JP3331610B2 - Superconducting element - Google Patents

Superconducting element

Info

Publication number
JP3331610B2
JP3331610B2 JP03759892A JP3759892A JP3331610B2 JP 3331610 B2 JP3331610 B2 JP 3331610B2 JP 03759892 A JP03759892 A JP 03759892A JP 3759892 A JP3759892 A JP 3759892A JP 3331610 B2 JP3331610 B2 JP 3331610B2
Authority
JP
Japan
Prior art keywords
superconducting
film
superconducting film
metal film
ceramic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03759892A
Other languages
Japanese (ja)
Other versions
JPH05235421A (en
Inventor
貞次郎 森
龍也 林
英興 内川
繁 松野
伸一 木ノ内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP03759892A priority Critical patent/JP3331610B2/en
Publication of JPH05235421A publication Critical patent/JPH05235421A/en
Application granted granted Critical
Publication of JP3331610B2 publication Critical patent/JP3331610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、セラミック基材を備え
た超電導素子に関するもので、例えば短絡電流を限流す
る限流器に応用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting element having a ceramic substrate, and is applied to, for example, a current limiting device for limiting a short-circuit current.

【0002】[0002]

【従来の技術】図5は、例えば特開平2−281765
号公報に示された従来の超電導素子を示す斜視図であ
る。図において、1は基材で、例えばチタン酸ストロン
チウムでつくられたセラミック基板が用いられており、
2は超電導膜、4はリ−ド線3A、3Bに電気的に接続
された金属膜で超電導膜2を安定化するために用いられ
ている。上記のように構成された従来の超電導素子は例
えば液体窒素のような冷媒に浸されて使用される。電流
はリ−ド線3A、金属膜4、超電導膜2、金属膜4、リ
−ド線3Bの経路で流れる。
2. Description of the Related Art FIG.
FIG. 1 is a perspective view showing a conventional superconducting element disclosed in Japanese Patent Application Laid-Open Publication No. H10-209,004. In the figure, 1 is a base material, for example, a ceramic substrate made of strontium titanate is used,
Reference numeral 2 denotes a superconducting film, and 4 denotes a metal film electrically connected to the lead wires 3A and 3B, which is used for stabilizing the superconducting film 2. The conventional superconducting element configured as described above is used by being immersed in a coolant such as liquid nitrogen. The current flows through the path of the lead wire 3A, the metal film 4, the superconducting film 2, the metal film 4, and the lead wire 3B.

【0003】[0003]

【発明が解決しようとする課題】従来の超電導素子は上
記のように構成されいるため、超電導膜2が冷媒に直接
接しないので、超電導膜2が冷媒によって冷却されにく
くなる。従って、超電導膜2が金属膜4によって安定化
されているとはいえ、超電導膜2に過大な電流が流れた
場合、超電導膜が溶断しやすいという問題点があった。
また、その結果、超電導素子を電源電圧が高い回路に適
用できないという問題点があった。
Since the conventional superconducting element is constructed as described above, the superconducting film 2 does not come into direct contact with the refrigerant, so that it is difficult for the superconducting film 2 to be cooled by the refrigerant. Therefore, although the superconducting film 2 is stabilized by the metal film 4, there is a problem that the superconducting film is easily blown when an excessive current flows through the superconducting film 2.
As a result, there is a problem that the superconducting element cannot be applied to a circuit having a high power supply voltage.

【0004】さらに、高い臨界電流密度を得るためには
超電導膜の配向性を高める必要があり、超電導膜の配向
性を高めるため、従来の超電導素子では、基材1として
単結晶のセラミックが用いられている。上記のような従
来の超電導素子では、基材1として単結晶のセラミック
を用いる必要があるが、大きな単結晶セラミックを作る
ことができないため、大電流通電に必要な大形の超電導
素子を作れないという問題点があった。基材1として多
結晶のセラミックを用い大形の超電導素子を作っても超
電導膜の配向性が悪く、臨界電流密度が大きい超電導膜
を得ることができないという問題点があった。
Further, in order to obtain a high critical current density, it is necessary to increase the orientation of the superconducting film. In order to enhance the orientation of the superconducting film, a conventional superconducting element uses a single-crystal ceramic as the substrate 1. Have been. In the conventional superconducting element as described above, it is necessary to use a single-crystal ceramic as the base material 1. However, since a large single-crystal ceramic cannot be produced, a large-sized superconducting element required for supplying a large current cannot be produced. There was a problem. Even if a large-sized superconducting element is made using polycrystalline ceramic as the substrate 1, there is a problem that the orientation of the superconducting film is poor and a superconducting film having a large critical current density cannot be obtained.

【0005】本発明は、かかる問題点を解決するために
なされたもので、超電導膜2が溶断しにくい超電導素子
を得ることを目的としている。さらに、基材1として多
結晶のセラミックを用いて臨界電流密度と臨界電流が大
きい超電導膜を備えた超電導素子を得ることを目的とし
ている。
The present invention has been made to solve such a problem, and an object of the present invention is to provide a superconducting element in which the superconducting film 2 is hardly blown. A further object is to obtain a superconducting element provided with a superconducting film having a large critical current density and a large critical current by using a polycrystalline ceramic as the substrate 1.

【0006】[0006]

【課題を解決するための手段】本発明にかかる超電導素
子は、多結晶のセラミック基材の上に金属膜を直接形成
し、その金属膜の上に超電導膜を直接形成し、かつ金属
膜の表面積が超電導膜の表面積より大きくなるように構
成したものである。
A superconducting element according to the present invention comprises a metal film directly formed on a polycrystalline ceramic substrate, a superconducting film formed directly on the metal film, and The structure is such that the surface area is larger than the surface area of the superconducting film.

【0007】[0007]

【0008】[0008]

【0009】[0009]

【作用】上記のように構成された超電導素子では、超電
導膜が冷媒に直接接するので、冷媒による超電導膜の冷
却が十分行われ、超電導膜を溶断しにくくできる。
In the superconducting element constructed as described above, since the superconducting film is in direct contact with the refrigerant, the superconducting film is sufficiently cooled by the refrigerant, and the superconducting film can be hardly blown.

【0010】また、金属膜の表面積が超電導膜の表面積
より大きくなるように構成すれば、金属膜から周囲媒体
への熱放散を大きくすることができるので、金属膜の温
度上昇を抑制できる。従って、金属膜を溶断しにくくで
きる。また、金属膜の温度上昇を抑制できるので、金属
膜の上に形成された超電導膜の温度上昇を抑制でき、そ
の結果、超電導膜を溶断しにくくできる。さらに、超電
導膜を溶断しにくくできる結果、電源電圧がより高い回
路においても超電導膜が耐えるようになるので、超電導
素子の適用限界電圧を高められるという大きな特徴も付
与することができる。
If the surface area of the metal film is configured to be larger than the surface area of the superconducting film, the heat dissipation from the metal film to the surrounding medium can be increased, so that the temperature rise of the metal film can be suppressed. Therefore, the metal film can be hardly blown. Further, since the temperature rise of the metal film can be suppressed, the temperature increase of the superconducting film formed on the metal film can be suppressed, and as a result, the superconducting film can be hardly blown. Further, the superconducting film can be hardly blown, so that the superconducting film can endure even in a circuit having a higher power supply voltage, so that a great feature that the applicable limit voltage of the superconducting element can be increased can be provided.

【0011】さらに、上記のように構成された超電導素
子では、超電導膜がセラミック基材に接触しなくなり、
超電導膜がセラミック基材の影響を受けなくなる。すな
わち、多結晶など基板の結晶状態や格子定数ならびに基
板と超電導膜との化学反応等の影響がほとんどなくな
る。従って、セラミック基材として多結晶のセラミック
基材を用いることができる。また、金属膜を形成したし
たことにより、セラミック基材が多結晶であっても、超
電導膜が局所的にクエンチした場合、この金属膜が超電
導膜を保護するので、超電導膜を溶断しにくくすること
ができる。
Further, in the superconducting element configured as described above, the superconducting film does not contact the ceramic base,
The superconducting film is no longer affected by the ceramic substrate. That is, the effects of the crystal state and lattice constant of the substrate such as polycrystal, the chemical reaction between the substrate and the superconducting film, and the like are almost eliminated. Therefore, a polycrystalline ceramic substrate can be used as the ceramic substrate. Also, by forming the metal film, even if the ceramic substrate is polycrystalline, when the superconducting film is locally quenched, the metal film protects the superconducting film, so that the superconducting film is hardly blown. be able to.

【0012】[0012]

【実施例】実施例1.図1は本発明の一実施例を示す図
であり、1は基材で、この実施例では例えばチタン酸ス
トロンチウムでつくられたセラミック基板が用いられて
おり、2は超電導膜、3A、3Bはそれぞれ超電導膜2
に電気的に接続されたリ−ド線、4は超電導膜2とセラ
ミック基板1の間に形成された例えば銀製の金属膜で、
セラミック基板1の上に、まず金属膜4が形成され、次
に金属膜4の上に超電導膜2が形成される。電流はリ−
ド線3A、超電導膜2、リ−ド線3Bの経路で流れる。
上記のように構成された超電導素子では、超電導膜2が
冷媒に直接接するので、冷媒による超電導膜2の冷却が
十分行われ、超電導膜を溶断しにくくできる。
[Embodiment 1] FIG. 1 is a view showing one embodiment of the present invention, wherein 1 is a substrate, in this embodiment a ceramic substrate made of, for example, strontium titanate is used, 2 is a superconducting film, 3A and 3B are Each superconducting film 2
A lead wire 4 electrically connected to the superconducting film 2 and the ceramic substrate 1 is, for example, a silver metal film formed between the superconducting film 2 and the ceramic substrate 1.
First, a metal film 4 is formed on a ceramic substrate 1, and then a superconducting film 2 is formed on the metal film 4. The current is
Flow through the path of the lead wire 3A, the superconducting film 2, and the lead wire 3B.
In the superconducting element configured as described above, since the superconducting film 2 is in direct contact with the refrigerant, the superconducting film 2 is sufficiently cooled by the refrigerant, and the superconducting film can be hardly blown.

【0013】なお、本発明では、多結晶など基板の結晶
状態や格子定数ならびに基板と超電導膜との化学反応等
の影響がほとんどない金属膜4の上に超電導膜2が形成
されているので、セラミック基材1として多結晶のセラ
ミック基材を用いることができ、臨界電流密度と臨界電
流が大きい超電導素子を得ることができる。
In the present invention, the superconducting film 2 is formed on the metal film 4 which is hardly affected by the crystal state and lattice constant of the substrate such as polycrystal and the chemical reaction between the substrate and the superconducting film. A polycrystalline ceramic substrate can be used as the ceramic substrate 1, and a superconducting element having a large critical current density and a large critical current can be obtained.

【0014】実施例2.図2はセラミック基板1の両面
に金属膜4と超電導膜2を形成したものである。図2に
おいて、1はセラミック基材で、この実施例では例えば
チタン酸ストロンチウムでつくられたセラミック基板が
用いられており、2、2Aはそれぞれ超電導膜、3A、
3Bはそれぞれ超電導膜2に電気的に接続されたリ−ド
線、3C、3Dはそれぞれ超電導膜2Aに電気的に接続
されたリ−ド線、4、4Aはそれぞれ超電導膜2、2A
とセラミック基材1の間に形成された金属膜で、セラミ
ック基材1の上に、まず金属膜4、4Aが形成され、次
に金属膜4、4Aの上に超電導膜2、2Aが形成され
る。電流はリ−ド線3A、超電導膜2、リ−ド線3Bの
経路で、また、リ−ド線3C、超電導膜2A、リ−ド線
3Dの経路で流れる。図2に示す実施例では、セラミッ
ク基板1の両面に超電導膜2を形成したので、大電流の
超電導素子を得ることができる。
Embodiment 2 FIG. FIG. 2 shows a ceramic substrate 1 in which a metal film 4 and a superconducting film 2 are formed on both surfaces. In FIG. 2, reference numeral 1 denotes a ceramic substrate, and in this embodiment, a ceramic substrate made of, for example, strontium titanate is used.
3B is a lead wire electrically connected to the superconducting film 2 respectively, 3C and 3D are lead wires electrically connected to the superconducting film 2A, respectively, and 4 and 4A are superconducting films 2 and 2A respectively.
And a metal film formed between the ceramic substrate 1 and the metal films 4 and 4A are formed first on the ceramic substrate 1 and then the superconducting films 2 and 2A are formed on the metal films 4 and 4A. Is done. The current flows through the path of the lead wire 3A, the superconducting film 2, and the lead line 3B, and flows through the path of the lead line 3C, the superconducting film 2A, and the lead line 3D. In the embodiment shown in FIG. 2, since the superconducting films 2 are formed on both surfaces of the ceramic substrate 1, a superconducting element having a large current can be obtained.

【0015】実施例3.なお、図1と図2の実施例で
は、セラミック基材1として板材を用いたが、板材以外
のものを使用してもよく、例えば図3に示すような円柱
状のものでもよい。
Embodiment 3 FIG. In the embodiments of FIGS. 1 and 2, a plate material is used as the ceramic substrate 1. However, a material other than the plate material may be used. For example, a columnar material as shown in FIG. 3 may be used.

【0016】実施例4. また、図4に示すように、金属膜4の表面積が超電導膜
2の表面積より大きくなるように構成すれば、金属膜4
から周囲媒体への熱放散を大きくすることができるの
で、金属膜4の温度上昇を抑制できる。従って、金属膜
4を溶断しにくくできる。また、金属膜4の温度上昇を
抑制できるので、金属膜4の上に形成された超電導膜2
の温度上昇を抑制でき、その結果、超電導膜2を溶断し
にくくできる。また、金属膜4が露出した部分の温度が
低いことから金属膜4の露出部の抵抗が低くなり、電流
は露出部に多く流れるようになるので、超電導膜2の温
度上昇を抑制できる。さらに、超電導膜2を溶断しにく
くできる結果、電源電圧がより高い回路においても超電
導膜2が耐えるようになるので、超電導素子の適用限界
電圧を高められるという大きな特徴も付与することがで
きる。
Embodiment 4 FIG. Further, as shown in FIG. 4, if the surface area of the metal film 4 is configured to be larger than the surface area of the superconducting film 2, the metal film 4
The heat dissipation from the metal film to the surrounding medium can be increased, so that the temperature rise of the metal film 4 can be suppressed. Therefore, the metal film 4 can be hardly blown. Further, since the temperature rise of the metal film 4 can be suppressed, the superconducting film 2 formed on the metal film 4 can be suppressed.
Can be suppressed, and as a result, the superconducting film 2 can be hardly blown. Further, since the temperature of the portion where the metal film 4 is exposed is low, the resistance of the exposed portion of the metal film 4 becomes low, and a large amount of current flows to the exposed portion, so that the temperature rise of the superconducting film 2 can be suppressed. Furthermore, since the superconducting film 2 can be hardly blown, the superconducting film 2 can endure even in a circuit having a higher power supply voltage, so that a great feature that the applicable limit voltage of the superconducting element can be increased can be provided.

【0017】また、超電導膜2には膜厚や臨界電流密度
の不均一があるため、短絡電流が流れると超電導膜2の
温度上昇が不均一となる。超電導膜2内における臨界電
流が小さい部分の温度が他の部分の温度と比べ高くな
り、超電導膜2内における臨界電流が小さい部分が他の
部分と比べ短い時間で局所的に溶断する。図4に示すよ
うに、金属膜4の表面積が超電導膜2の表面積より大き
くなるように構成すれば、金属膜4から周囲媒体への熱
放散を大きくすることができるので、金属膜4の局所的
な温度上昇を抑制できる。従って、金属膜4の局所的な
溶断を起こしにくくできる。さらに、金属膜4の局所的
な温度上昇を抑制できるので、超電導膜2の局所的な温
度上昇を抑制でき、その結果、超電導膜2の局所的な溶
断を起こしにくくできるという大きな特徴も付与するこ
とができる。
Further, since the superconducting film 2 has non-uniform thickness and critical current density, the temperature rise of the superconducting film 2 becomes uneven when a short-circuit current flows. The temperature of the portion where the critical current is small in the superconducting film 2 becomes higher than the temperature of other portions, and the portion where the critical current is small in the superconducting film 2 is locally blown in a shorter time than the other portions. As shown in FIG. 4, if the surface area of the metal film 4 is configured to be larger than the surface area of the superconducting film 2, the heat dissipation from the metal film 4 to the surrounding medium can be increased. Temperature rise can be suppressed. Therefore, local melting of the metal film 4 can be suppressed. Furthermore, since the local temperature rise of the metal film 4 can be suppressed, the local temperature rise of the superconducting film 2 can be suppressed, and as a result, a great feature that the local melting of the superconducting film 2 can be hardly caused is provided. be able to.

【0018】なお、本発明では、多結晶など基板の結晶
状態や格子定数ならびに基板と超電導膜との化学反応等
の影響がほとんどない金属膜4の上に超電導膜2が形成
されているので、実施例2〜4においても、セラミック
基材として多結晶のセラミック基材を用いることがで
き、臨界電流密度と臨界電流が大きい超電導素子を得る
ことができる。
In the present invention, the superconducting film 2 is formed on the metal film 4 which is hardly affected by the crystal state and lattice constant of the substrate such as polycrystal and the chemical reaction between the substrate and the superconducting film. Also in Examples 2 to 4, a polycrystalline ceramic substrate can be used as the ceramic substrate, and a superconducting element having a large critical current density and a large critical current can be obtained.

【0019】[0019]

【発明の効果】以上のように、本発明によれば、多結晶
のセラミック基材上に直接形成された金属膜、および上
記金属膜上に直接形成された超電導膜を備え、かつ上記
金属膜の表面積が上記超電導膜の表面積より大きくなる
ように構成したので、超電導膜が冷媒に直接接するの
で、冷媒による超電導膜の冷却が十分行われ、超電導膜
を溶断しにくくできると共に、限流素子の適用限界電圧
を高められる。しかも、多結晶のセラミック基材を用い
るので、臨界電流が大きい大形の超電導素子を得ること
ができる。
As described above, according to the present invention, there are provided a metal film directly formed on a polycrystalline ceramic substrate, and a superconducting film formed directly on the metal film, and Since the surface area of the superconducting film is configured to be larger than the surface area of the superconducting film, the superconducting film is in direct contact with the refrigerant, so that the superconducting film is sufficiently cooled by the refrigerant, and the superconducting film can be hardly blown, and the current limiting element The application limit voltage can be increased. Moreover, since a polycrystalline ceramic substrate is used, a large superconducting element having a large critical current can be obtained.

【0020】[0020]

【0021】[0021]

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例1を示す斜視図である。FIG. 1 is a perspective view showing a first embodiment of the present invention.

【図2】この発明の実施例2を示す斜視図である。FIG. 2 is a perspective view showing Embodiment 2 of the present invention.

【図3】この発明の実施例3を示す斜視図である。FIG. 3 is a perspective view showing Embodiment 3 of the present invention.

【図4】この発明の実施例4を示す斜視図である。FIG. 4 is a perspective view showing Embodiment 4 of the present invention.

【図5】従来の超電導素子を示す斜視図である。FIG. 5 is a perspective view showing a conventional superconducting element.

【符号の説明】[Explanation of symbols]

1 基材または基板 2 超電導膜 2A 超電導膜 3A リ−ド線 3B リ−ド線 4 金属膜 4A 金属膜 Reference Signs List 1 base material or substrate 2 superconducting film 2A superconducting film 3A lead wire 3B lead wire 4 metal film 4A metal film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木ノ内 伸一 尼崎市塚口本町8丁目1番1号 三菱電 機株式会社 材料デバイス研究所内 審査官 小川 将之 (56)参考文献 特開 平4−14881(JP,A) 特開 平4−33382(JP,A) 特開 昭64−52321(JP,A) 特開 昭61−267381(JP,A) 特開 昭60−137077(JP,A) 特開 平2−311397(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 39/14 - 39/16 H01B 12/00 - 12/16 H02H 9/02 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shinichi Shinouchi 8-1-1, Tsukaguchi-Honmachi, Amagasaki-shi Examiner, Masayuki Ogawa, Materials and Devices Laboratory, Mitsubishi Electric Corporation (56) References JP-A-4-14881 ( JP, A) JP-A-4-33382 (JP, A) JP-A-64-52321 (JP, A) JP-A-61-267381 (JP, A) JP-A-60-137077 (JP, A) Hei 2-311397 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 39/14-39/16 H01B 12/00-12/16 H02H 9/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 多結晶のセラミック基材上に直接形成さ
れた金属膜、および上記金属膜上に直接形成された超電
導膜を備え、かつ上記金属膜の表面積が上記超電導膜の
表面積より大きくなるように構成した超電導素子。
1. A metal film directly formed on a polycrystalline ceramic substrate, and a superconducting film formed directly on the metal film, wherein a surface area of the metal film is larger than a surface area of the superconducting film. Superconducting element configured as described above.
JP03759892A 1992-02-25 1992-02-25 Superconducting element Expired - Fee Related JP3331610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03759892A JP3331610B2 (en) 1992-02-25 1992-02-25 Superconducting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03759892A JP3331610B2 (en) 1992-02-25 1992-02-25 Superconducting element

Publications (2)

Publication Number Publication Date
JPH05235421A JPH05235421A (en) 1993-09-10
JP3331610B2 true JP3331610B2 (en) 2002-10-07

Family

ID=12502007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03759892A Expired - Fee Related JP3331610B2 (en) 1992-02-25 1992-02-25 Superconducting element

Country Status (1)

Country Link
JP (1) JP3331610B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19836860A1 (en) 1998-08-14 2000-02-17 Abb Research Ltd Electrically stabilized thin film high temperature superconductor, useful as a fault current limiter, comprises a superconducting layer in interrupted contact with a metal substrate to avoid hot spots

Also Published As

Publication number Publication date
JPH05235421A (en) 1993-09-10

Similar Documents

Publication Publication Date Title
US6563227B1 (en) Temperature control method for integrated circuit
JP3331610B2 (en) Superconducting element
Fiegl et al. Diamond films as thermal conductors and electrical insulators applied to semiconductor power modules
JP3024347B2 (en) Current limiting element
JPS61240665A (en) Semiconductor device
JPH0793205B2 (en) Cryogenic device
US6479882B2 (en) Current-limiting device
Domingos Transient temperature rise in silicon semiconductor devices
JP2854900B2 (en) Semiconductor device
JP2897542B2 (en) Superconducting switch
JP3052541B2 (en) Current limiting element
JPS63209185A (en) Superconducting circuit device
JP3256645B2 (en) Superconducting thin film element
JPH01101676A (en) Superconducting transistor
JPS61184859A (en) Silicon heat sink chip
JPH05250932A (en) Oxide superconductive current limiting conductor and its manufacture
US3462654A (en) Electrically insulating-heat conductive mass for semiconductor wafers
Thornburg The influence of device geometry on instabilities in current-controlled negative resistors
JP2005174985A (en) Thermoelement
JPH05251755A (en) Current limiting element
JPH01196157A (en) Semiconductor device
JPH1187576A (en) Substrate
JPH0522855A (en) Current limiting device
JPH11340479A (en) Two terminal bidirectional thyristor
JP2812372B2 (en) Semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070726

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees