JP3321155B2 - Method for producing fine particles - Google Patents

Method for producing fine particles

Info

Publication number
JP3321155B2
JP3321155B2 JP19727289A JP19727289A JP3321155B2 JP 3321155 B2 JP3321155 B2 JP 3321155B2 JP 19727289 A JP19727289 A JP 19727289A JP 19727289 A JP19727289 A JP 19727289A JP 3321155 B2 JP3321155 B2 JP 3321155B2
Authority
JP
Japan
Prior art keywords
solution
water
sulfate
carbonate
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19727289A
Other languages
Japanese (ja)
Other versions
JPH0360729A (en
Inventor
文雄 北原
宏明 小西
正隆 今尾
國寛 宮本
Original Assignee
有限会社野々川商事
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社野々川商事 filed Critical 有限会社野々川商事
Priority to JP19727289A priority Critical patent/JP3321155B2/en
Publication of JPH0360729A publication Critical patent/JPH0360729A/en
Application granted granted Critical
Publication of JP3321155B2 publication Critical patent/JP3321155B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Colloid Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】 (産業上の利用範囲) 本発明は、微粒子の製造方法に関する。詳しくは、水
に難溶性の塩で単分散性の優れた微粒子または超微粒子
の製造方法である。
The present invention relates to a method for producing fine particles. More specifically, the present invention relates to a method for producing fine particles or ultrafine particles of a salt which is hardly soluble in water and excellent in monodispersity.

(従来の技術) 微粒子あるいは超微粒子の製造においては、乾式法と
湿式法とが公知である。しかし、塩の製造においては蒸
着、スパタリング等の乾式法は塩が分解してしまうため
適さない。
(Prior Art) In the production of fine particles or ultrafine particles, a dry method and a wet method are known. However, in the production of salt, dry methods such as vapor deposition and sputtering are not suitable because the salt is decomposed.

(解決しようとする問題点) 湿式法においては、従来濃厚溶液では行われていない
が、そのため希薄溶液の反応では、製造効率が悪く、又
粒子の単分散性が良くないという欠点があった。
(Problems to be Solved) In the wet method, conventionally, a concentrated solution has not been used. However, in the reaction of a dilute solution, there are disadvantages that the production efficiency is poor and the monodispersibility of particles is poor.

(問題点を解決する為の手段) 本発明者らは、鋭意研究を重ねた結果、水に難溶性の
炭酸塩、硫酸塩またはリン酸塩を製造する際に、反応さ
せたときに水に難溶の炭酸塩、硫酸塩又はリン酸塩を形
成する、二種の塩の含水飽和溶液または濃厚溶液を混合
するとき、単分散性の優れた微粒子または超微粒子を効
率よく製造することが出来ることを見いだした。
(Means for Solving the Problems) As a result of intensive studies, the present inventors have found that when producing carbonates, sulfates or phosphates which are hardly soluble in water, the water, When mixing a hydrated saturated solution or a concentrated solution of two kinds of salts forming a hardly soluble carbonate, sulfate or phosphate, fine particles or ultrafine particles excellent in monodispersity can be efficiently produced. I found something.

すなわち、反応方法としては二種の飽和溶液または濃
厚溶液を調製し、一方の溶液を反応槽に入れ撹拌しつつ
他方の溶液を加える方法があるがこの方法に限定される
わけでなく、たとえば撹拌しながら二種の溶液を同時に
反応槽にいれることも可能であるし、二種の溶液を反応
槽に入れ終わってから撹拌してもよい。加え終わったら
撹拌を続け、ゲル化した時点で撹拌をやめしばらく放置
する。ゲル化しないときはさらにしばらく撹拌を続け
る。両者とも放置するとゾル化し流動性を示す。微粒
子、超微粒子をゾル液から分離するには、ゾル液は上澄
み液と粒子系に分離するので、又分離しにくいときは水
で希釈すると分離するのでその上澄み液を捨てる。粒子
の精製には水を加えて上澄みを取る操作を繰り返すか、
透析を行う。
That is, as a reaction method, there is a method in which two kinds of saturated solutions or concentrated solutions are prepared, and one solution is added to a reaction vessel while stirring and the other solution is added. However, the method is not limited to this method. It is also possible to simultaneously put the two kinds of solutions into the reaction tank while stirring, or to stir after the two kinds of solutions have been put into the reaction tank. When the addition is completed, the stirring is continued. When the gel is formed, the stirring is stopped and the mixture is left for a while. When no gelling occurs, continue stirring for a while. Both form a sol when left to stand and exhibit fluidity. In order to separate fine particles and ultrafine particles from the sol solution, the sol solution is separated into a supernatant and a particle system. If separation is difficult, the supernatant is discarded because it is separated by diluting with water. To purify the particles, repeat the operation of adding water and removing the supernatant,
Perform dialysis.

本発明の反応に用いられる塩は、もう一方の塩と反応
して水に難溶の塩を形成するものならばなんでもよい。
例えば、塩化カルシウム、炭酸ナトリウム、炭酸カリウ
ム、炭酸水素カリウム、炭酸水素アンモニウム、塩化バ
リウム、硫酸ナトリウム、酢酸バリウム、酢酸カルシウ
ム、硫酸アンモニウム、リン酸水素ナトリウム等があ
る。
The salt used in the reaction of the present invention may be any salt as long as it reacts with the other salt to form a salt which is hardly soluble in water.
For example, there are calcium chloride, sodium carbonate, potassium carbonate, potassium hydrogen carbonate, ammonium hydrogen carbonate, barium chloride, sodium sulfate, barium acetate, calcium acetate, ammonium sulfate, sodium hydrogen phosphate and the like.

本発明の製造方法で製造される微粒子または超微粒子
で水に難溶性の塩は、例えば硫酸バリウム、炭酸バリウ
ム、炭酸カルシウム、リン酸水素カルシウム等がある。
The fine particles or ultrafine particles which are produced by the production method of the present invention and are hardly soluble in water include, for example, barium sulfate, barium carbonate, calcium carbonate, calcium hydrogen phosphate and the like.

本発明における微粒子とは、粒子径が1μm以下、超
微粒子とは粒子径100nm以下のものをいう。
In the present invention, the fine particles refer to particles having a particle diameter of 1 μm or less, and the ultrafine particles refer to particles having a particle diameter of 100 nm or less.

本発明における濃厚溶液は、塩によって溶解度が異な
るので一概にはいえないが、塩それぞれの溶解度の60%
以上、好ましくは80%以上であれば、本発明の効果は充
分に達成できる。
The concentrated solution in the present invention cannot be said unconditionally because the solubility differs depending on the salt, but it is 60% of the solubility of each salt.
As described above, if it is at least 80%, the effects of the present invention can be sufficiently achieved.

本発明の反応に用いる塩の溶液は水溶液が好ましいが
アルコールなどが含有されても塩が溶解すれば問題はな
い。
The solution of the salt used in the reaction of the present invention is preferably an aqueous solution, but there is no problem even if alcohol or the like is contained as long as the salt is dissolved.

反応させる二種の塩の溶液及び混合した塩溶液は加温
加圧する必要はないが、加温または加圧しても構わな
い。
It is not necessary to heat and pressurize the solution of the two salts to be reacted and the mixed salt solution, but they may be heated or pressurized.

本発明における塩の水溶液の量は反応の理論量あれば
充分である。
The amount of the aqueous solution of the salt in the present invention is sufficient if it is the theoretical amount of the reaction.

さらに、反応に用いる塩に酢酸塩を使用すると粒子径
が非常に小さくなることを見いだした。例えば、酢酸バ
リウムと硫酸アンモニウム、硫酸アルミニウム、または
硫酸カルシウムの組合せ、または、酢酸カルシウムと、
炭酸ナトリウム、炭酸カリウム、炭酸水素アンモニウ
ム、または炭酸水素カリウムの組合せで本発明の製造方
法で製造するといずれの組合せにおいても粒子径が約50
nm以下の超微粒子を生成した。
Furthermore, it has been found that when acetate is used as the salt used in the reaction, the particle size becomes very small. For example, a combination of barium acetate and ammonium sulfate, aluminum sulfate, or calcium sulfate, or calcium acetate,
When produced by the production method of the present invention using a combination of sodium carbonate, potassium carbonate, ammonium bicarbonate, or potassium bicarbonate, the particle size of each combination is about 50%.
Ultra fine particles of sub-nm were produced.

(実施例) 以下、本発明の実施例を示すが、本発明はこれに限定
されるものではない。
(Example) Hereinafter, an example of the present invention will be described, but the present invention is not limited thereto.

実施例−1(炭酸カルシウムの製造) 40%の塩化カルシウム水溶液15.7gを激しく撹拌しな
がら19.0%の炭酸ナトリウム水溶液を31.2g加える。加
え終わった後ゲル化するが、撹拌を続けると数分でゾル
状になる。透析後の粒子の電顕写真を図1に示した。粒
径のそろった立方体粒子で一辺約500nmであった。X線
解析によるとカルサイト構造で結晶化度は非常に高かっ
た(図2)。
Example 1 (Production of calcium carbonate) While vigorously stirring 15.7 g of a 40% aqueous calcium chloride solution, 31.2 g of a 19.0% aqueous sodium carbonate solution was added. It gels after the addition is completed, but it becomes a sol in a few minutes when stirring is continued. An electron micrograph of the dialyzed particles is shown in FIG. Cubic particles of uniform size were about 500 nm on a side. According to X-ray analysis, the crystallinity was very high due to the calcite structure (FIG. 2).

炭酸カルシウムの収率は理論量の98.7%であった。 The yield of calcium carbonate was 98.7% of theory.

実施例−2(炭酸バリウムの製造) 26%の塩化バリウム水溶液24gを撹拌しながらこれに2
3%の炭酸ナトリウム水溶液14gを加える。加える過程で
ゲル状のものが部分的に生成するが、全部加え終わった
時点ではゾル状になっている。
Example 2 (Production of barium carbonate) 24 g of a 26% barium chloride aqueous solution was added thereto while stirring.
14 g of a 3% aqueous sodium carbonate solution are added. During the addition process, a gel-like substance is partially formed, but when all of the addition is completed, it becomes a sol-like substance.

粒子の光学顕微鏡写真を図3に示す。 An optical micrograph of the particles is shown in FIG.

炭酸バリウムの収率は理論量の99.3%であった。 The barium carbonate yield was 99.3% of theory.

実施例−3(硫酸バリウムの製造) 25%の塩化バリウム水溶液17gを撹拌しながら、これ
に180%の硫酸ナトリウム水溶液16.2gを加える。途中ゲ
ル状物が部分的に生成するが、全体としてゲル化せず、
加え終わった時点でゾル状となっている。透析後の粒子
の電顕写真を図4に示した。単分散性の良い立方体粒子
で一辺約100nmであった。X線解析によると図5のよう
な重晶石構造で、結晶化度は非常に高い。
Example 3 (Production of barium sulfate) While stirring 17 g of a 25% aqueous barium chloride solution, 16.2 g of a 180% aqueous sodium sulfate solution was added thereto. A gel-like substance is partially generated on the way, but does not gel as a whole,
When the addition is completed, it is in a sol state. An electron micrograph of the particles after dialysis is shown in FIG. Cubic particles with good monodispersity had a side of about 100 nm. According to the X-ray analysis, it has a barite structure as shown in FIG. 5, and has a very high crystallinity.

硫酸バリウムの収率は理論量の99.6%であった。 The barium sulfate yield was 99.6% of theory.

実施例−4(硫酸バリウムの製造) 41%の酢酸バリウム水溶液9ml(12.2g)を撹拌しなが
らこれに28%の硫酸アンモニウム水溶液9ml(10.4g)を
加えると全体がゲル化し、後流動性が少し出るがテキソ
トロヒックな状態であった。水で希釈すると上澄み液と
粒子群に分離した。透析後電顕写真をとると、図6のよ
うなほぼ立方体粒子で単分散性の良い、一辺約30〜40nm
の超微粒子である。X線解析の結果は、実施例−3のも
のと全く同じであった。
Example-4 (Production of barium sulfate) While stirring 9 ml (12.2 g) of a 41% aqueous barium acetate solution, 9 ml (10.4 g) of a 28% aqueous ammonium sulfate solution was added thereto, and the whole gelled, resulting in a slight post-fluidity. He came out but was in a state of texo traffic. Upon dilution with water, the mixture was separated into a supernatant and particles. When taken with an electron microscope photograph after dialysis, the particles are almost cubic particles as shown in FIG.
Ultra fine particles. The result of the X-ray analysis was exactly the same as that of Example-3.

硫酸バリウムの収率は理論量の98.9%であった。 The barium sulfate yield was 98.9% of theory.

実施例−5(硫酸バリウムの製造) 25%の塩化バリウム水溶液17gを撹拌しながらこれに2
3%の硫酸アルミニウム水溶液15gを加えていく。途中ゲ
ル状物を生じるが最終的に全体のゲル化はみられない。
透析後の電顕写真は図7のようで柱状〜楕円形で長径約
40〜70nmの超微粒子であった。
Example 5 (Production of barium sulfate) 17 g of a 25% barium chloride aqueous solution was added thereto while stirring.
Add 15 g of a 3% aluminum sulfate aqueous solution. A gel-like substance is formed on the way, but the entire gelation is not finally observed.
The electron micrograph after dialysis is as shown in FIG.
The particles were ultrafine particles of 40 to 70 nm.

硫酸バリウムの収率は理論量の99.8%であった。 The yield of barium sulfate was 99.8% of theory.

実施例−6(硫酸バリウムの製造) 41%の酢酸バリウム水溶液19gを撹拌しつつ、これに2
3%の硫酸アルミニウム水溶液19gを加えていく。ゲル化
の状況は実施例−5と同様。透析後の電顕写真は図8の
ようで、楕円形に近く直径40nm、短径20〜30nmである。
X線解析によると、結晶型、結晶化度に変化はない。
Example-6 (Production of barium sulfate) While stirring 19 g of a 41% barium acetate aqueous solution, 2 g
Add 19 g of a 3% aqueous solution of aluminum sulfate. The state of gelation was the same as in Example-5. The electron micrograph after dialysis is shown in FIG. 8 and is nearly elliptical, with a diameter of 40 nm and a minor axis of 20 to 30 nm.
According to the X-ray analysis, there is no change in the crystal type and crystallinity.

硫酸バリウムの収率は理論量の99.4%であった。 The barium sulfate yield was 99.4% of theory.

(発明の効果) 本発明によれば、水に難溶性の炭酸塩、硫酸塩または
リン酸塩を製造する際に、反応させたときに水に難溶の
炭酸塩、硫酸塩又はリン酸塩を形成する、二種の含水飽
和溶液または濃厚溶液を、加温も加圧もすることなく常
温常圧で単に混合することによりゲル状態またはそれに
近い状態を経て計算量に近い収量で単分散性の優れた微
粒子または超微粒子を得ることができ、しかも操作が簡
単であり、簡易な装置で充分という利点がある。
(Effects of the Invention) According to the present invention, when a carbonate, sulfate or phosphate hardly soluble in water is produced, a carbonate, sulfate or phosphate hardly soluble in water when reacted. A monodisperse solution with a yield close to the calculated amount through a gel state or a state close to it by simply mixing two kinds of water-containing saturated solutions or concentrated solutions at normal temperature and normal pressure without heating or pressurizing. Fine particles or ultrafine particles having excellent characteristics can be obtained, and the operation is simple, and there is an advantage that a simple device is sufficient.

【図面の簡単な説明】[Brief description of the drawings]

図1は炭酸カルシウム粒子の粒子構造を表す電顕写真、
図2はそのX線解析図である。図3は炭酸バリウムの粒
子構造を表す光顕写真である。図4、6、7、8、はい
ずれも硫酸バリウムの電顕写真、図5は硫酸バリウムの
粒子構造を表すX線解析図である。
FIG. 1 is an electron micrograph showing the particle structure of calcium carbonate particles,
FIG. 2 is an X-ray analysis diagram. FIG. 3 is an optical microscope photograph showing the particle structure of barium carbonate. 4, 6, 7, and 8 are electron micrographs of barium sulfate, and FIG. 5 is an X-ray analysis diagram showing the particle structure of barium sulfate.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI // B01D 61/24 B01D 61/24 C01F 11/18 C01F 11/18 A 11/46 11/46 A (72)発明者 宮本 國寛 愛知県名古屋市西区鳥見町2丁目130番 地 日本メナード化粧品株式会社中央研 究所内 審査官 小川 慶子 (56)参考文献 特開 昭55−11029(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 13/00,19/00 C01B 17/96,25/26,31/24 C01F 11/18,11/46 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI // B01D 61/24 B01D 61/24 C01F 11/18 C01F 11/18 A 11/46 11/46 A (72) Inventor Miyamoto Kunihiro 2-130 Torimicho, Nishi-ku, Nagoya-shi, Aichi, Japan Examiner, Keiko Ogawa, Central Research Institute, Menard Cosmetics Co., Ltd. (56) Int.Cl. 7 , DB name) B01J 13 / 00,19 / 00 C01B 17 / 96,25 / 26,31 / 24 C01F 11 / 18,11 / 46

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水に難溶性の炭酸塩、硫酸塩またはリン酸
塩を製造する際に、反応させたときに水に難溶の炭酸
塩、硫酸塩又はリン酸塩を形成する、二種の塩の含水飽
和溶液または濃厚溶液を混合することを特徴とする、分
散性の優れた、粒子径が10μm以下である微粒子又は超
微粒子の製造方法。
(1) When producing a carbonate, sulfate or phosphate which is hardly soluble in water, two kinds of which form a carbonate, sulfate or phosphate which are hardly soluble in water when reacted. A method for producing fine particles or ultrafine particles having excellent dispersibility and having a particle diameter of 10 μm or less, characterized by mixing a water-containing saturated solution or a concentrated solution of the salt of (1).
【請求項2】水に難溶性の炭酸塩、硫酸塩またはリン酸
塩を製造する際に、反応させたときに水に難溶の炭酸
塩、硫酸塩又はリン酸塩を形成する、二種の塩の含水飽
和溶液または濃厚溶液を調製し、一方の溶液を反応槽に
入れ攪拌しつつ、他方の溶液を加えることを特徴とする
請求項(1)の製造方法。
2. A method for producing a carbonate, sulfate or phosphate which is hardly soluble in water, which forms a carbonate, sulfate or phosphate which is hardly soluble in water when reacted. The method according to claim 1, wherein a water-containing saturated solution or a concentrated solution of the salt is prepared, and one of the solutions is put into a reaction vessel and stirred, and the other solution is added.
【請求項3】生成する水に難溶性の塩が硫酸バリウムま
たは炭酸カルシウムであることを特徴とする請求項
(1)または(2)の製造方法。
3. The method according to claim 1, wherein the water-insoluble salt is barium sulfate or calcium carbonate.
【請求項4】反応に用いる一方の塩が酢酸塩であること
を特徴とする請求項(1)または(3)の製造法。
4. The process according to claim 1, wherein one of the salts used in the reaction is an acetate.
【請求項5】塩の濃度がそれぞれの溶解度の60%以上〜
飽和溶液であることを特徴とする請求項(1)または
(4)の製造法。
5. The method according to claim 1, wherein the concentration of the salt is not less than 60% of each solubility.
The method according to claim 1, wherein the solution is a saturated solution.
JP19727289A 1989-07-29 1989-07-29 Method for producing fine particles Expired - Fee Related JP3321155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19727289A JP3321155B2 (en) 1989-07-29 1989-07-29 Method for producing fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19727289A JP3321155B2 (en) 1989-07-29 1989-07-29 Method for producing fine particles

Publications (2)

Publication Number Publication Date
JPH0360729A JPH0360729A (en) 1991-03-15
JP3321155B2 true JP3321155B2 (en) 2002-09-03

Family

ID=16371710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19727289A Expired - Fee Related JP3321155B2 (en) 1989-07-29 1989-07-29 Method for producing fine particles

Country Status (1)

Country Link
JP (1) JP3321155B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4723900B2 (en) * 2005-04-27 2011-07-13 三菱電機株式会社 Electric operation device for switch
JP4386061B2 (en) 2006-10-06 2009-12-16 株式会社豊田中央研究所 Solid composite material and manufacturing method thereof
JP2019524621A (en) * 2016-07-05 2019-09-05 イーティーエッチ チューリッヒ High performance ceramics from cold sintered nanoscale powders

Also Published As

Publication number Publication date
JPH0360729A (en) 1991-03-15

Similar Documents

Publication Publication Date Title
US4233212A (en) Process for producing a fine powder of silk fibroin
US5021192A (en) Colloidal dispersions of cerium (IV) compound
US3911090A (en) Aluminum hydroxy carbonates nucleated with silicate anion
JP3321155B2 (en) Method for producing fine particles
JP3674009B2 (en) Method for producing amorphous titanium oxide sol
JPS61158810A (en) Production of high-purity silica sol
JP5019556B2 (en) Porous particles and method for producing the same
JP3758391B2 (en) High-purity silica aqueous sol and method for producing the same
MXPA03005108A (en) Aqueous rare earth phosphate colloidal dispersion and preparation method.
JPH09183620A (en) Bismuth oxycarbonate powder and its production
WO2004080898A1 (en) Process for producing acidic aqueous alumina sol
US5415851A (en) Method for the preparation of spherical particles of a rare earth phosphate
JP3950691B2 (en) Colloidal dispersion of cerium compound containing cerium III, process for its production and use thereof
US3024088A (en) Making micro-porous, discrete, few micron size oxide compounds of metals, and the products
JPS6034496B2 (en) Manufacturing method of alumina sol
JPH05155616A (en) Transparent yttria sol and its production
US3919403A (en) Method for the production of alpha alumina monohydrate
WO2017169425A1 (en) Production method for zeolite powder
JP2896498B2 (en) Method for producing plate-shaped hydroxyapatite with a-plane grown
US3535259A (en) Process and flocculating agent produced thereby of the reaction products of sulfuric acid and allophane
JP2675465B2 (en) Hydrous calcium carbonate and method for producing the same
JPS6045125B2 (en) Manufacturing method of alumina sol
JP2772483B2 (en) Method for producing spherical calcium carbonate
US20110021685A1 (en) Colloidal dispersion of calcium phosphate platelets, and its process of preparation
JPH01167216A (en) Production of acicular barium carbonate

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees