as motors have higher performance, smaller size, lower noise, improved usability, and the like. In order to respond to these demands, inverters in drive equipment are being promoted, and from the field of consumer equipment such as air conditioners and lighting,
2. Description of the Related Art Inverters have been widely applied to large electric power fields such as steel and electric trains.

【0003】インバータの高性能化のためには、スイッ
チング素子の高性能化が必須である。最近では、サイリ
スタ,GTOに代わって、絶縁ゲートバイポーラトラン
ジスタ(以下IGBTと呼ぶ)が広く用いられるように
なってきている。IGBTは、MOSFETの高速スイッチン
グ特性とバイポーラトランジスタの高出力特性とを併せ
持つ素子であり、インバータの省エネルギー化,小型化
等に有効である。
In order to improve the performance of an inverter, it is essential to improve the performance of a switching element. Recently, insulated gate bipolar transistors (hereinafter referred to as IGBTs) have been widely used in place of thyristors and GTOs. The IGBT is an element having both the high-speed switching characteristics of a MOSFET and the high output characteristics of a bipolar transistor, and is effective for energy saving and size reduction of an inverter.

【0004】図2にIGBTを用いた三フルブリッジ
インバータの回路を示す。図2において、200はIG
BT、201は帰還ダイオード、210,211は直流
電源に接続された直流端子、212〜214は負荷に接
続された交流端子である。
FIG. 2 shows a circuit of a three- phase full-bridge inverter using an IGBT. In FIG. 2, 200 denotes IG
BT, 201 is a feedback diode, 210 and 211 are DC terminals connected to a DC power supply, and 212 to 214 are AC terminals connected to a load.

【0005】IGBTは電圧駆動型素子であるので、イ
ンバータに適用すると駆動回路の小型化,駆動電力の低
減を図れる。また、動作速度が高速であるのでインバー
タを高周波化でき、騒音を低減できる等のメリットがあ
る。これらの理由から、エアコンや照明,熱器具などの
民生機器分野への適用が盛んであり、今後更に、応用分
野を拡大して行くものと考えられる。しかしそのために
は、一層の高信頼化,低コスト化を図る必要がある。
[0005] Since the IGBT is a voltage-driven element, when it is applied to an inverter, the drive circuit can be reduced in size and the drive power can be reduced. In addition, since the operation speed is high, there is an advantage that the frequency of the inverter can be increased and noise can be reduced. For these reasons, applications in the field of consumer electronics such as air conditioners, lighting, and heat appliances are prosperous, and it is thought that the fields of application will be further expanded in the future. However, for that purpose, it is necessary to further increase the reliability and reduce the cost.

【0006】高信頼で低コストのインバータ用IGBT
の実現のために図3に示す回路構成を一体化したIGB
Tが検討されている。図4は図3の回路をIGBTに内
蔵したときの断面構造を示す図である。図3,図4にお
いて、共通の構成要素には同一の符号を付してある。図
3において、110はゲート電極、111はエミッタ電
極、112は過電圧抑制ダイオードゲート側電極、11
3は過電圧抑制ダイオードコレクタ側電極、115はコ
レクタ電極、130は過電圧抑制ダイオード、300は
IGBT、301はゲート−エミッタ間抵抗、302は
帰還ダイオードである。また、図4において、100は
コレクタ層、101はバッファ層、102はドリフト層、
103はベース層、104はソース層、105は耐圧保
持のための電界緩和構造(以下これをField Limitting
Ring:FLR層と呼ぶ)、106はカソード層、114
はカソード配線、120は層間絶縁膜、121は酸化
膜、400は帰還ダイオードの電流経路を模式的に示し
た矢印、401は帰還ダイオードを便宜的に示した記号
である。過電圧抑制用ダイオード130は、p型層とn
型層とが交互に配列された多結晶シリコンからなり、酸
化膜によりドリフト層102からは絶縁されている。こ
のp型層とn型層の繰り返し配列数はIGBTの耐圧に
より決まり、一般的には素子耐圧600VのIGBT
で、40〜80直列程度である。図示してはいないが、
ゲート電極110は過電圧抑制用ダイオードゲート側電
極112に接続されており、また、これも図示しない
が、ゲート電極110とエミッタ電極111の間にはゲ
ートエミッタ間抵抗301が接続されている。さらに、
IGBTセルを形成した領域を導通領域,耐圧保持のた
めの構造を形成した領域を耐圧保持領域と呼ぶ。
Highly reliable and low cost inverter IGBT
Integrated with the circuit configuration shown in FIG.
T is being considered. FIG. 4 is a diagram showing a cross-sectional structure when the circuit of FIG. 3 is built in an IGBT. Fig. 3 and Fig. 4
Therefore, common constituent elements are denoted by the same reference numerals. In FIG. 3, 110 is a gate electrode, 111 is an emitter electrode, 112 is an overvoltage suppression diode gate side electrode, 11
Reference numeral 3 denotes an overvoltage suppression diode collector side electrode, 115 denotes a collector electrode, 130 denotes an overvoltage suppression diode, 300 denotes an IGBT, 301 denotes a gate-emitter resistance, and 302 denotes a feedback diode. 4, 100 is a collector layer, 101 is a buffer layer, 102 is a drift layer,
103 is a base layer, 104 is a source layer, and 105 is an electric field relaxation structure for maintaining a withstand voltage (hereinafter referred to as Field Limiting).
Ring: FLR layer), 106 is a cathode layer, 114
Is a cathode wiring, 120 is an interlayer insulating film, 121 is an oxide film, 400 is an arrow schematically showing a current path of a feedback diode, and 401 is a symbol showing a feedback diode for convenience. The overvoltage suppression diode 130 includes a p-type layer and an n-type layer.
The mold layer is made of polycrystalline silicon arranged alternately, and is insulated from the drift layer 102 by the oxide film. The number of repeating arrangements of the p-type layer and the n-type layer is determined by the withstand voltage of the IGBT.
And about 40 to 80 series. Although not shown,
The gate electrode 110 is connected to the overvoltage suppressing diode gate side electrode 112, and a gate-emitter resistor 301 is connected between the gate electrode 110 and the emitter electrode 111, though not shown. further,
The region where the IGBT cell is formed is called a conduction region, and the region where a structure for holding a breakdown voltage is formed is called a breakdown voltage holding region.

【0007】まず、過電圧抑制ダイオードの動作を簡単
に説明すると、コレクタ―エミッタ間に過電圧が印加さ
れると過電圧抑制ダイオード130が降伏し、コレクタ
―ゲート間に電流が流れる。この電流が、ゲート―エミ
ッタ間抵抗301を流れることによりゲート電位VGを
上昇させ、IGBTをオンして過電圧の上昇を抑制す
る。このダイオードをIGBTに付加することにより、
過電圧に対するIGBTの破壊耐量を向上でき、スナバ
レス化等により装置の小型化が図れる。また、図4に示
す構造でIGBTに内蔵すると、素子の体積を増大させ
ることなくこの機能を付加できる。過電圧抑制機能内蔵
IGBTに関しては、特開平2−185069 号に開示になっ
ている。
First, the operation of the overvoltage suppression diode will be briefly described. When an overvoltage is applied between the collector and the emitter, the overvoltage suppression diode 130 breaks down and a current flows between the collector and the gate. This current flows through the gate-emitter resistor 301 to increase the gate potential VG, thereby turning on the IGBT and suppressing an increase in overvoltage. By adding this diode to the IGBT,
The breakdown strength of the IGBT against overvoltage can be improved, and the size of the device can be reduced by making it snubberless. Further, if the structure shown in FIG. 4 is incorporated in the IGBT, this function can be added without increasing the volume of the element. An IGBT with a built-in overvoltage suppression function is disclosed in Japanese Patent Application Laid-Open No. H2-185069.

【0008】次に、帰還ダイオードの動作について説明
する。インバータの回生モードで、IGBTに逆バイア
スが印加されると、図3に示した帰還ダイオード302
が導通する。この帰還ダイオードは図4のベース層10
3,ドリフト層102の接合部分に形成されており、図
4では401で示されている。帰還ダイオードの電流は
経路400を流れ、コレクタ電極113に至る。帰還ダ
イオードをIGBTに内蔵することにより、従来12個
の半導体素子で構成されていた図2の三フルブリッジ
インバータ回路を、6個の半導体素子で構成できること
になり、より小型化が図れる。この様な帰還ダイオード
内蔵IGBTは、例えば、特願平2−512038号に
開示されている。
Next, the operation of the feedback diode will be described. When a reverse bias is applied to the IGBT in the regenerative mode of the inverter, the feedback diode 302 shown in FIG.
Becomes conductive. This feedback diode corresponds to the base layer 10 of FIG.
3, formed at the junction of the drift layer 102 and indicated by 401 in FIG. The current of the feedback diode flows through the path 400 and reaches the collector electrode 113 . By incorporating the feedback diode in the IGBT, the three- phase full-bridge inverter circuit shown in FIG. 2 which has conventionally been constituted by 12 semiconductor elements can be constituted by 6 semiconductor elements, and the size can be further reduced. Such an IGBT with a built-in feedback diode is disclosed, for example, in Japanese Patent Application No. 2-512038.

【0009】以上の、高信頼化と、低コスト化の2つの
方策を同時にIGBTに実施すれば、信頼性が高く低コ
ストのIGBTが実現できる。
If the above two measures of high reliability and low cost are simultaneously applied to the IGBT, a highly reliable and low cost IGBT can be realized.

【0010】[0010]

【発明が解決しようとする課題】しかし、上述の過電圧
抑制ダイオード及び帰還ダイオードを内蔵したIGBT
には次の問題点がある。
However, an IGBT incorporating the above-mentioned overvoltage suppression diode and feedback diode is required.
Has the following problems.

【0011】第1の問題点は、過電圧抑制用ダイオード
130の電位分布とFLR105の電位分布とが一致し
ないために、素子の耐圧が低下するという問題である。
図5(a)に過電圧抑制ダイオードによる電位分布を、
(b)にFLRによる電位分布を示す。過電圧抑制ダイ
オードの場合は、p型n型繰り返し層の各々で均等にコ
レクタ−エミッタ間電圧を分担するために、電位分布は
図5(a)の500で示すように均等な等電位線を示
す。これに対して、FLR構造の場合は、隣接するFL
Rの間隔に依存して等電位線の分布が変化する。一般
に、IGBTのFLRでは、安定して耐圧を保持できる
ため、チップ端部に近づく程、電位変化が大きくなる様
な構成をとる場合が多い。
The first problem is that the voltage distribution of the overvoltage suppressing diode 130 does not coincide with the voltage distribution of the FLR 105, so that the breakdown voltage of the element is reduced.
FIG. 5A shows the potential distribution by the overvoltage suppression diode,
(b) shows the potential distribution by the FLR. In the case of an overvoltage suppression diode, the potential distribution is set so as to equally share the collector-emitter voltage in each of the p-type and n-type repeating layers.
5 shows a uniform equipotential line as indicated by 500 in FIG . In contrast, in the case of the FLR structure, the adjacent FL
The distribution of equipotential lines changes depending on the interval of R. In general, the FLR of the IGBT can stably maintain a withstand voltage, and thus often has a configuration in which the potential change increases as approaching the end of the chip.

【0012】しかしながら、過電圧抑制ダイオードとF
LR構造とを同時に適用した図4の構造では、過電圧抑
制ダイオードによる電位分布とFLRによる電位分布が
一致しないため、耐圧が低下するという問題が生じる。
これを図6に示す。図6では、FLRによる電位の分布
と、過電圧抑制ダイオードによる電位の分布との相互作
用を考慮した電位分布を示す。図6に示すように、両者
の電位分布が一致しないために、電界が集中する箇所が
生じ、降伏現象を引き起こして素子耐圧を低下させると
いう問題点を有する。
However, the overvoltage suppression diode and F
In the structure of FIG. 4 to which the LR structure is applied at the same time, the potential distribution by the overvoltage suppression diode and the potential distribution by the FLR do not match, so that a problem that the breakdown voltage is reduced occurs.
This is shown in FIG. FIG. 6 shows a potential distribution in consideration of the interaction between the potential distribution by the FLR and the potential distribution by the overvoltage suppression diode. As shown in FIG. 6, since the potential distributions of the two do not coincide with each other, a portion where the electric field is concentrated occurs, which causes a breakdown phenomenon to cause a problem of lowering the element withstand voltage.

【0013】第2の問題点として、帰還ダイオードの電
流集中による破壊現象がある。これを図7を用いて説明
する。図7は過電圧抑制ダイオード及び帰還ダイオード
を内蔵したIGBTチップの平面図、特にチップ角部の
拡大図である。図7において、図2〜6と共通の構成要
素には同一の符号を付してある。図7において、700は
帰還ダイオードの電流を模式的を示す電流線である。図
7から分かるように、チップの角部では帰還ダイオード
の電流密度が、他の場所に比べて高く、通電による温度
上昇が大きくなる。よく知られているように、ダイオー
ドの電流は正の温度特性を持つために、温度上昇と共
に、チップ角部では帰還ダイオードの電流が増加する。
これが正帰還となって、電流は増加し続け、最終的に破
壊に至る。また、チップ角部以外でも、他の場所より電
流が流れやすい箇所があると電流集中を起こし、前述し
た正帰還により、ダイオードが破壊に至るという問題が
ある。
As a second problem, there is a destruction phenomenon due to current concentration of the feedback diode. This will be described with reference to FIG. FIG. 7 is a plan view of an IGBT chip having a built-in overvoltage suppression diode and a feedback diode, particularly an enlarged view of a corner of the chip. 7, the same components as those in FIGS. 2 to 6 are denoted by the same reference numerals. In FIG. 7, reference numeral 700 denotes a current line schematically showing the current of the feedback diode. As can be seen from FIG. 7, the current density of the feedback diode is higher at the corners of the chip than at other locations, and the temperature rise due to energization increases. As is well known, since the current of the diode has a positive temperature characteristic, the current of the feedback diode increases at the corner of the chip as the temperature increases.
This becomes positive feedback, the current continues to increase, and eventually leads to destruction. In addition, there is a problem that if there is a portion other than the corner portion of the chip where current flows more easily than other portions, current concentration occurs and the diode is destroyed by the positive feedback described above.

【0014】本発明の目的は、上述した問題点を解決す
るものであって、過電圧抑制ダイオードとFLRの電位
分布の適正化により耐圧の低下を防止すると共に、帰還
ダイオードの電流集中による破壊を防止し、低コスト,
低損失で且つ信頼性の高いインバータ用IGBTを提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and to prevent a decrease in withstand voltage by optimizing a potential distribution of an overvoltage suppression diode and an FLR, and to prevent destruction of a feedback diode due to current concentration. And low cost,
An object of the present invention is to provide an inverter IGBT with low loss and high reliability.

【0015】[0015]

【課題を解決するための手段】上述した問題を解決し、
本発明の目的を達成するための手段として、以下の手段
が考えられる。
Means for Solving the Problems To solve the above problems,
The following means are conceivable as means for achieving the object of the present invention.

【0016】すなわち、一対の主表面を有し、一方の主
表面に接する第1導電型の第1の層と、第1の層と他方
の主表面とに隣接する第2の導電型の第2の層と、一方
の主表面に形成された第1の電極とからなる半導体基体
と、第2の層内に他方の主表面に隣接して選択的に形成
された第1導電型の第3の層と、第3の層内に他方の主
表面に隣接して選択的に形成された第2導電型の第4の
層と、第3の層の他方の主表面の露出部分に絶縁膜を介
して形成された第2の電極と、第3の層と第4の層とに
接触形成された第3の電極とからなるIGBTが繰り返し配
置されたIGBT領域と、前記IGBT領域を包囲し
て、前記第2の層内に前記他方の主表面に隣接して選択
的に形成された第1導電型の複数の第5の層と、第2の
層内に前記他方の主表面と前記半導体基体端面とに隣接
して選択的に形成された第2導電型の第6の層と、第6
の層に接触して形成され、前記第1の電極に電気的に接
続された第4の電極と、前記第6の層を除く他方の主表
面に形成された酸化膜と、一方の端部が第2の電極に他
方の端部が第4の電極に接続され、両端部間に繰り返し
配列された複数の第1導電型と第2導電型の層から成
り、前記酸化膜上に形成された多結晶シリコンダイオー
ドとを有する耐圧保持領域とからなる半導体素子におい
て、前記最もIGBT領域に近い前記第5の層のIGB
T領域側の端部の位置から、最もIGBT領域遠い第
5の層のIGBT領域と反対側の端部の位置との距離
が、前記多結晶シリコンダイオードの最もIGBT領
域に近い接合から、最もIGBTより遠い接合までの距
L1の4/5以下である。
That is, a first layer of a first conductivity type having a pair of main surfaces and in contact with one main surface, and a second layer of a second conductivity type adjacent to the first layer and the other main surface. A second substrate and a first electrode formed on one main surface; and a first conductive type first electrode formed selectively in the second layer adjacent to the other main surface. A third layer, a fourth layer of the second conductivity type selectively formed in the third layer adjacent to the other main surface, and an insulating portion at an exposed portion of the other main surface of the third layer. An IGBT region in which IGBTs composed of a second electrode formed through a film and a third electrode in contact with the third layer and the fourth layer are repeatedly arranged, and surround the IGBT region; A plurality of fifth layers of the first conductivity type selectively formed adjacent to the other main surface in the second layer; and the other main table in the second layer. A sixth layer of the second conductivity type selectively formed adjacent to the surface and the end face of the semiconductor substrate;
A fourth electrode formed in contact with the first layer and electrically connected to the first electrode; an oxide film formed on the other main surface excluding the sixth layer; Comprises a plurality of layers of the first conductivity type and the second conductivity type, the other end of which is connected to the second electrode and the fourth electrode, and which is repeatedly arranged between both ends, and is formed on the oxide film. In the fifth layer closest to the IGBT region, the semiconductor device comprising: a breakdown voltage holding region having a polycrystalline silicon diode ;
The distance L from the position of the end on the side of the T region to the position of the end on the side opposite to the IGBT region of the fifth layer farthest from the IGBT region.
2 is not more than 4/5 of the distance L1 from the junction closest to the IGBT region of the polycrystalline silicon diode to the junction farthest from the IGBT .

【0017】また、一対の主表面を有し、一方の主表面
に接する第1導電型の第1の層と、第1の層と他方の主
表面とに隣接する第2の導電型の第2の層と、一方の主
表面に形成された第1の電極とからなる半導体基体と、
第2の層内に他方の主表面に隣接して選択的に形成され
た第1導電型の第3の層と、第3の層内に他方の主表面
に隣接して選択的に形成された第2導電型の第4の層
と、第3の層の他方の主表面の露出部分に絶縁膜を介し
て形成された第2の電極と、第3の層と第4の層とに接
触形成された第3の電極とからなるIGBTが繰り返し配置
されたIGBT領域と、前記IGBT領域を包囲して、
前記第2の層内に前記他方の主表面と前記半導体基体端
面とに隣接して選択的に形成された第2導電型の第5の
層と、第5の層に接触して形成され、前記第1の電極に
電気的に接続された第4の電極と、前記第5の層を除く
他方の主表面に形成された酸化膜と、一方の端部が第2
の電極に他方の端部が第4の電極に接続され、両端部間
に繰り返し配列された複数の第1導電型と第2導電型の
層から成り、前記酸化膜上に形成された多結晶シリコン
ダイオードとを有する耐圧保持領域とからなる半導体素
子において、前記多結晶シリコンダイオードの第1導電
型と第2導電型の繰り返し配列の間隔が、第2の電極側
では広く、第4の電極側では狭くなっている手段であ
る。
Also, a first layer of a first conductivity type having a pair of main surfaces and in contact with one main surface, and a second layer of a second conductivity type adjacent to the first layer and the other main surface. A semiconductor substrate consisting of two layers and a first electrode formed on one main surface;
A third layer of the first conductivity type selectively formed in the second layer adjacent to the other main surface; and selectively formed in the third layer adjacent to the other main surface. A fourth layer of the second conductivity type, a second electrode formed on an exposed portion of the other main surface of the third layer via an insulating film, and a third layer and a fourth layer. An IGBT region in which an IGBT including a third electrode formed in contact is repeatedly arranged, and an IGBT region surrounding the IGBT region;
A fifth layer of a second conductivity type selectively formed adjacent to the other main surface and the end face of the semiconductor substrate in the second layer, and formed in contact with the fifth layer; A fourth electrode electrically connected to the first electrode; an oxide film formed on the other main surface excluding the fifth layer;
The other end is connected to the fourth electrode, and a plurality of layers of the first conductivity type and the second conductivity type are repeatedly arranged between both ends, and the polycrystal formed on the oxide film In a semiconductor element comprising a breakdown voltage holding region having a silicon diode, the interval between the repetitive arrangements of the first conductivity type and the second conductivity type of the polycrystalline silicon diode is wide on the second electrode side, and the fourth electrode side Then it is a means that is becoming narrower.

【0018】さらに、前記IGBT領域の端部に位置す
る第4の層に接触し、前記他方の主表面に隣接して選択
的に形成された第1導電型の第7の層を有し、第7の層
が、前記多結晶シリコンダイオードのIGBT領域側端
部から最も近い接合よりも、IGBT領域側に形成され
ていることを特徴とする手段である。前記IGBT領域
端部に位置する前記第3の電極と前記第4の層との接触
位置から、前記第7の層の耐圧保持領域側の端部までの
距離L3が20μm以上有る手段である。
A seventh layer of a first conductivity type, which is formed in contact with a fourth layer located at an end of the IGBT region and is selectively formed adjacent to the other main surface; A seventh feature is that the seventh layer is formed closer to the IGBT region than the junction closest to the IGBT region side end of the polycrystalline silicon diode. The distance L3 from the contact position between the third electrode located at the end of the IGBT region and the fourth layer to the end of the seventh layer on the side of the breakdown voltage holding region is at least 20 μm.

【0019】前記第4の電極に接続された少なくとも1
本以上の第1の配線を有し、前記第1の配線の任意の1
本から最も遠い第4の電極上の第1の点があり、この第
1の点と前記第1の配線の任意の1本との距離L4と、
前記第4の電極の断面積Aと、前記第4の電極を流れる
電流Iと、第4の電極の抵抗率ρとが、 0.035≧ρ×(L4/A)×I/2 を満たす手段である。
At least one of the electrodes connected to the fourth electrode
A plurality of first wirings, and any one of the first wirings
There is a first point on the fourth electrode furthest from the book, and a distance L4 between this first point and any one of the first wires;
The sectional area A of the fourth electrode, the current I flowing through the fourth electrode, and the resistivity ρ of the fourth electrode satisfy 0.035 ≧ ρ × (L4 / A) × I / 2. Means.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施例を図面を参
照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】(実施例1)図1に本発明による第1の実
施例の断面構成を示す。図1において、100はコレク
タ層、101はバッファ層、102はドリフト層、10
3はベース層、104はソース層、105はFLR層、
106はカソード層、110はゲート電極、111はエ
ミッタ電極、112は過電圧抑制ダイオードゲート側電
極、113は過電圧抑制ダイオードコレクタ側電極、11
4はカソード配線、115はコレクタ電極、120は層
間絶縁膜、121は酸化膜、130は過電圧抑制ダイオ
ードである。また、図1で、L1は過電圧抑制ダイオー
ドの両端部の接合間の距離、L2は過電圧抑制ダイオー
ドのゲート電極側の端部の接合から、最外周のFLRの終
端までの距離である。
(Embodiment 1) FIG. 1 shows a sectional configuration of a first embodiment according to the present invention. In FIG. 1, 100 is a collector layer, 101 is a buffer layer, 102 is a drift layer,
3 is a base layer, 104 is a source layer, 105 is an FLR layer,
106 is a cathode layer, 110 is a gate electrode, 111 is an emitter electrode, 112 is an overvoltage suppression diode gate side electrode, 113 is an overvoltage suppression diode collector side electrode, 11
4 is a cathode wiring, 115 is a collector electrode, 120 is an interlayer insulating film, 121 is an oxide film, and 130 is an overvoltage suppression diode. In FIG. 1, L1 is the distance between the junctions at both ends of the overvoltage suppression diode, and L2 is the distance from the junction at the gate electrode side end of the overvoltage suppression diode to the end of the outermost FLR.

【0022】本実施例の特徴は、L1とL2が、 L2≦(4/5)×L1 …(1) の関係を満たすことである。L2が上記条件を満たさな
くなったとき、すなわち、 L2≧(4/5)×L1 となった時には、耐圧は急激に低下することが、実験的
に確認されている。
A feature of this embodiment is that L1 and L2 satisfy the relationship of L2 ≦ (4/5) × L1 (1). It has been experimentally confirmed that when L2 no longer satisfies the above condition, that is, when L2 ≧ (4/5) × L1, the breakdown voltage sharply decreases.

【0023】式(1)を満たすときには、図5(b)示
したFLR外周部での電位変化を過電圧抑制ダイオード
が均等化するために図6で示したような電界集中が起こ
らず、耐圧は低下しない。FLRの電位分布と過電圧抑
制ダイオードの電位分布を一致させるためにはL1をL
2より20%程長くすることが効果的である。この時の
電位分布を図8に示す。FLR外周では、過電圧抑制ダ
イオードにより電位分布が均等になり、耐圧の劣化を防
止できる。
When the equation (1) is satisfied, the overvoltage suppression diode equalizes the potential change at the outer periphery of the FLR shown in FIG. 5B, so that the electric field concentration does not occur as shown in FIG. Does not drop. In order to make the potential distribution of the FLR coincide with the potential distribution of the overvoltage suppression diode, L1 is set to L
It is effective to make the length about 20% longer than 2. FIG. 8 shows the potential distribution at this time. In the outer periphery of the FLR, the potential distribution is made uniform by the overvoltage suppression diode, and the deterioration of the breakdown voltage can be prevented.

【0024】図9は第1の実施例のIGBTの平面構成
図である。図2〜図8と共通の構成には同一の符号を付
してある。図9において、900はゲートワイヤーが接
続されるゲートパッド、901はエミッタワイヤーが接
続されるエミッタパッド、902はゲート配線である。
過電圧抑制ダイオードは130の矢印で示された範囲に
チップ周囲を包囲する形で形成されている。また、FLR1
05は図9においては過電圧抑制ダイオード130の下に
形成されており、点線で示してある。また、図示しては
いないが、カソード配線114はカソード電極113上
の任意の位置に任意の本数だけ接続することが出来る。
FIG. 9 is a plan view of the IGBT of the first embodiment. The same components as those in FIGS. 2 to 8 are denoted by the same reference numerals. In FIG. 9, 900 is a gate pad to which a gate wire is connected, 901 is an emitter pad to which an emitter wire is connected, and 902 is a gate wiring.
The overvoltage suppression diode is formed so as to surround the periphery of the chip in a range indicated by an arrow 130. Also, FLR1
05 is formed below the overvoltage suppression diode 130 in FIG. 9 and is indicated by a dotted line. Although not shown, any number of the cathode wires 114 can be connected to an arbitrary position on the cathode electrode 113.

【0025】本実施例では、過電圧抑制ダイオードのp
型n型層の繰り返し配列数6回の例を示したが、勿論こ
れに限定されるものではなく、素子の耐圧に合わせて、
この繰り返し配列数を変化させることが出来る。また同
様に、FLRに関しても特に3本の場合について示した
が、この本数は何本でも良い。更に、本実施例中ではバ
ッファ層101を備えたいわゆるパンチスルー型IGB
Tの例を示したが、バッファ層を備えていないノンパン
チスルー型IGBTの場合も同様に本発明が適用可能で
ある。当然、これらの条件は、以下の実施例でも同様に
考えることが出来る。
In this embodiment, the p of the overvoltage suppression diode is
Although an example in which the number of repetitive arrangements of the type n-type layer is six has been described, it is needless to say that the present invention is not limited to this.
The number of repeating sequences can be changed. Similarly, the number of FLRs is three, but the number of FLRs is not limited. Further, in this embodiment, a so-called punch-through type IGB having the buffer layer 101 is used.
Although the example of T is shown, the present invention is similarly applicable to a non-punch-through IGBT having no buffer layer. Naturally, these conditions can be similarly considered in the following embodiments.

【0026】(実施例2) 図10は本発明による第2の実施例を示す平面構成図で
ある。図10において図2〜図9間と共通の構成要素に
は同一の符号を付してある。図10において、図9と異
なる点は、過電圧抑制ダイオード1000がゲートパッ
ドに隣接した領域にだけ形成されている点である。過電
圧抑制ダイオードの幅L1は実施例1でも述べたよう
に、FLRの幅L2よりも大きくしておかなければなら
ない。そのため、FLRだけの耐圧保持領域の構造より
も寸法が大きくなる。これに対し、本実施例では過電圧
抑制ダイオードをゲートパッドに隣接した領域に限定し
たことにより、この面積の損失を低減できる。つまり、
過電圧抑制ダイオードが形成されていない領域では耐圧
保持領域の面積を低減でき、素子サイズを縮小すること
が出来る。
(Embodiment 2) FIG. 10 is a plan view showing a second embodiment of the present invention. In FIG. 10, the same components as those in FIGS. 2 to 9 are denoted by the same reference numerals. 10 differs from FIG. 9 in that the overvoltage suppression diode 1000 is formed only in a region adjacent to the gate pad. As described in the first embodiment, the width L1 of the overvoltage suppression diode must be larger than the width L2 of the FLR. Therefore, the size is larger than the structure of the breakdown voltage holding region including only the FLR. On the other hand, in this embodiment, the loss of this area can be reduced by limiting the overvoltage suppression diode to the region adjacent to the gate pad. That is,
In the region where the overvoltage suppression diode is not formed, the area of the breakdown voltage holding region can be reduced, and the element size can be reduced.

【0027】しかしながら、本実施例による過電圧抑制
ダイオードは、素子サイズを縮小したために、ダイオー
ドの抵抗成分が増加し、過電圧抑制動作の遅れや、損失
を増加させることになる。そのため、素子面積の低減が
重要な場合と、過電圧動作の遅れや損失を低減が重要な
場合とで、実施例1もしくは実施例2の一方の適当な構
造を選択する必要がある。本実施例では、過電圧抑制ダ
イオード1000をゲートパッド脇に形成した例を示し
たが、過電圧抑制ダイオードの位置はこれに限定される
ものではなが、ゲートパッドに隣接して形成した場合に
は、ゲートパッドから過電圧抑制ダイオードまでの配線
が短くなり、配線に生じる寄生容量や寄生インダクタン
スの影響を最小に出来るというメリットがある。
However, in the overvoltage suppressing diode according to the present embodiment, since the element size is reduced, the resistance component of the diode increases, and the delay of the overvoltage suppressing operation and the loss increase. Therefore, it is necessary to select an appropriate structure of the first embodiment or the second embodiment depending on the case where the reduction of the element area is important and the case where the delay or loss of the overvoltage operation is important. In this embodiment, the example in which the overvoltage suppression diode 1000 is formed beside the gate pad is shown. However, the position of the overvoltage suppression diode is not limited to this, but when the overvoltage suppression diode is formed adjacent to the gate pad, There is an advantage that the wiring from the gate pad to the overvoltage suppression diode can be shortened, and the effect of parasitic capacitance and parasitic inductance generated on the wiring can be minimized.

【0028】(実施例3)図11は本発明による第3の
実施例を示す断面構成である。図11において、図1か
ら図10までと共通の構成要素には同一の符号を付して
ある。本実施例の特徴は、過電圧抑制ダイオードのp型
n型層の繰り返し配列間隔を調整する事により、過電圧
抑制ダイオードに高い電界緩和効果を持たせ、FLRを
削除して内蔵の帰還ダイオードの抵抗を低減した点にあ
る。
(Embodiment 3) FIG. 11 is a sectional view showing a third embodiment of the present invention. In FIG. 11, the same components as those in FIGS. 1 to 10 are denoted by the same reference numerals. The feature of the present embodiment is that by adjusting the repetitive arrangement interval of the p-type and n-type layers of the overvoltage suppression diode, the overvoltage suppression diode has a high electric field relaxation effect, the FLR is eliminated, and the resistance of the built-in feedback diode is reduced. The point is that it has been reduced.

【0029】帰還ダイオードの電流は図4の400で示
される経路を流れるため、FLR層105が大きな抵抗
となっている。帰還ダイオードの抵抗の低減のためには
このFLR層105を削除する必要があるが、これを削
除してしまうと、十分な耐圧が得られないことが分かっ
ている。これは、過電圧抑制ダイオードの電界緩和効果
がドリフト層内部までは及ばず、表面から数μm以上深
いドリフト層領域では、電界集中が発生してしまうため
である。この傾向は、高耐圧のIGBT、つまり耐圧保
持領域長が大きいIGBTで顕著となる。
Since the current of the feedback diode flows through the path indicated by 400 in FIG. 4, the FLR layer 105 has a large resistance. In order to reduce the resistance of the feedback diode, it is necessary to delete the FLR layer 105. However, it has been found that if this is deleted, a sufficient withstand voltage cannot be obtained. This is because the electric field relaxation effect of the overvoltage suppression diode does not reach the inside of the drift layer, and electric field concentration occurs in a drift layer region several μm or more from the surface. This tendency is remarkable in an IGBT having a high withstand voltage, that is, an IGBT having a long withstand voltage holding region.

【0030】そこで、本実施例では、過電圧抑制ダイオ
ードのp型n型層の繰り返し配列間隔を、チップ端部に
近づくほど狭くし、過電圧抑制ダイオードの電界緩和効
果の強化を実現する。チップ外周部に近づくほど配列間
隔を狭くすることにより、ドリフト層内部での電界集中
を緩和することが可能となり、実施例2の構成よりも高
耐圧品に適用できる。但し、本実施例では実施例1,2
の構成に比べ耐圧保持領域幅が増加するために、チップ
サイズが増加してしまう。このため、帰還ダイオードの
損失低減を重視するか、あるいはチップサイズの縮小を
重視するかにより、選択する必要がある。
Therefore, in the present embodiment, the repetitive arrangement interval of the p-type and n-type layers of the overvoltage suppression diode is made narrower as approaching the end of the chip, thereby enhancing the electric field relaxation effect of the overvoltage suppression diode. By narrowing the arrangement interval closer to the outer peripheral portion of the chip, it becomes possible to reduce the electric field concentration inside the drift layer, and it can be applied to a higher breakdown voltage product than the configuration of the second embodiment. However, in this embodiment, the first and second embodiments are used.
Since the width of the breakdown voltage holding region is increased as compared with the configuration of the above, the chip size is increased. Therefore, it is necessary to make a selection depending on whether importance is placed on reducing the loss of the feedback diode or reducing the chip size.

【0031】(実施例4)図12に本発明による第4の
実施例を示す。図12において、図1から図11と共通
の構成要素には同一の符号を付してある。図12におい
て、1200はウェル層である。本実施例の特徴は、ウ
ェル層1200の終端が、過電圧抑制ダイオードのゲー
ト電極側端部の接合1201よりも導通領域側にある点
である。ウェル層1200が、上記接合を越えてチップ
外周部に伸びるとウェル層1200の端部で電界集中が
発生し、素子の耐圧を低下させる。これを図13(a)
に示す。本発明の場合は図13(b)に示す様に電界は
緩和され、素子耐圧の低下を防止できる。
(Embodiment 4) FIG. 12 shows a fourth embodiment according to the present invention. 12, the same components as those in FIGS. 1 to 11 are denoted by the same reference numerals. In FIG. 12, 1200 is a well layer. The feature of this embodiment is that the end of the well layer 1200 is closer to the conduction region than the junction 1201 at the gate electrode side end of the overvoltage suppression diode. When the well layer 1200 extends to the outer periphery of the chip beyond the junction, electric field concentration occurs at the end of the well layer 1200, and the breakdown voltage of the element is reduced. This is shown in FIG.
Shown in In the case of the present invention, the electric field is relaxed as shown in FIG.

【0032】(実施例5)図14に本発明による第5の
実施例の断面構成を示す。図14において、図1から図
13と共通の構成要素には同一の符号を付してある。本
実施例の特徴は、導通領域端部のベース層103及びウ
ェル層1200とエミッタ電極111とのコンタクト部
から、ウェル層1200の耐圧保持領域側の端部までの
距離L3が20μm以上である点である。図7で説明し
たように、チップの角部では電流集中により素子の破壊
が起こりやすくなる。また、チップ角部以外でも、電流
が集中し易い箇所は、正帰還により素子が破壊しやす
い。
(Embodiment 5) FIG. 14 shows a sectional configuration of a fifth embodiment according to the present invention. 14, the same components as those in FIGS. 1 to 13 are denoted by the same reference numerals. This embodiment is characterized in that the distance L3 from the contact portion between the base layer 103 and the well layer 1200 at the end of the conduction region and the emitter electrode 111 to the end of the well layer 1200 on the side of the breakdown voltage holding region is 20 μm or more. It is. As described with reference to FIG. 7, at the corners of the chip, the elements are liable to break down due to current concentration. In addition, other than the corners of the chip, elements where the current tends to concentrate are apt to be broken by positive feedback.

【0033】本実施例では、L3を20μm以上とする
ことにより、ウェル層1200での抵抗を増大させ、ダ
イオードの正帰還を抑制している。具体的に説明する
と、ウェル層1200の抵抗は温度上昇につれて増大す
るため、ウェル層1200の抵抗を大きくすると、温度
上昇に伴う抵抗の増分も大きくなる。この抵抗の増分が
ダイオードの正帰還による電流増加を抑制する効果を持
つため、ウェル層1200の抵抗が大きい程、この効果が顕
著となる。一般的なIGBTのウェル層の場合、不純物
濃度は約1×1018〜1×1020程度であり、この値を
考慮して、計算によりL3の値を求めると、L3≧20
μmとなる。これにより、チップ角部及び、電流集中箇
所での破壊を防止できる。
In the present embodiment, by setting L3 to 20 μm or more, the resistance in the well layer 1200 is increased, and the positive feedback of the diode is suppressed. More specifically, the resistance of the well layer 1200 increases as the temperature rises. Therefore, when the resistance of the well layer 1200 is increased, the resistance increases with the temperature rise. Since this increase in resistance has the effect of suppressing an increase in current due to positive feedback of the diode, this effect becomes more pronounced as the resistance of the well layer 1200 increases. For a typical IGBT well layer, the impurity concentration is about 1 × 10 18 ~1 × 10 20 mm, this value in consideration, when determining the value of L3 by calculation, L3 ≧ 20
μm. As a result, it is possible to prevent destruction at the corners of the chip and at the current concentrated portions.

【0034】(実施例6) 図15は本発明を適用した第6の実施例を示す平面構成
である。図15において、図1から図14と共通の構成
要素には同一の符号が付してある。図15において、チ
ップの4つの角をそれぞれ角A〜Dとし、チップの一辺
の長さをL4,カソード電極113を流れる電流をI
1、そして、帰還ダイオードに流れる電流をI2とす
る。
(Embodiment 6) FIG. 15 is a plan view showing a sixth embodiment of the present invention. In FIG. 15 , the same components as those in FIGS. 1 to 14 are denoted by the same reference numerals. In FIG. 15, the four corners of the chip are referred to as corners A to D, the length of one side of the chip is L4, and the current flowing through the cathode electrode 113 is I
1, and the current flowing through the feedback diode is I2.

【0035】本実施例の特徴は、カソード電極113の
断面積AとL4との関係が、 0.035(V)≧V1×2=ρ×(2×L4/A)×I1/2 …(2) を満たす点である。式(2)において、ρは電極の抵抗
率である。帰還ダイオードを内蔵したIGBTの場合、
カソード配線114とカソード電極113の接続箇所を
チップの角にする場合が多い。これは、チップの角はカ
ソード電極の面積が大きいためである。カソード配線は
各4角にそれぞれ接続することが望ましいが、パッケー
ジの制約により、図15のようにカソード配線1本の場
合も考慮する必要がある。この場合、カソード配線の接
続点がある角Cから最も遠い角Bでは、電流I1により
角Cよりも電位が高くなる。この角B−角C間の電圧
は、カソード配線が複数の角に接続されている場合には
小さいが図15のように配線が1本の場合には最大とな
る。このためこれ以降は、カソード配線一本の場合につ
いて検討する。図15において、角Bの電位は角Cの電
位より、V1×2だけ高くなる。この電位差は、帰還ダ
イオードの電流I2に分布を生じさせる。なぜなら、角
Bでは角Cよりも電位が高いために帰還ダイオードに印
加される電圧が最も小さくなって電流が流れにくく、ま
た角Cでは最も電流が流れやすい。この電位差が、ダイ
オードの順方向電圧降下0.7Vの5%、つまり0.03
5Vを越えると、電流集中箇所による正帰還が顕著とな
り、破壊に至る。この時の、L4,I1,V1,Aの関
係を求めると式(2)が得られる。本実施例の10A級
のIGBTの場合について、計算の一例を示す。10A
級のIGBTの場合、帰還ダイオードの電流も10Aと
なり、I1はこの10Aの半分であるので、5Aとな
る。また、チップサイズは一般的には1cm×1cm程度で
あり、2×L4=2cmである。カソード電極をアルミで
形成しているので、この抵抗率5μΩ・cmであり、断
面積A=7.5×10-3cm2 であるので、式(2)を満た
This embodiment is characterized in that the relationship between the cross-sectional area A and L4 of the cathode electrode 113 is as follows: 0.035 (V) ≧ V1 × 2 = ρ × (2 × L4 / A) × I1 / 2 ( 2) is satisfied. In equation (2), ρ is the resistivity of the electrode. In the case of an IGBT with a built-in feedback diode,
In many cases, the connection point between the cathode wiring 114 and the cathode electrode 113 is set at the corner of the chip. This is because the corner of the tip has a large area of the cathode electrode. Although it is desirable to connect the cathode wires to each of the four corners, it is necessary to consider the case of one cathode wire as shown in FIG. In this case, at the angle B farthest from the angle C where the connection point of the cathode wiring is located, the potential becomes higher than the angle C due to the current I1. The voltage between the corners B and C is small when the cathode wiring is connected to a plurality of corners, but becomes maximum when there is only one wiring as shown in FIG. Therefore, hereinafter, the case of one cathode wiring will be considered. In FIG. 15, the potential at the corner B is higher than the potential at the corner C by V1 × 2. This potential difference causes a distribution in the current I2 of the feedback diode. This is because the voltage applied to the feedback diode is the smallest at the angle B and the current is less likely to flow because the potential is higher than the angle C, and the current is most likely to flow at the angle C. This potential difference is 5% of the forward voltage drop of 0.7 V of the diode, that is, 0.03.
When the voltage exceeds 5 V, positive feedback due to a current concentrated portion becomes remarkable, leading to destruction. When the relationship among L4, I1, V1, and A at this time is obtained, Expression (2) is obtained. An example of calculation will be described for the case of a 10A class IGBT of the present embodiment . 10A
In the case of a class IGBT, the current of the feedback diode is also 10 A, and since I1 is half of this 10 A, it is 5 A. The chip size is generally about 1 cm × 1 cm, Ru 2 × L4 = 2 cm der. Since the cathode electrode is formed of aluminum, the resistivity is 5μΩ · cm, since the cross-sectional area A = 7.5 × 10 -3 cm 2 , satisfy formula (2)
You .

【0036】カソード配線を各角に設けた場合も同様に
考えられる。これを図16に示す。例えば、4角に設け
た場合には図16に示すように、I1が図15の場合の
1/4となり、また、I1が流れる経路L5図15の
場合の1/4になるために、カソード配線1本の場合に
比べてこの場合は発生する電圧は1/16と小さくな
る。
The same applies to the case where the cathode wiring is provided at each corner. This is shown in FIG. For example, as shown in FIG. 16, when provided at four corners, I1 is 1 / of that in FIG. 15 , and the path L5 through which I1 flows is also shown in FIG.
In this case, the generated voltage is 1/16, which is smaller than that in the case of one cathode wiring.

【0037】従って、カソード配線が1本の場合に式
(2)を満たせば、カソード配線が2本以上の場合も式
(2)の条件を満たす。
Therefore, if the equation (2) is satisfied when the number of cathode wirings is one, the condition of the equation (2) is satisfied even when the number of cathode wirings is two or more.

【0038】[0038]

【発明の効果】本発明によれば、耐圧保持領域における
FLR形成領域の幅を過電圧抑制ダイオードの両接合端
間距離の4/5とすることにより、電位分布の不整合を
解消し、素子耐圧の低下を防止する。
According to the present invention, the width of the FLR formation region in the breakdown voltage holding region is set to 4/5 of the distance between the two junction ends of the overvoltage suppression diode, thereby eliminating the potential distribution mismatch and the device breakdown voltage. To prevent a drop.

【0039】また、本発明によれば、ウェル層の耐圧保
持領域側端部とエミッタ電極とのコンタクトとの距離を
20μm以上とすることにより、帰還ダイオードのチッ
プ内での電流不均一、特にチップ角部での電流集中によ
る破壊を防止できる。
Further, according to the present invention, the distance between the end of the well layer on the side of the breakdown voltage holding region and the contact between the emitter electrode and the emitter electrode is set to 20 μm or more, so that the current in the feedback diode chip becomes non-uniform, Breakage due to current concentration at the corners can be prevented.

【0040】更に、本発明によれば、カソード配線の断
面積とチップサイズとの関係を式(2)で表される関係
にすることにより帰還ダイオードの電流集中を低減し、
高破壊耐量の帰還ダイオードを実現できる。
Further, according to the present invention, the current concentration of the feedback diode is reduced by making the relationship between the cross-sectional area of the cathode wiring and the chip size into the relationship represented by the equation (2).
A feedback diode with high breakdown resistance can be realized.

【0041】これらの発明により、高破壊耐量の帰還ダ
イオードを内蔵したIGBTを実現でき、高破壊耐量
で、低コストのインバータシステムを実現できる。
According to these inventions, it is possible to realize an IGBT having a built-in feedback diode with a high breakdown strength, and a low-cost inverter system with a high breakdown strength.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による第1の実施例を示す断面構造図で
ある。
FIG. 1 is a sectional structural view showing a first embodiment according to the present invention.

【図2】従来のインバータの回路図である。FIG. 2 is a circuit diagram of a conventional inverter.

【図3】従来の過電圧抑制ダイオード内蔵IGBTの回
路図である。
FIG. 3 is a circuit diagram of a conventional IGBT with a built-in overvoltage suppression diode.

【図4】従来の過電圧抑制ダイオード内蔵IGBTの断
面図である。
FIG. 4 is a cross-sectional view of a conventional IGBT with a built-in overvoltage suppression diode.

【図5】従来の帰還ダイオード内蔵IGBTの断面図で
ある。
FIG. 5 is a cross-sectional view of a conventional feedback diode built-in IGBT.

【図6】過電圧抑制ダイオード及び帰還ダイオードを内
蔵した従来のIGBTの断面図である。
FIG. 6 is a cross-sectional view of a conventional IGBT including an overvoltage suppression diode and a feedback diode.

【図7】従来の過電圧抑制ダイオード及びFLRの電位
分布を示す断面図である。
FIG. 7 is a cross-sectional view showing a potential distribution of a conventional overvoltage suppression diode and FLR.

【図8】過電圧抑制ダイオード及び帰還ダイオードを内
蔵した従来のIGBTの電位分布を示す断面図である。
FIG. 8 is a cross-sectional view showing a potential distribution of a conventional IGBT including an overvoltage suppression diode and a feedback diode.

【図9】従来の帰還ダイオードの問題を説明する平面図
である。
FIG. 9 is a plan view illustrating a problem of a conventional feedback diode.

【図10】本発明による第1の実施例を示す平面図であ
る。
FIG. 10 is a plan view showing a first embodiment according to the present invention.

【図11】本発明による第1の実施例による電位分布を
示す断面図である。
FIG. 11 is a sectional view showing a potential distribution according to the first embodiment of the present invention.

【図12】本発明による第1の実施例の補足説明図であ
る。
FIG. 12 is a supplementary explanatory diagram of the first embodiment according to the present invention.

【図13】本発明による第2の実施例を示す断面図であ
る。
FIG. 13 is a sectional view showing a second embodiment according to the present invention.

【図14】本発明による第3の実施例を示す平面図であ
る。
FIG. 14 is a plan view showing a third embodiment according to the present invention.

【図15】本発明による第3の実施例の補足説明図であ
る。
FIG. 15 is a supplementary explanatory diagram of the third embodiment according to the present invention.

【図16】本発明による第4の実施例を示す平面図であ
る。
FIG. 16 is a plan view showing a fourth embodiment according to the present invention.

【符号の説明】[Explanation of symbols]

100…コレクタ層、101…バッファ層、102…ド
リフト層、103…ベース層、104…ソース層、10
5…FLR層、106…カソード層、110…ゲート電
極、111…エミッタ電極、112…過電圧抑制ダイオ
ードゲート側電極、113…過電圧抑制ダイオードコレ
クタ側電極、114…カソード配線、115…コレクタ
電極、120…層間絶縁膜、121…酸化膜、130…
過電圧抑制ダイオード、200,300…IGBT、2
01…帰還ダイオード、210,211…直流端子、2
12,213,214…交流端子、301…ゲート−エ
ミッタ間抵抗、400…帰還ダイオード電流経路、40
1…帰還ダイオード記号、500…過電圧抑制ダイオー
ドによる等電位線、501…FLRによる等電位線、7
00…帰還ダイオードの電流線、900…ゲートパッ
ド、901…エミッタパッド、902…ゲート配線、1
000…ゲートパッドに隣接した過電圧抑制ダイオー
ド、1200…ウェル層。
100: collector layer, 101: buffer layer, 102: drift layer, 103: base layer, 104: source layer, 10
5 FLR layer, 106 cathode layer, 110 gate electrode, 111 emitter electrode, 112 overvoltage suppression diode gate side electrode, 113 overvoltage suppression diode collector side electrode, 114 cathode wiring, 115 collector electrode, 120 Interlayer insulating film, 121 ... oxide film, 130 ...
Overvoltage suppression diode, 200, 300 ... IGBT, 2
01: feedback diode, 210, 211: DC terminal, 2
12, 213, 214 ... AC terminal, 301 ... gate-emitter resistance, 400 ... feedback diode current path, 40
Reference numeral 1 represents a feedback diode symbol, 500 represents equipotential lines formed by overvoltage suppression diodes, 501 represents equipotential lines formed by FLR, 7
00: feedback diode current line, 900: gate pad, 901: emitter pad, 902: gate wiring, 1
000: overvoltage suppression diode adjacent to the gate pad, 1200: well layer.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−196706(JP,A) 特開 平7−249765(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 29/78 H01L 21/336 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-196706 (JP, A) JP-A-7-249765 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 29/78 H01L 21/336

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一対の主表面を有し、一方の主表面に接す
る第1導電型の第1の層と、第1の層と他方の主表面と
に隣接する第2の導電型の第2の層と、一方の主表面に
形成された第1の電極とからなる半導体基体と、 第2の層内に他方の主表面に隣接して選択的に形成され
た第1導電型の第3の層と、第3の層内に他方の主表面
に隣接して選択的に形成された第2導電型の第4の層
と、第3の層の他方の主表面の露出部分に絶縁膜を介し
て形成された第2の電極と、第3の層と第4の層とに接
触形成された第3の電極とからなるIGBTが繰り返し配置
されたIGBT領域と、 前記IGBT領域を包囲して、 前記第2の層内に前記他方の主表面に隣接して選択的に
形成された第1導電型の単数または複数の第5の層と、
第2の層内に前記他方の主表面と前記半導体基体端面と
に隣接して選択的に形成された第2導電型の第6の層
と、第6の層に接触して形成され、前記第1の電極に電
気的に接続された第4の電極と、前記第6の層を除く他
方の主表面に形成された酸化膜と、一方の端部が第2の
電極に他方の端部が第4の電極に接続され、両端部間に
繰り返し配列された複数の第1導電型と第2導電型の層
から成り、前記酸化膜上に形成された多結晶シリコンダ
イオードとを有する耐圧保持領域とからなる半導体素子
において、 前記多結晶シリコンダイオードのIGBT側の端部の接
合から、最外周の前記第5の層の終端までの距離L2
が、前記多結晶シリコンダイオードの最もIGBT領域に近
い接合から、最もIGBTより遠い接合までの距離L1
の4/5以下であることを特徴とする半導体装置。
1. A first layer of a first conductivity type having a pair of main surfaces and in contact with one main surface, and a second layer of a second conductivity type adjacent to the first layer and the other main surface. A second substrate and a first electrode formed on one main surface; and a first conductive type first formed selectively adjacent to the other main surface in the second layer. A third layer, a fourth layer of the second conductivity type selectively formed in the third layer adjacent to the other main surface, and an insulating portion at an exposed portion of the other main surface of the third layer. An IGBT region in which an IGBT including a second electrode formed through a film and a third electrode in contact with the third layer and the fourth layer is repeatedly arranged; and surrounding the IGBT region. And one or more fifth layers of the first conductivity type selectively formed adjacent to the other main surface in the second layer;
A sixth layer of a second conductivity type selectively formed adjacent to the other main surface and the end face of the semiconductor substrate in a second layer; and a sixth layer formed in contact with the sixth layer; A fourth electrode electrically connected to the first electrode, an oxide film formed on the other main surface excluding the sixth layer, one end of which is connected to the second electrode by the other end; Is connected to a fourth electrode and is made up of a plurality of layers of the first conductivity type and the second conductivity type repeatedly arranged between both ends, and has a polycrystalline silicon diode formed on the oxide film. A region of the polycrystalline silicon diode on the IGBT side.
From the end to the end of the fifth outermost layer, L2
Is the distance L1 from the junction closest to the IGBT region of the polysilicon diode to the junction farthest from the IGBT.
A semiconductor device characterized in that the ratio is not more than 4/5.
【請求項2】一対の主表面を有し、一方の主表面に接す
る第1導電型の第1の層と、第1の層と他方の主表面と
に隣接する第2の導電型の第2の層と、一方の主表面に
形成された第1の電極とからなる半導体基体と、 第2の層内に他方の主表面に隣接して選択的に形成され
た第1導電型の第3の層と、第3の層内に他方の主表面
に隣接して選択的に形成された第2導電型の第4の層
と、第3の層の他方の主表面の露出部分に絶縁膜を介し
て形成された第2の電極と、第3の層と第4の層とに接
触形成された第3の電極とからなるIGBTが繰り返し配置
されたIGBT領域と、 前記IGBT領域を包囲して、 前記第2の層内に前記他方の主表面と前記半導体基体端
面とに隣接して選択的に形成された第2導電型の第5の
層と、第5の層に接触して形成され、前記第1の電極に
電気的に接続された第4の電極と、前記第5の層を除く
他方の主表面に形成された酸化膜と、一方の端部が第2
の電極に他方の端部が第4の電極に接続され、両端部間
に繰り返し配列された複数の第1導電型と第2導電型の
層から成り、前記酸化膜上に形成された多結晶シリコン
ダイオードとを有する耐圧保持領域とからなる半導体素
子において、 前記多結晶シリコンダイオードの第1導電型と第2導電
型の繰り返し配列の間隔が、第2の電極側では広く、第
4の電極側では狭くなっていることを特徴とする半導体
装置。
2. A first conductive type first layer having a pair of main surfaces and being in contact with one main surface, and a second conductive type first layer adjacent to the first layer and the other main surface. A second substrate and a first electrode formed on one main surface; and a first conductive type first formed selectively adjacent to the other main surface in the second layer. A third layer, a fourth layer of the second conductivity type selectively formed in the third layer adjacent to the other main surface, and an insulating portion at an exposed portion of the other main surface of the third layer. An IGBT region in which an IGBT including a second electrode formed through a film and a third electrode in contact with the third layer and the fourth layer is repeatedly arranged; and surrounding the IGBT region. A fifth layer of a second conductivity type selectively formed in the second layer adjacent to the other main surface and the end face of the semiconductor substrate; A fourth electrode formed and electrically connected to the first electrode; an oxide film formed on the other main surface excluding the fifth layer;
The other end is connected to the fourth electrode, and a plurality of layers of the first conductivity type and the second conductivity type are repeatedly arranged between both ends, and the polycrystal formed on the oxide film In a semiconductor device comprising a breakdown voltage holding region having a silicon diode, the interval between the repetitive arrangements of the first conductivity type and the second conductivity type of the polycrystalline silicon diode is wide on the second electrode side and the fourth electrode side Then, a semiconductor device characterized by being narrowed.
【請求項3】前記IGBT領域の端部に位置する第4の
層に接触し、前記他方の主表面に隣接して選択的に形成
された第1導電型の第7の層を有し、 第7の層が、前記多結晶シリコンダイオードのIGBT
領域側端部から最も近い接合よりも、IGBT領域側に
形成されていることを特徴とする請求項1乃至2の何れ
かに記載の半導体装置。
3. A semiconductor device according to claim 1, further comprising a seventh layer of a first conductivity type which is in contact with a fourth layer located at an end of said IGBT region and is selectively formed adjacent to said other main surface; The seventh layer is an IGBT of the polycrystalline silicon diode.
3. The semiconductor device according to claim 1, wherein the semiconductor device is formed closer to the IGBT region than a junction closest to the region side end.
【請求項4】前記IGBT領域端部に位置する前記第3
の電極と前記第4の層との接触位置から、前記第7の層
の耐圧保持領域側の端部までの距離L3が20μm以上
有ることを特徴とする請求項1乃至3の何れかに記載の
半導体装置。
4. The third IGBT region end located at the end of the IGBT region.
4. The distance L3 from a contact position between the first electrode and the fourth layer to an end of the seventh layer on the side of the breakdown voltage holding region is 20 μm or more. Semiconductor device.
JP34207195A 1995-12-28 1995-12-28 Semiconductor device Expired - Fee Related JP3331846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34207195A JP3331846B2 (en) 1995-12-28 1995-12-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34207195A JP3331846B2 (en) 1995-12-28 1995-12-28 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH09186315A JPH09186315A (en) 1997-07-15
JP3331846B2 true JP3331846B2 (en) 2002-10-07

Family

ID=18350939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34207195A Expired - Fee Related JP3331846B2 (en) 1995-12-28 1995-12-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3331846B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7582918B2 (en) 2004-01-29 2009-09-01 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with enhanced breakdown voltage
CN111146273A (en) * 2019-12-27 2020-05-12 西安电子科技大学 Junction terminal extension terminal structure with adjustable intermediate layer coverage and preparation method thereof

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19811297B4 (en) 1997-03-17 2009-03-19 Fuji Electric Co., Ltd., Kawasaki High breakdown voltage MOS semiconductor device
JP3911566B2 (en) 1998-01-27 2007-05-09 富士電機デバイステクノロジー株式会社 MOS type semiconductor device
JP4054155B2 (en) * 2000-02-01 2008-02-27 三菱電機株式会社 Semiconductor device
JP4024990B2 (en) 2000-04-28 2007-12-19 株式会社ルネサステクノロジ Semiconductor device
JP4857458B2 (en) * 2000-06-07 2012-01-18 富士電機株式会社 High voltage semiconductor device
JP2003347547A (en) 2002-05-27 2003-12-05 Mitsubishi Electric Corp Power semiconductor device and manufacturing method therefor
JP4643146B2 (en) * 2004-01-05 2011-03-02 株式会社東芝 Semiconductor device and manufacturing method of semiconductor device
JP4547934B2 (en) * 2004-02-23 2010-09-22 サンケン電気株式会社 Insulated gate field effect transistor
JP2007142087A (en) * 2005-11-17 2007-06-07 Nec Electronics Corp Semiconductor device
JP2007240904A (en) * 2006-03-09 2007-09-20 Hitachi Ltd Plasma display device
JP2010118548A (en) * 2008-11-13 2010-05-27 Mitsubishi Electric Corp Semiconductor device
KR101137308B1 (en) * 2009-10-30 2012-04-19 (주)파워벨리 Power mos transistor and manufacturing method for reducing power consumption with surge protection means
JP5182766B2 (en) 2009-12-16 2013-04-17 三菱電機株式会社 High voltage semiconductor device
WO2014073656A1 (en) 2012-11-08 2014-05-15 富士電機株式会社 Semiconductor device and semiconductor device fabrication method
JP6083464B2 (en) * 2013-03-14 2017-02-22 富士電機株式会社 Semiconductor device
JP5876008B2 (en) * 2013-06-03 2016-03-02 ルネサスエレクトロニクス株式会社 Semiconductor device
JP6286981B2 (en) * 2013-09-24 2018-03-07 サンケン電気株式会社 Semiconductor device
JP6233012B2 (en) * 2013-12-26 2017-11-22 サンケン電気株式会社 Semiconductor device
WO2016104825A1 (en) * 2014-12-24 2016-06-30 극동대학교 산학협력단 Power semiconductor device having over-voltage protection diode element embedded therein and manufacturing method therefor
JP2017050452A (en) * 2015-09-03 2017-03-09 サンケン電気株式会社 Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7582918B2 (en) 2004-01-29 2009-09-01 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with enhanced breakdown voltage
DE102004059453B4 (en) * 2004-01-29 2010-04-08 Mitsubishi Denki K.K. Semiconductor device
CN111146273A (en) * 2019-12-27 2020-05-12 西安电子科技大学 Junction terminal extension terminal structure with adjustable intermediate layer coverage and preparation method thereof

Also Published As

Publication number Publication date
JPH09186315A (en) 1997-07-15

Similar Documents

Publication Publication Date Title
JP3331846B2 (en) Semiconductor device
JP6407455B2 (en) Semiconductor device
JP3243902B2 (en) Semiconductor device
US5089864A (en) Insulated gate type semiconductor device
JP2004014547A (en) Semiconductor device and capacitance regulating circuit
KR101613442B1 (en) Insulating gate-type bipolar transistor
US10672761B2 (en) Semiconductor device
US11973132B2 (en) Semiconductor device comprising insulated gate bipolar transistor (IGBT), diode, and well region
US9048107B2 (en) Semiconductor device
US6448587B1 (en) Circuit incorporated IGBT and power conversion device using the same
JP2024008998A (en) Electronic circuit, semiconductor module, and semiconductor device
US11799023B2 (en) Semiconductor device
US6521919B2 (en) Semiconductor device of reduced thermal resistance and increased operating area
JP2020155704A (en) Semiconductor device
JP3248383B2 (en) Semiconductor device
US20230170292A1 (en) Semiconductor device
JP7432098B2 (en) Power semiconductor devices with thyristors and bipolar junction transistors
WO2022224840A1 (en) Semiconductor device, power conversion device using same, and manufacturing method for semiconductor device
JP3409718B2 (en) IGBT with built-in circuit and power converter using the same
JP3272784B2 (en) Insulated gate semiconductor device
TW202339187A (en) Semiconductor device and power conversion device
US20030122149A1 (en) Complex semiconductor device and electric power conversion appratus using it
KR20230155856A (en) Power semiconductor device and power semiconductor chip
JP2022118366A (en) Semiconductor device
EP1075029A1 (en) Composite semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070726

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130726

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees