JP3328993B2 - Hydrogen generation method - Google Patents

Hydrogen generation method

Info

Publication number
JP3328993B2
JP3328993B2 JP10839493A JP10839493A JP3328993B2 JP 3328993 B2 JP3328993 B2 JP 3328993B2 JP 10839493 A JP10839493 A JP 10839493A JP 10839493 A JP10839493 A JP 10839493A JP 3328993 B2 JP3328993 B2 JP 3328993B2
Authority
JP
Japan
Prior art keywords
electrode
hydrogen
fuel
electrodes
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10839493A
Other languages
Japanese (ja)
Other versions
JPH06321501A (en
Inventor
良雄 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10839493A priority Critical patent/JP3328993B2/en
Publication of JPH06321501A publication Critical patent/JPH06321501A/en
Application granted granted Critical
Publication of JP3328993B2 publication Critical patent/JP3328993B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電気化学装置を用いた
水素発生方法に関する。
The present invention relates to a hydrogen generating method using the electric chemical apparatus.

【0002】[0002]

【従来の技術】従来より、炭化水素燃料から水素を発生
させるための装置として、リフォーマがある。
2. Description of the Related Art Conventionally, there is a reformer as an apparatus for generating hydrogen from hydrocarbon fuel.

【0003】リフォーマにおいて行なわれる水素発生方
法には、原料ガスに水蒸気を加えて原料炭化水素を水
素、一酸化炭素および二酸化炭素に変換させる水蒸気改
質法と、原料炭化水素の一部を燃焼させて水素、一酸化
炭素および二酸化炭素を得る部分酸化法(部分燃焼法)
とがある。
[0003] Hydrogen generation methods performed in the reformer include a steam reforming method in which steam is added to a raw material gas to convert the raw material hydrocarbon into hydrogen, carbon monoxide and carbon dioxide, and a method in which a part of the raw material hydrocarbon is burned. Oxidation method to obtain hydrogen, carbon monoxide and carbon dioxide (partial combustion method)
There is.

【0004】炭化水素を一般にCn m で表わせば、水
蒸気改質法において起こる反応を[化1]、部分酸化法
において起こる反応を[化2]にそれぞれ示すことがで
きる。
When hydrocarbons are generally represented by C n H m , the reaction occurring in the steam reforming method can be represented by [Chemical Formula 1], and the reaction occurring in the partial oxidation method can be represented by [Chemical Formula 2].

【0005】[0005]

【化1】 Embedded image

【0006】[0006]

【化2】 Embedded image

【0007】これらの反応において、一酸化炭素の一部
は次に示す反応を起こし、これらの反応は平衡を保って
進行する。
In these reactions, some of the carbon monoxide undergoes the following reactions, and these reactions proceed in equilibrium.

【0008】[0008]

【化3】 Embedded image

【0009】[0009]

【化4】 Embedded image

【0010】[化1]は吸熱反応で、他の反応は発熱反
応である。したがって、[化1]の反応では外部から加
熱する必要があり、通常、ニッケル系の触媒を充填した
耐熱金属製の反応管で、温度800℃〜900℃におい
て反応が行なわれる。一方、このような温度では、[化
3]および[化4]の反応はあまり右側に進行せず、た
とえば850℃での反応の場合、二酸化炭素の濃度は1
3〜14%、メタンの濃度は3〜4%である。
## STR1 ## is an endothermic reaction and the other reactions are exothermic. Therefore, in the reaction of [Chemical Formula 1], it is necessary to heat from the outside, and the reaction is usually performed at a temperature of 800 ° C. to 900 ° C. in a reaction tube made of a heat-resistant metal filled with a nickel-based catalyst. On the other hand, at such a temperature, the reactions of [Chemical Formula 3] and [Chemical Formula 4] do not proceed so much to the right side.
3-14%, the concentration of methane is 3-4%.

【0011】また、炭化水素の代わりにアルコールの一
種であるメタノールを用いた場合は、水と次式のような
反応で改質が進行する。
When methanol, which is a kind of alcohol, is used in place of hydrocarbon, reforming proceeds by reaction with water as shown in the following formula.

【0012】[0012]

【化5】 Embedded image

【0013】この反応は、0〜20kg/cm2 の圧
力、200〜600℃の温度に設定することが好ましい
とされている。
It is said that this reaction is preferably set at a pressure of 0 to 20 kg / cm 2 and a temperature of 200 to 600 ° C.

【0014】[0014]

【発明が解決しようとする課題】上述した反応を行なっ
た後、リフォーマを出るガス中には、かなりの濃度の一
酸化炭素が含まれている。
After performing the above reaction, the gas leaving the reformer contains a significant concentration of carbon monoxide.

【0015】このため、ガス漏れが万一発生した場合、
一酸化炭素中毒の危険が伴う。また、リフォーマを出る
ガスを触媒反応に用いる際、このガス中に含まれる一酸
化炭素が触媒を被毒し、正常な反応を妨げる場合があ
る。
Therefore, if a gas leak occurs,
With the danger of carbon monoxide poisoning. Further, when a gas exiting the reformer is used for a catalytic reaction, carbon monoxide contained in the gas may poison the catalyst and prevent normal reaction.

【0016】そこで、一酸化炭素の残存量を低くするた
め、[化3]の反応を右に押し進めるべく、一酸化炭素
転化器という装置が用いられる。一酸化炭素転化器で
は、発熱反応である[化3]の反応を押し進めるため
に、まず350℃〜370℃程度に反応温度を設定し、
反応速度を高めるため鉄−クロム系などの触媒を用い
て、いわゆる高温転化(Hot Shift)を行な
い、さらに、銅−亜鉛系の触媒を用いて、200〜23
0℃程度で低温転化(Cold Shift)を行なわ
せる。これにより一酸化炭素濃度を減少させることがで
きる。
In order to reduce the residual amount of carbon monoxide, a device called a carbon monoxide converter is used to push the reaction of [Chemical Formula 3] to the right. In the carbon monoxide converter, first, the reaction temperature is set to about 350 ° C. to 370 ° C. in order to promote the reaction of [formula 3] which is an exothermic reaction.
In order to increase the reaction rate, so-called high temperature conversion (Hot Shift) is carried out using an iron-chromium-based catalyst or the like, and further, 200 to 23 using a copper-zinc-based catalyst.
A low-temperature conversion (Cold Shift) is performed at about 0 ° C. Thereby, the concentration of carbon monoxide can be reduced.

【0017】燃料がアルコールの場合は、この改質反応
の後、改質ガスのCOをさらに低減するため、COシフ
ト触媒が用いられる。COシフト処理では、COがH2
Oとの反応により1%程度の濃度にまで低減される。ま
た、さらにCO濃度を引き下げるためには、第2のCO
低減装置によって、改質ガスをさらに空気と反応させる
ことにより、100ppmまで低減が可能である。しか
し、このような方法では、装置が複雑になり、高温を要
するなどという問題がある。
When the fuel is alcohol, a CO shift catalyst is used after the reforming reaction to further reduce the CO of the reformed gas. In CO shift processing, CO is H 2
By the reaction with O, the concentration is reduced to about 1%. In order to further reduce the CO concentration, the second CO
The reduction device can further reduce the reformed gas to 100 ppm by reacting it with air. However, such a method has a problem that the apparatus becomes complicated and a high temperature is required.

【0018】本発明の目的は、上記のような複雑なフロ
ーシステムを用いず、燃料から、一酸化炭素をほとんど
発生させずに水素ガスを生成できる方法を提供すること
にある。
An object of the present invention is to provide a method capable of producing hydrogen gas from a fuel without using a complicated flow system as described above and generating almost no carbon monoxide.

【0019】本発明のさらなる目的は、メタノールおよ
び水を含む燃料から、電気化学的に一酸化炭素をほとん
ど発生させずに、水素を生成できる方法を提供すること
にある。
It is a further object of the present invention to provide a method for producing hydrogen from a fuel containing methanol and water with little electrochemical generation of carbon monoxide.

【0020】[0020]

【課題を解決するための手段】本発明に使用する電気化
学装置は、対向する1対の表面を有する陽イオン交換膜
と、陽イオン交換膜の対向する1対の表面にそれぞれ設
けられ、触媒を含む材料からなる1対の電極と、1対の
電極の一方に燃料を供給するための燃料供給手段とを備
える。本発明に使用する電気化学装置では、燃料を供給
される一方の電極において、燃料から陽イオンを発生さ
せ、発生された陽イオンを陽イオン交換膜を介して1対
の電極の他方上で電子供給により分子に変換させる。
The electrochemical device used in the present invention comprises a cation exchange membrane having a pair of opposed surfaces, and a catalyst provided on a pair of opposed surfaces of the cation exchange membrane, respectively. And a fuel supply means for supplying fuel to one of the pair of electrodes. In the electrochemical device used in the present invention , cations are generated from the fuel at one electrode to which the fuel is supplied, and the generated cations are transferred to the electron on the other of the pair of electrodes via a cation exchange membrane. It is converted into a molecule by feeding.

【0021】本発明において、陽イオン交換膜は、陽イ
オンを選択的に透過させるものであれば特に限定される
ものではない。陽イオン交換膜として、固体高分子電解
質膜、リン酸を含むマトリックスからなる膜、硫酸を含
むマトリックスからなる膜、固体電解質よりなる膜など
を挙げることができる。また、陽イオン交換基として、
スルホン酸、ホスホン酸、硫酸エステル、リン酸エステ
ルなどを有するイオン交換膜を用いることができる。
In the present invention, the cation exchange membrane is not particularly limited as long as it allows cations to selectively permeate. Examples of the cation exchange membrane include a solid polymer electrolyte membrane, a membrane composed of a matrix containing phosphoric acid, a membrane composed of a matrix containing sulfuric acid, and a membrane composed of a solid electrolyte. Also, as a cation exchange group,
An ion exchange membrane having sulfonic acid, phosphonic acid, sulfate, phosphate, or the like can be used.

【0022】本発明において、電極に含有される触媒に
は、白金、パラジウム、ロジウム、ルテニウム、金、イ
リジウムおよびこれらの元素の少なくともいずれかを含
む合金等を用いることができる。
In the present invention, platinum, palladium, rhodium, ruthenium, gold, iridium and alloys containing at least one of these elements can be used as the catalyst contained in the electrode.

【0023】1対の電極は、白金、パラジウム、ロジウ
ム、ルテニウム、金、イリジウムおよびこれらの元素の
少なくともいずれかを含む合金等の触媒材料自体から形
成してもよいし、導電性のカーボン電極等に触媒材料を
担持させたもの等から形成してもよい。
The pair of electrodes may be formed from a catalyst material itself such as platinum, palladium, rhodium, ruthenium, gold, iridium and an alloy containing at least one of these elements, or a conductive carbon electrode or the like. And a catalyst material supported on the substrate.

【0024】本発明に従う電極は、たとえば、陽イオン
交換膜の膜表面の多孔構造内に、電極材料を析出させる
ことによって形成することができる。その他、本発明に
従う電極は、導電性電極基材に触媒材料を電解または無
電解メッキすること等により形成することができる。
The electrode according to the present invention can be formed, for example, by depositing an electrode material in a porous structure on the surface of a cation exchange membrane. In addition, the electrode according to the present invention can be formed by electrolytic or electroless plating of a catalyst material on a conductive electrode substrate.

【0025】本発明に使用する装置において、燃料供給
手段は、たとえば、電極の一方に燃料を接触させるた
め、燃料を収容する容器もしくは槽、該容器もしくは槽
に燃料を所定の圧力で送り込むためのポンプ等を備える
ことができるが、これらに限定されず、電極に燃料を供
給する機構であれば、いかなるものを用いることもでき
る。
In the apparatus used in the present invention, the fuel supply means includes, for example, a container or a tank containing the fuel and a fuel for feeding the fuel into the container or the tank at a predetermined pressure in order to bring the fuel into contact with one of the electrodes. Although a pump or the like can be provided, the invention is not limited thereto, and any mechanism that supplies fuel to the electrode can be used.

【0026】本発明に使用する装置において、燃料には
少なくともメタノールおよび水を含むものを用い、一方
の電極から水素イオン、他方の電極から水素分子を発生
させることができる。このような装置において、電極に
含まれる触媒として、白金、パラジウム、ロジウム、ル
テニウム、金、イリジウムおよびこれらの元素の少なく
ともいずれかを含む合金等が好ましく用いられる。
In the apparatus used in the present invention, a fuel containing at least methanol and water is used as a fuel, and hydrogen ions can be generated from one electrode and hydrogen molecules can be generated from the other electrode. In such an apparatus, platinum, palladium, rhodium, ruthenium, gold, iridium, an alloy containing at least one of these elements, or the like is preferably used as a catalyst contained in the electrode.

【0027】また、上述した水素を発生させる装置にお
いて、他方の電極側に、水素を選択的に透過させること
ができる材料からなる膜を設けることができる。このよ
うな膜は、水素透過膜として名づけることができ、水素
分子の透過率が、他の物質の透過率に比べて高いもので
ある。このような膜として、たとえば、ポリイミド、ポ
リスチレン等の高分子からなる膜、Pd合金からなる
膜、Ti系、Mm系(Mmはミッシュメタルを示す)、
La系、Mg系等の水素吸蔵合金などからなる膜を用い
ることができる。
In the above-described apparatus for generating hydrogen, a film made of a material capable of selectively transmitting hydrogen can be provided on the other electrode side. Such a film can be named as a hydrogen permeable film, and has a higher transmittance of hydrogen molecules than that of another substance. Examples of such a film include a film made of a polymer such as polyimide and polystyrene, a film made of a Pd alloy, a Ti-based material, an Mm-based material (Mm represents a misch metal),
A film made of a La-based, Mg-based or the like hydrogen storage alloy or the like can be used.

【0028】また、上述した装置により水素を発生する
方法を提供することができ、この方法は、陽イオン交換
膜の対向する両面に1対の電極を設け、一方に設けられ
た触媒を含む電極に、メタノールと水を少なくとも含む
燃料を接触させ、1対の電極に電圧を印加して電極から
電子を取り出すことによって電極上でメタノールおよび
水から水素イオンを発生させる反応を進行させ、発生さ
た水素イオンを陽イオン交換膜の対向する1対の面の
他方に設けられた電極において、電子の供給により水素
分子に変換することを特徴とする。
Further, a method for generating hydrogen by the above-described apparatus can be provided. In this method, a pair of electrodes is provided on both opposite surfaces of a cation exchange membrane, and an electrode including a catalyst provided on one of the electrodes is provided. Then, a fuel containing at least methanol and water is brought into contact, and a voltage is applied to a pair of electrodes to extract electrons from the electrodes, thereby causing a reaction to generate hydrogen ions from the methanol and water on the electrodes, and
The method is characterized in that the supplied hydrogen ions are converted into hydrogen molecules by supplying electrons at an electrode provided on the other of the pair of opposing surfaces of the cation exchange membrane.

【0029】[0029]

【作用】本発明の作用機構を図を用いて以下に説明す
る。
The operation mechanism of the present invention will be described below with reference to the drawings.

【0030】図1は、本発明に従う電気化学装置の一例
を示す模式図である。電気化学装置100において、た
とえば、固体高分子電解質膜からなる陽イオン交換膜1
01の両側には、白金触媒をそれぞれ担持させた燃料用
電極102および対向電極103が設けられる。
FIG. 1 is a schematic diagram showing an example of the electrochemical device according to the present invention. In the electrochemical device 100, for example, the cation exchange membrane 1 made of a solid polymer electrolyte membrane
On both sides of the fuel cell 01, a fuel electrode 102 and a counter electrode 103 each carrying a platinum catalyst are provided.

【0031】このような陽イオン交換膜と1対の電極か
らなる接合体は、たとえば、セパレータ106と107
の間に挟むことができる。燃料用電極102側のセパレ
ータには、燃料供給用兼CO2 排出用溝108a〜eが
さらに形成され、対向電極103側のセパレータ107
には、水素排出用溝109a〜eがさらに形成されてい
る。
The joined body composed of such a cation exchange membrane and a pair of electrodes is, for example, a separator 106 and 107
Can be sandwiched between. In the separator on the side of the fuel electrode 102, grooves 108 a to 108 e for fuel supply and CO 2 discharge are further formed, and the separator 107 on the side of the counter electrode 103 is formed.
Are further formed with hydrogen discharge grooves 109a to 109e.

【0032】燃料用電極102には、燃料を液体または
気体の状態で燃料供給用兼CO2 排出用溝108a〜e
に通過させることにより、燃料が供給され、かつ電極に
接触される。
The fuel electrode 102 has fuel supply and CO 2 discharge grooves 108a to 108e in a liquid or gas state.
, Fuel is supplied and comes into contact with the electrodes.

【0033】燃料用電極102と対向電極103は、セ
パレータ106および107をそれぞれ介して、外部回
路104に電気的に接続される。両電極の間には、電圧
が印加され、燃料用電極102側がプラス、対向電極1
03側がマイナスとされる。
The fuel electrode 102 and the counter electrode 103 are electrically connected to an external circuit 104 via separators 106 and 107, respectively. A voltage is applied between the two electrodes, and the fuel electrode 102 side is positive and the counter electrode 1
The 03 side is minus.

【0034】上述した装置において、燃料用電極102
に燃料であるメタノールとともに水または水蒸気を供給
し、外部回路104を通じて、燃料用電極102から電
子を引き抜くように電圧を印加する。その結果、燃料用
電極102では、次の反応が進行する。
In the above-described apparatus, the fuel electrode 102
Then, water or water vapor is supplied together with methanol as a fuel, and a voltage is applied through an external circuit 104 so as to extract electrons from the fuel electrode 102. As a result, the following reaction proceeds at the fuel electrode 102.

【0035】[0035]

【化6】CH3OH+2H2O→CO2+6 - +6H+ Embedded image CH 3 OH + 2H 2 O → CO 2 +6 e + 6H +

【0036】このようにして発生した水素イオンは、陽
イオン交換膜を通過し、対向電極103で次のように変
換される。
The hydrogen ions thus generated pass through the cation exchange membrane and are converted by the counter electrode 103 as follows.

【0037】[0037]

【化7】6H++6 - →3H2 Embedded image 6H + +6 e → 3H 2

【0038】このようなプロセスにより、対向電極10
3側で、水素を選択的に生成させることができる。した
がって、本発明のプロセスによれば、COの生成は抑制
される。
According to such a process, the counter electrode 10 is formed.
On the three side, hydrogen can be selectively generated. Therefore, according to the process of the present invention, generation of CO can be suppressed.

【0039】また、対向電極で生じたガスを、上述した
水素透過膜を介して採集すれば、水蒸気や他の不純物の
濃度を低下させ、純度の高い水素ガスを得ることができ
る。
If the gas generated at the counter electrode is collected through the above-mentioned hydrogen permeable membrane, the concentration of water vapor and other impurities can be reduced, and a highly pure hydrogen gas can be obtained.

【0040】[0040]

【実施例】【Example】

実施例1 図1に示す装置を用いて水素ガスを製造した。 Example 1 Hydrogen gas was produced using the apparatus shown in FIG.

【0041】本実施例において、電極は次のようにして
形成した。固体高分子電解質膜からなる陽イオン交換膜
として、NAFION117R (デュポン社製)を用い
た。金属塩として、3%塩化白金酸液、還元剤として1
%NaBH4 溶液を用い、陽イオン交換膜に還元剤を浸
透させた後、膜表面を塩化白金酸溶液に接触させて、白
金層を析出させた。この方法により、膜の両面に、多孔
質の白金触媒層を形成し、1対の電極とした。
In this example, the electrodes were formed as follows. As the cation exchange membrane made of a solid polymer electrolyte membrane was used Nafion 117 R (manufactured by DuPont). 3% chloroplatinic acid solution as metal salt, 1 as reducing agent
After permeating a cation exchange membrane with a reducing agent using a NaBH 4 % solution, the membrane surface was brought into contact with a chloroplatinic acid solution to precipitate a platinum layer. By this method, a porous platinum catalyst layer was formed on both sides of the membrane to form a pair of electrodes.

【0042】このように膜の両側に電極が形成された接
合体を組込んだ図1の装置において、燃料用電極102
側に、モル比がメタノール:水=1:2のメタノール−
水混合液を供給し、接合体からなるセルの温度を30℃
に設定した。そして、燃料用電極102側をプラスと
し、燃料用電極102と対向電極103の間に0.2V
の電圧を加えたところ、1.0mA/cm2 の電流が流
れ、燃料用電極102からCO2 が、対向電極103か
ら水素ガスが発生した。発生した水素中には一酸化炭素
は検出されなかった。
In the apparatus of FIG. 1 incorporating the joined body having electrodes formed on both sides of the membrane as described above, the fuel electrode 102
On the side, methanol with a molar ratio of methanol: water = 1: 2
A water mixture is supplied, and the temperature of the cell comprising the joined body is set to 30 ° C.
Set to. Then, the fuel electrode 102 side is set to plus, and 0.2 V is applied between the fuel electrode 102 and the counter electrode 103.
Was applied, a current of 1.0 mA / cm 2 flowed, and CO 2 was generated from the fuel electrode 102 and hydrogen gas was generated from the counter electrode 103. No carbon monoxide was detected in the generated hydrogen.

【0043】実施例2 実施例1の装置において、対向電極上に水素透過膜とし
てポリイミド高分子膜を設け、この膜を介して水素を採
集した。実施例1と同様な条件にて、燃料用電極と対向
電極の間に0.2Vの電圧を印加したところ、1.0m
A/cm2 の電流が流れ、燃料用電極からCO2 が、対
向電極から水素ガスが発生した。ポリイミド高分子膜を
介して採集された水素中には、一酸化炭素は検出されな
かった。
Example 2 In the apparatus of Example 1, a polyimide polymer film was provided as a hydrogen permeable film on the counter electrode, and hydrogen was collected through this film. When a voltage of 0.2 V was applied between the fuel electrode and the counter electrode under the same conditions as in Example 1, 1.0 m
A / cm 2 current flowed, CO 2 was generated from the fuel electrode, and hydrogen gas was generated from the counter electrode. No carbon monoxide was detected in hydrogen collected through the polyimide polymer membrane.

【0044】[0044]

【発明の効果】以上説明したように、本発明によれば、
従来のような複雑な反応系およびフローシステムは必要
でなく、非常にシンプルな装置によって、純度の高い水
素を生成させることができる。本発明によれば、CO等
の不純物の生成は抑制される。
As described above, according to the present invention,
No complicated reaction system and flow system as in the prior art is required, and highly pure hydrogen can be produced by a very simple apparatus. According to the present invention, generation of impurities such as CO is suppressed.

【0045】このため、一酸化炭素による中毒の危険が
回避されるとともに、生成される水素ガスについて、触
媒の被毒による化学反応性の低下も防止される。
Therefore, the danger of poisoning due to carbon monoxide is avoided, and a decrease in chemical reactivity of the generated hydrogen gas due to poisoning of the catalyst is also prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に従う電気化学装置の一具体例を示す概
略断面図である。
FIG. 1 is a schematic sectional view showing a specific example of an electrochemical device according to the present invention.

【符号の説明】[Explanation of symbols]

100 電気化学装置 101 陽イオン交換膜 102 燃料用電極 103 対向電極 104 外部回路 106 セパレータ 107 セパレータ REFERENCE SIGNS LIST 100 Electrochemical device 101 Cation exchange membrane 102 Fuel electrode 103 Counter electrode 104 External circuit 106 Separator 107 Separator

フロントページの続き (56)参考文献 特開 平6−73583(JP,A) 特開 平6−73852(JP,A) 特開 昭58−11790(JP,A) 水素エネルギーシステム研究会,水素 エネルギー読本,日本,オーム社,1982 年 1月25日,第1版,149−152, 「[2]燃料電池の原理」の項 (58)調査した分野(Int.Cl.7,DB名) C25B 1/02 C01B 3/32 Continuation of the front page (56) References JP-A-6-73583 (JP, A) JP-A-6-73852 (JP, A) JP-A-58-11790 (JP, A) Hydrogen Energy System Research Group, Hydrogen Energy Yomimoto, Ohmsha, Japan, January 25, 1982, 1st edition, 149-152, "[2] Principles of fuel cells" (58) Fields investigated (Int. Cl. 7 , DB name) C25B 1/02 C01B 3/32

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 陽イオン交換膜の対向する両面に1対の
電極を設け、一方に設けられた触媒を含む電極に、メタ
ノールと水を少なくとも含む燃料を接触させ、前記1対の電極に電圧を印加して 前記電極から電子を取
出すことによって前記電極上で前記メタノールおよび水
から水素イオンを発生させる反応を進行させ、 発生さた前記水素イオンを、前記陽イオン交換膜の対
向する1対の面の他方に設けられた電極において、電子
の供給により水素分子に変換することを特徴とする、水
素発生方法。
1. A pair of cation exchange membranes ,
An electrode is provided, and a fuel including at least methanol and water is brought into contact with an electrode including a catalyst provided on one side, and a voltage is applied to the pair of electrodes to extract electrons from the electrodes, thereby forming an electrode on the electrode. the reaction proceeded for generating hydrogen ions from the methanol and water, the hydrogen ions generated in the electrode provided on the other pair of opposed faces of the cation exchange membrane, the hydrogen molecules by the supply of the electronic A method for generating hydrogen, comprising:
JP10839493A 1993-05-10 1993-05-10 Hydrogen generation method Expired - Fee Related JP3328993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10839493A JP3328993B2 (en) 1993-05-10 1993-05-10 Hydrogen generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10839493A JP3328993B2 (en) 1993-05-10 1993-05-10 Hydrogen generation method

Publications (2)

Publication Number Publication Date
JPH06321501A JPH06321501A (en) 1994-11-22
JP3328993B2 true JP3328993B2 (en) 2002-09-30

Family

ID=14483654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10839493A Expired - Fee Related JP3328993B2 (en) 1993-05-10 1993-05-10 Hydrogen generation method

Country Status (1)

Country Link
JP (1) JP3328993B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005063614A1 (en) * 2003-12-26 2005-07-14 Gs Yuasa Corporation Method for producing hydrogen and hydrogen-producing apparatus used therefor
WO2005095204A1 (en) * 2004-03-31 2005-10-13 Gs Yuasa Corporation Submersible vessel
WO2005095264A1 (en) * 2004-03-31 2005-10-13 Gs Yuasa Corporation Hydrogen supply system
WO2005095144A1 (en) * 2004-03-31 2005-10-13 Gs Yuasa Corporation Electric car
WO2006129885A1 (en) * 2005-06-03 2006-12-07 Gs Yuasa Corporation Hydrogen production apparatus, and making use of the same, fuel cell power generator, electric vehicle, submersible ship and hydrogen supply system
WO2007004714A1 (en) * 2005-06-30 2007-01-11 Gs Yuasa Corporation Hydrogen production apparatus
JP2007045695A (en) * 2005-07-13 2007-02-22 Gs Yuasa Corporation:Kk Honeycomb-type hydrogen production apparatus, fuel battery power generator, electric vehicle, submarine, and hydrogen feed system using the same, and reaction tube for hydrogen production cell
CN100526212C (en) * 2003-12-26 2009-08-12 株式会社杰士汤浅 Method for producing hydrogen and hydrogen-producing apparatus used therefor
CN100558630C (en) * 2004-03-31 2009-11-11 株式会社杰士汤浅 Hydrogen supply system

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3921300B2 (en) * 1998-06-30 2007-05-30 ペルメレック電極株式会社 Hydrogen generator
JP2002337999A (en) * 2001-05-18 2002-11-27 Nippon Oil Corp Fuel feeding system
JP4171978B2 (en) 2002-05-27 2008-10-29 ソニー株式会社 Fuel reformer and manufacturing method thereof, electrode for electrochemical device, and electrochemical device
JP2005298307A (en) * 2004-04-15 2005-10-27 Chiba Inst Of Technology Fuel reformer for fuel cell and fuel reforming method
JP4947338B2 (en) * 2004-12-28 2012-06-06 株式会社Gsユアサ Stand-alone hydrogen production system
WO2006070908A1 (en) * 2004-12-28 2006-07-06 Gs Yuasa Corporation Fuel cell power generation device
US20080171244A1 (en) * 2004-12-28 2008-07-17 Gs Yuasa Corporation Standalone Hydrogen Generating System
JP4863099B2 (en) * 2005-05-27 2012-01-25 株式会社Gsユアサ Stack type fuel cell power generator
JP2007224382A (en) * 2006-02-24 2007-09-06 Nippon Telegr & Teleph Corp <Ntt> Hydrogen feed system
JP4728837B2 (en) * 2006-02-24 2011-07-20 日本電信電話株式会社 Hydrogen supply system
JP4728843B2 (en) * 2006-03-09 2011-07-20 日本電信電話株式会社 Hydrogen supply method
JP4728846B2 (en) * 2006-03-14 2011-07-20 日本電信電話株式会社 Electrolysis cell and hydrogen supply system
JP4986174B2 (en) * 2008-10-30 2012-07-25 独立行政法人産業技術総合研究所 Reaction tube for microreactor and manufacturing method thereof
JP2020200521A (en) * 2019-06-13 2020-12-17 東邦瓦斯株式会社 Hydrogen supply method and hydrogen supply apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
水素エネルギーシステム研究会,水素エネルギー読本,日本,オーム社,1982年 1月25日,第1版,149−152,「[2]燃料電池の原理」の項

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100526212C (en) * 2003-12-26 2009-08-12 株式会社杰士汤浅 Method for producing hydrogen and hydrogen-producing apparatus used therefor
WO2005063614A1 (en) * 2003-12-26 2005-07-14 Gs Yuasa Corporation Method for producing hydrogen and hydrogen-producing apparatus used therefor
US8679687B2 (en) 2003-12-26 2014-03-25 Gs Yuasa International Ltd. Hydrogen generating method and hydrogen generating system based on the method
WO2005095204A1 (en) * 2004-03-31 2005-10-13 Gs Yuasa Corporation Submersible vessel
WO2005095264A1 (en) * 2004-03-31 2005-10-13 Gs Yuasa Corporation Hydrogen supply system
WO2005095144A1 (en) * 2004-03-31 2005-10-13 Gs Yuasa Corporation Electric car
US7939210B2 (en) 2004-03-31 2011-05-10 Gs Yuasa Corporation Electric automobile
US7910252B2 (en) 2004-03-31 2011-03-22 Gs Yuasa Corporation Hydrogen supply system
CN100558630C (en) * 2004-03-31 2009-11-11 株式会社杰士汤浅 Hydrogen supply system
US7476456B2 (en) 2004-03-31 2009-01-13 Gs Yuasa Corporation Submarine boat
WO2006129885A1 (en) * 2005-06-03 2006-12-07 Gs Yuasa Corporation Hydrogen production apparatus, and making use of the same, fuel cell power generator, electric vehicle, submersible ship and hydrogen supply system
JP2007008800A (en) * 2005-06-03 2007-01-18 Gs Yuasa Corporation:Kk Hydrogen production apparatus, and fuel cell power generator, electric vehicle, submersible ship and hydrogen supply system using the same
CN101189182B (en) * 2005-06-03 2011-07-27 株式会社杰士汤浅国际 Hydrogen production apparatus, fuel cell power generator using the same, electric vehicle, submersible ship and hydrogen supply system
US8523964B2 (en) 2005-06-03 2013-09-03 Gs Yuasa International Ltd. Hydrogen generating device as well as fuel cell power generating device, electric automobile, sumbergible ship and hydrogen supply system using the same
JP2007039305A (en) * 2005-06-30 2007-02-15 Gs Yuasa Corporation:Kk Hydrogen production apparatus
WO2007004714A1 (en) * 2005-06-30 2007-01-11 Gs Yuasa Corporation Hydrogen production apparatus
JP2007045695A (en) * 2005-07-13 2007-02-22 Gs Yuasa Corporation:Kk Honeycomb-type hydrogen production apparatus, fuel battery power generator, electric vehicle, submarine, and hydrogen feed system using the same, and reaction tube for hydrogen production cell

Also Published As

Publication number Publication date
JPH06321501A (en) 1994-11-22

Similar Documents

Publication Publication Date Title
JP3328993B2 (en) Hydrogen generation method
JP4674099B2 (en) Fuel cell system reformer and fuel cell system including the same
KR100768960B1 (en) Hydrogen permeable membrane for use in fuel cells, and partial reformate fuel cell system having reforming catalysts in the anode fuel cell compartment
US6921516B2 (en) Reactor system including auto ignition and carbon suppression foam
US20040247960A1 (en) Fuel cell system
AU2001271398A1 (en) Hydrogen permeable membrane for use in fuel cells, and partial reformate fuel cell system having reforming catalysts in the anode fuel cell compartment
JP3360349B2 (en) Fuel cell
JP2006012817A (en) Reformer for fuel cell and fuel cell system comprising the same
US7122269B1 (en) Hydronium-oxyanion energy cell
JP2005200266A (en) Reforming method, reformer, power generator and fuel vessel
JP4008051B2 (en) Power generation method
JP3625487B2 (en) Fuel cell system
US20060204800A1 (en) Fuel processing system and its shutdown procedure
KR102116876B1 (en) A fuel cell system using liquid fuel and hydrogen peroxide and a method for operating fuel cell
JPH06325783A (en) Internal reforming type fused carbonate type fuel cell system
US20080023322A1 (en) Fuel processor
WO2005095264A1 (en) Hydrogen supply system
JP2000021426A (en) Fuel cell
JP2001146405A (en) Apparatus for reforming fuel and method for operating the same
JP2003331898A (en) Fuel cell system
JPS6137735B2 (en)
KR101030045B1 (en) Reformer for fuel cell system and fuel cell system comprising the same
JP2004047159A (en) Fuel cell generator
WO2024147759A1 (en) Reactor and method for gas phase hydrogenation of a composition
KR20070025160A (en) Plate type reformer and fuel cell system having same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020618

LAPS Cancellation because of no payment of annual fees