JP3327673B2 - Module structure of solid oxide fuel cell - Google Patents

Module structure of solid oxide fuel cell

Info

Publication number
JP3327673B2
JP3327673B2 JP06430194A JP6430194A JP3327673B2 JP 3327673 B2 JP3327673 B2 JP 3327673B2 JP 06430194 A JP06430194 A JP 06430194A JP 6430194 A JP6430194 A JP 6430194A JP 3327673 B2 JP3327673 B2 JP 3327673B2
Authority
JP
Japan
Prior art keywords
power generation
air
fuel cell
generation unit
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06430194A
Other languages
Japanese (ja)
Other versions
JPH07282833A (en
Inventor
健一郎 小阪
昌夫 田熊
長生 久留
勝己 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP06430194A priority Critical patent/JP3327673B2/en
Publication of JPH07282833A publication Critical patent/JPH07282833A/en
Application granted granted Critical
Publication of JP3327673B2 publication Critical patent/JP3327673B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は作動温度を効率よく維持
する固体電解質型燃料電池のモジュール構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell module structure for efficiently maintaining an operating temperature.

【0002】[0002]

【従来の技術】図2に従来の固体電解質型燃料電池(S
OFC:Solid Oxide Fuel Cel
l)のモジュールの概略を示す。ここで、同図中、符号
1はモジュール本体、2は複数のセル部を配してなる燃
料電池発電部、3Aは該発電部に燃料を供給する燃料供
給管、3Bは燃料排気管、4Aは発電部に空気を供給す
る空気供給管、4Bは空気排気管を各々図示する。
2. Description of the Related Art FIG. 2 shows a conventional solid oxide fuel cell (S
OFC: Solid Oxide Fuel Cell
The outline of the module 1) is shown. In this figure, reference numeral 1 denotes a module main body, 2 denotes a fuel cell power generation unit having a plurality of cell units, 3A denotes a fuel supply pipe for supplying fuel to the power generation unit, 3B denotes a fuel exhaust pipe, 4A Represents an air supply pipe for supplying air to the power generation unit, and 4B represents an air exhaust pipe.

【0003】一般に、自立型の燃料電池モジュールの発
電においては、作動温度が1000℃と高温であり、こ
の為モジュール本体1内の内部構造である発電部2を高
温に維持する必要がある。
In general, the operating temperature of a self-contained fuel cell module is as high as 1000 ° C., and therefore, it is necessary to maintain a high temperature in a power generation section 2 as an internal structure in the module body 1.

【0004】ところで、常温の燃料及び空気を燃料供給
管3Aや空気供給管4Aを介して発電部2に供給する場
合、各供給ガスにより内部構造が冷却され、作動温度を
維持することが出来なかった。
When the fuel and air at room temperature are supplied to the power generation unit 2 through the fuel supply pipe 3A and the air supply pipe 4A, the internal structure is cooled by each supply gas and the operating temperature cannot be maintained. Was.

【0005】そこで、従来では燃料及び空気を供給する
為の燃料供給管3Aや空気供給管4Aに燃料側再生熱交
換器5,空気側再生熱交換器6を各々配設して各々の排
気熱を利用して発電部2内に供給する吸気ガスの温度を
約800℃程度まで加熱し、発電部2に供給している。
Therefore, conventionally, a fuel-side regenerative heat exchanger 5 and an air-side regenerative heat exchanger 6 are provided on a fuel supply pipe 3A and an air supply pipe 4A for supplying fuel and air, respectively. The temperature of the intake gas to be supplied into the power generation unit 2 is heated to about 800 ° C. and supplied to the power generation unit 2.

【0006】更に、外部との断熱を図るためにモジュー
ル本体1の外壁7と発電部2との間に断熱材8を配置さ
せて、内部の保温を行うようにしている。
Further, a heat insulating material 8 is arranged between the outer wall 7 of the module main body 1 and the power generation unit 2 in order to insulate the inside of the module from the outside so as to keep the inside warm.

【0007】[0007]

【発明が解決しようとする課題】ところで、前述した従
来の断熱材8を配して内部を保持する場合、該断熱材の
材質やその厚さによって外部への熱の放出が生じ、その
結果、内部の発電部2に温度分布が生じてしまい、外周
付近のセル温度が低下し、発電効率が下がるという問題
がある。
In the case where the above-mentioned conventional heat insulating material 8 is disposed to hold the inside, heat is released to the outside depending on the material and the thickness of the heat insulating material. There is a problem that a temperature distribution occurs in the internal power generation unit 2 and the cell temperature in the vicinity of the outer periphery decreases, and the power generation efficiency decreases.

【0008】そこで、この問題を解消するため、断熱材
8を断熱性の良い材料に変更したり、該断熱材8の厚さ
を厚くして作動温度の維持を図っているが、コストが上
昇すると共に、その厚みの増加によりモジュール全体の
大きさが増加するという問題がある。
In order to solve this problem, the heat insulating material 8 is changed to a material having good heat insulating properties, or the thickness of the heat insulating material 8 is increased to maintain the operating temperature. In addition, there is a problem that the size of the entire module increases due to the increase in the thickness.

【0009】本発明は上記問題に鑑み、作動温度を効率
よく維持することができる固体電解質型燃料電池のモジ
ュール構造を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a module structure of a solid oxide fuel cell which can maintain an operating temperature efficiently.

【0010】[0010]

【課題を解決するための手段】前記目的を達成する本発
明に係る固体電解質型燃料電池モジュールは、空気と燃
料とを供給して発電する固体電解質型燃料電池のモジュ
ールにおいて、燃料電池発電部の中心に下方から燃料側
再生熱交換器側の上方に向けて、空気極出口側再生熱交
換器入口に連通するバイパス管を形成して成り、該バイ
パス管内を流れる高温廃熱が、発電部の頂面から周囲に
向かって流れ、更に断熱材と発電部との間を下方に向か
って流れて、外周部を覆ってなる空気断熱層を形成し発
電作動温度を保持して、その後、空気出口側再生熱交換
器出口の排気管に連通する戻り配管から排気することを
特徴とする。
A solid oxide fuel cell module according to the present invention, which achieves the above object, comprises an air- fuel module.
Module of the solid oxide fuel cell which generates power by supplying the charge
From the bottom to the center of the fuel cell
Toward the upper part of the regenerative heat exchanger,
A high-temperature waste heat flowing in the bypass pipe flows from the top surface of the power generation unit toward the periphery, and further flows downward between the heat insulating material and the power generation unit. It is characterized in that it flows, forms an air heat insulating layer covering the outer peripheral portion, maintains the power generation operating temperature, and then exhausts air from a return pipe communicating with an exhaust pipe at the outlet of an air outlet side regenerative heat exchanger.

【0011】[0011]

【0012】[0012]

【作用】上記構成によれば、排気ガスの温度は発電部の
最高温度とほぼ等しく、この高温の廃熱ガスの一部を発
電部の空気断熱層に利用することで内部構造から周囲へ
の直接の熱放出が低減され、発電部のセル温度の温度分
布が緩和され、作動温度を効率よく維持することができ
る。
According to the above construction, the temperature of the exhaust gas is substantially equal to the maximum temperature of the power generation unit, and a part of this high-temperature waste heat gas is used for the air insulation layer of the power generation unit, so that the temperature of the exhaust gas from the internal structure to the surroundings is reduced. Direct heat release is reduced, the temperature distribution of the cell temperature of the power generation unit is reduced, and the operating temperature can be maintained efficiently.

【0013】[0013]

【実施例】以下、本発明の好適な実施例を図面を参照し
て具体的に説明する。図1は本実施例に係る固体電解質
型燃料電池のモジュール構造の概略図である。ここで、
同図中、符号11はモジュール本体、12は複数のセル
部を配してなる燃料電池発電部、13Aは該発電部に燃
料を供給する燃料供給管、13Bは燃料排気管、14A
は発電部に空気を供給する空気供給管、14Bは空気排
気管、15燃料側再生熱交換器,16は空気側再生熱交
換器、17はモジュール本体の外壁、18は断熱材を各
々図示する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a schematic view of a module structure of a solid oxide fuel cell according to the present embodiment. here,
In the figure, reference numeral 11 denotes a module main body, 12 denotes a fuel cell power generation section having a plurality of cell sections, 13A denotes a fuel supply pipe for supplying fuel to the power generation section, 13B denotes a fuel exhaust pipe, 14A
Is an air supply pipe for supplying air to the power generation unit, 14B is an air exhaust pipe, 15 is a fuel-side regenerative heat exchanger, 16 is an air-side regenerative heat exchanger, 17 is an outer wall of the module body, and 18 is a heat insulating material. .

【0014】同図に示すように、本実施例では、モジュ
ール本体11内の発電部12の内部に空気極側から燃料
極側へ発電廃熱を連通させるバイパス管19を配し、上
記発電廃熱である高温廃熱Hを空気極側から燃料極側へ
送給すると共に該燃料極側へ送給した高温廃熱Hを上記
発電部12の外周を通過させ、該発電部12の外周を覆
う空気断熱層を形成するようにしている。即ち、燃料電
池発電部12には、その内部に空気極側から燃料極側
へ、空気極側の発電部12からの高温廃熱(排空気)H
を送給させるバイパス管19が設けられており、発電時
の最高温度と略等しい温度を有する高温廃熱Hを空気極
側から燃料極側へ送給している。 更に、この送給され
た該廃熱Hは発電部12の燃料極側の該発電部12の外
表面に沿って外周部へ送られると共に外壁17と発電部
12側壁との間に形成された通路20を介して再び空気
極側へ送給され、該発電部12の周囲の断熱を図ってい
る。この結果、発電部12の外周を効率よく断熱する高
温の廃熱Hによる高温空気断熱層を発電部の外周を覆う
ように形成することができる。
As shown in FIG. 1, in this embodiment, a bypass pipe 19 for communicating waste heat of power generation from the air electrode side to the fuel electrode side is disposed inside the power generation part 12 in the module main body 11, The high-temperature waste heat H, which is heat, is sent from the air electrode side to the fuel electrode side, and the high-temperature waste heat H sent to the fuel electrode side is passed through the outer periphery of the power generation unit 12. An overlying air insulation layer is formed. That is, the high temperature waste heat (exhaust air) H from the power generation unit 12 on the air electrode side is provided inside the fuel cell power generation unit 12 from the air electrode side to the fuel electrode side.
A high-temperature waste heat H having a temperature substantially equal to the maximum temperature during power generation is supplied from the air electrode side to the fuel electrode side. Further, the supplied waste heat H is sent to the outer peripheral portion along the outer surface of the power generation unit 12 on the fuel electrode side of the power generation unit 12 and is formed between the outer wall 17 and the side wall of the power generation unit 12. The air is again supplied to the air electrode side through the passage 20, and heat insulation around the power generation unit 12 is achieved. As a result, it is possible to form a high-temperature air heat insulating layer by high-temperature waste heat H that efficiently insulates the outer periphery of the power generation unit 12 so as to cover the outer periphery of the power generation unit.

【0015】この高温空気断熱層を形成して発電部12
を周囲から加熱した後の廃熱は、空気極側の空気排気管
14Bに連通する戻り配管21を介して主排気ガスと共
に外部に排気されるようになっている。
This high-temperature air heat insulating layer is formed to
The waste heat obtained after heating from the surroundings is exhausted to the outside together with the main exhaust gas via the return pipe 21 communicating with the air exhaust pipe 14B on the air electrode side.

【0016】上記構成によれば、発電後の高温廃熱Hの
温度は発電部12の最高温度とほぼ等しく、この高温の
ガスの一部を内部発電部の空気断熱層に利用すること
で,発電部12から周囲への直接の熱放出が低減され、
この結果発電部12のセル温度の温度分布が緩和され、
作動温度を効率よく維持することができる。
According to the above configuration, the temperature of the high-temperature waste heat H after power generation is substantially equal to the maximum temperature of the power generation unit 12, and a part of this high-temperature gas is used for the air heat insulation layer of the internal power generation unit. Direct heat release from the power generation unit 12 to the surroundings is reduced,
As a result, the temperature distribution of the cell temperature of the power generation unit 12 is reduced,
The operating temperature can be maintained efficiently.

【0017】[0017]

【発明の効果】以上説明したように、本発明によれば、
発電直後の廃熱の温度が発電部の最高温度とほぼ等し
く、この高温のガスの一部を内部発電部の空気断熱層に
利用することで,発電部から周囲への直接の熱放出が低
減され、この結果発電部のセル温度の温度分布が緩和さ
れ、作動温度を効率よく維持することができる。
As described above, according to the present invention,
The temperature of waste heat immediately after power generation is almost equal to the maximum temperature of the power generation unit, and by using a part of this high-temperature gas for the air insulation layer of the internal power generation unit, direct heat release from the power generation unit to the surroundings is reduced. As a result, the temperature distribution of the cell temperature of the power generation unit is relaxed, and the operating temperature can be efficiently maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係るSOFCモジュールの
概略構成図である。
FIG. 1 is a schematic configuration diagram of an SOFC module according to one embodiment of the present invention.

【図2】従来のSOFCモジュールの概略構成図であ
る。
FIG. 2 is a schematic configuration diagram of a conventional SOFC module.

【符号の説明】[Explanation of symbols]

11 モジュール本体 12 燃料電池発電部 13A 該発電部に燃料を供給する燃料供給管 13B 燃料排気管 14A 発電部に空気を供給する空気供給管 14B 排気管 15,16 再生熱交換器 17 モジュール本体の外壁 18 断熱材 19 バイパス管 20 通路 21 戻り配管 H 高温廃熱 DESCRIPTION OF SYMBOLS 11 Module main body 12 Fuel cell power generation part 13A Fuel supply pipe which supplies fuel to this power generation part 13B Fuel exhaust pipe 14A Air supply pipe which supplies air to a power generation part 14B Exhaust pipe 15, 16 Regeneration heat exchanger 17 Outer wall of module main body 18 Insulation material 19 Bypass pipe 20 Passage 21 Return pipe H High temperature waste heat

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永田 勝己 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社 長崎造船所内 (56)参考文献 特開 昭62−283570(JP,A) 特開 平2−220363(JP,A) 特開 昭61−198571(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 8/24 H01M 8/04 H01M 8/12 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Katsumi Nagata 1-1, Akunouramachi, Nagasaki City, Nagasaki Prefecture Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (56) References JP-A-62-283570 (JP, A) Hei 2-220363 (JP, A) JP-A-61-198571 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 8/24 H01M 8/04 H01M 8/12

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 空気と燃料とを供給して発電する固体電
解質型燃料電池のモジュールにおいて、 燃料電池発電部の中心に下方から燃料側再生熱交換器側
の上方に向けて、空気極出口側再生熱交換器入口に連通
するバイパス管を形成して成り、該バイパス管内を流れ
る高温廃熱が、発電部の頂面から周囲に向かって流れ、
更に断熱材と発電部との間を下方に向かって流れて、外
周部を覆ってなる空気断熱層を形成し発電作動温度を保
持して、その後、空気出口側再生熱交換器出口の排気管
に連通する戻り配管から排気することを特徴とする固体
電解質型燃料電池モジュール。
1. A solid oxide fuel cell module that generates power by supplying air and fuel, wherein a fuel-side regenerative heat exchanger side is located at the center of a fuel cell power generation section from below.
Upward, forming a bypass pipe communicating with the air electrode outlet side regenerative heat exchanger inlet, the high-temperature waste heat flowing in the bypass pipe flows from the top surface of the power generation unit to the periphery,
Further, the gas flows downward between the heat insulating material and the power generation unit to form an air heat insulation layer covering the outer peripheral portion to maintain the power generation operation temperature, and thereafter, the exhaust pipe at the air outlet side regenerative heat exchanger outlet A solid oxide fuel cell module, wherein the exhaust gas is exhausted from a return pipe communicating with the fuel cell .
JP06430194A 1994-04-01 1994-04-01 Module structure of solid oxide fuel cell Expired - Fee Related JP3327673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06430194A JP3327673B2 (en) 1994-04-01 1994-04-01 Module structure of solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06430194A JP3327673B2 (en) 1994-04-01 1994-04-01 Module structure of solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH07282833A JPH07282833A (en) 1995-10-27
JP3327673B2 true JP3327673B2 (en) 2002-09-24

Family

ID=13254298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06430194A Expired - Fee Related JP3327673B2 (en) 1994-04-01 1994-04-01 Module structure of solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3327673B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5164985B2 (en) * 2007-07-27 2013-03-21 京セラ株式会社 FUEL CELL MODULE AND FUEL CELL DEVICE INCLUDING THE SAME

Also Published As

Publication number Publication date
JPH07282833A (en) 1995-10-27

Similar Documents

Publication Publication Date Title
US6569554B1 (en) Fuel cell battery with a stack of planar cells
JPH09329058A (en) Thermoelectric generator
JPH04306568A (en) Method for dissipating heat from fuel cell and temperature balancing member
JP2001196088A (en) Unified manifold/reforming device for fuel cell system
JPS6014768A (en) Solid electrolyte fuel battery generating apparatus
US6756144B2 (en) Integrated recuperation loop in fuel cell stack
JP3327673B2 (en) Module structure of solid oxide fuel cell
JP2008135300A (en) Solid electrolyte fuel cell module and air supplying method of solid electrolyte fuel cell
JP4389493B2 (en) Fuel cell
JPH08306380A (en) Lamination type fuel cell
JPS60138855A (en) Fuel cell
JP3268197B2 (en) Solid electrolyte fuel cell module
JPH097624A (en) Solid electrolytic fuel cell
JPS63976A (en) Fuel cell
JP2003151610A (en) Solid electrolyte fuel cell system
JP3310803B2 (en) Solid oxide fuel cell module
JPS63168972A (en) Fuel cell
JP2001143720A (en) Separator in fuel cell
JP3377646B2 (en) Solid oxide fuel cell module
JP2528836B2 (en) Cooled fuel reformer
JP2000277135A (en) Heat insulating device of phosphoric acid type fuel cell
JPS6351058A (en) Fuel cell
JPH04144069A (en) Fuel cell
JPH1154140A (en) Fuel cell power generating device
JPH09245809A (en) Cooling apparatus for fuel cell

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020604

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees