JP3320513B2 - Injection molding method of plastic optical element - Google Patents

Injection molding method of plastic optical element

Info

Publication number
JP3320513B2
JP3320513B2 JP20890893A JP20890893A JP3320513B2 JP 3320513 B2 JP3320513 B2 JP 3320513B2 JP 20890893 A JP20890893 A JP 20890893A JP 20890893 A JP20890893 A JP 20890893A JP 3320513 B2 JP3320513 B2 JP 3320513B2
Authority
JP
Japan
Prior art keywords
plane
insert
cooling
resin
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20890893A
Other languages
Japanese (ja)
Other versions
JPH0740404A (en
Inventor
健二 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP20890893A priority Critical patent/JP3320513B2/en
Publication of JPH0740404A publication Critical patent/JPH0740404A/en
Application granted granted Critical
Publication of JP3320513B2 publication Critical patent/JP3320513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はプラスチック光学素子の
射出成形方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for injection molding a plastic optical element.

【0002】[0002]

【従来の技術】プラスチック光学素子の成形は、一定の
温度に保持された金型のキャビティ内に溶融樹脂を射出
し、冷却固化させる方法が一般的に用いられている。こ
の成形方法によれば、厚肉で且つ偏肉の大きい光学素子
の場合、成形品の中心部と表層部及び成形品の厚肉部と
薄肉部とで樹脂の冷却速度に差が生じて歪が発生するこ
とにより、良好な面精度を有した光学面が得られない。
2. Description of the Related Art For molding a plastic optical element, a method of injecting a molten resin into a cavity of a mold maintained at a fixed temperature and cooling and solidifying the resin is generally used. According to this molding method, in the case of an optical element having a large thickness and a large thickness deviation, a difference occurs in the cooling rate of the resin between the central portion and the surface layer of the molded product, and between the thick portion and the thin portion of the molded product. , An optical surface having good surface accuracy cannot be obtained.

【0003】この問題点を解消する従来方法として、特
開昭62−183320号公報では、一度冷却固化され
た成形品の表層部を金型内で再び加熱溶融し、その後再
び冷却固化させる方法が開示されている。この方法で
は、成形品の表層部が均一に再溶融されるため、表層部
に保有されている応力歪が消失する。また、成形品の中
心部が固化した状態で表層部が再溶融及び再冷却される
ため、再冷却工程における成形品中心部の固化収縮又は
復元膨張があっても表層部に歪が発生することがなくな
る。
As a conventional method for solving this problem, Japanese Patent Application Laid-Open No. 62-183320 discloses a method in which a surface layer portion of a molded product once cooled and solidified is heated and melted again in a mold, and then cooled and solidified again. It has been disclosed. According to this method, the surface layer of the molded article is uniformly re-melted, so that the stress strain retained in the surface layer disappears. In addition, since the surface layer portion is re-melted and re-cooled in a state where the center portion of the molded product is solidified, distortion occurs in the surface layer portion even when the molded product central portion undergoes solidification shrinkage or restoration expansion in the re-cooling step. Disappears.

【0004】[0004]

【発明が解決しようとする課題】上述した従来方法は、
表層部を再溶融し、パスカルの原理に基づき成形品各面
の樹脂圧力を均一にし、歪を低減させるものである。し
かしながら、溶融された樹脂は物性劣化が開始される直
前まで加熱されても、大きな粘性を保有しているため水
などに比べて圧力の伝達が行われにくい。従って例え
ば、図6および図7に示すように、円盤形状の成形面
や、図8に示す球形状の成形面のように、エッジ部が存
在しない面内では樹脂圧力の均一化を図ることが容易で
あるが、図9および図10に示す3角柱形状や図11に
示す左右両端が直線的に切り欠かれたレンズ形状の場合
には、エッジ部の両側の面内での樹脂圧力の相互の均一
化が困難であり、エッジ部の両側の面で樹脂圧力の差が
生じ成形品の内部に残留する。
SUMMARY OF THE INVENTION The above-mentioned conventional method has the following problems.
The surface layer is re-melted, and the resin pressure on each surface of the molded article is made uniform based on the principle of Pascal to reduce distortion. However, even if the molten resin is heated until just before the deterioration of physical properties is started, pressure transmission is less likely to be performed as compared with water or the like because it has a large viscosity. Therefore, for example, as shown in FIGS. 6 and 7, it is possible to make the resin pressure uniform within a surface having no edge portion, such as a disk-shaped molding surface or a spherical molding surface shown in FIG. Although it is easy, in the case of a triangular prism shape shown in FIGS. 9 and 10 or a lens shape shown in FIG. It is difficult to make the resin uniform, and a difference in resin pressure occurs on both sides of the edge portion, which remains inside the molded product.

【0005】このため、光学面となる成形面の間にエッ
ジ部を有する3角プリズムなどの光学素子を成形する場
合においては、表層部を再加熱しても各光学面の間で樹
脂圧力の差が存在する。従って、特定の光学面の面精度
を向上させる目的で、金型の型開き時に特定光学面の表
層部の樹脂が金型面を押圧する圧力を0kg/cm2
近ずけるように射出圧力を調整した場合に、他の光学面
にヒケが発生する問題があった。
For this reason, when molding an optical element such as a triangular prism having an edge between molding surfaces to be optical surfaces, even if the surface layer is reheated, the resin pressure between the optical surfaces is reduced. There is a difference. Therefore, for the purpose of improving the surface accuracy of the specific optical surface, the injection pressure is set so that the pressure at which the resin on the surface layer of the specific optical surface presses the mold surface when the mold is opened approaches 0 kg / cm 2. In the case where is adjusted, sinking occurs on another optical surface.

【0006】本発明は、上記事情を考慮してなされたも
のであり、他の光学面にヒケを生じさせることなく、特
定の光学面の面精度を向上させることが可能なプラスチ
ック光学素子の射出成形方法を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and has been made in consideration of the above circumstances, and has been made in consideration of the above subject matter. It is an object to provide a molding method.

【0007】[0007]

【課題を解決するための手段および作用】本発明の射出
成形方法は、以下の工程順により構成される。 (1)金型のキャビティ内に溶融樹脂を射出する工程。 (2)射出後にキャビティ内の樹脂をガラス転移点より
も低い温度まで冷却する一次冷却工程。 (3)一次冷却工程後に、成形品の各面の表層部の樹脂
を少なくともガラス転移点以上の温度まで加熱して軟化
させる再加熱工程。この再加熱工程では、面精度が要求
される特定の光学面の表層部を他の光学面の表層部より
も低い温度となるように温度差を設けて加熱する。かか
る温度差の設定は金型のキャビティの各面を形成する入
子の内、特定の光学面を形成する入子の温度を他の光学
面を形成する入子の温度よりも低くなるように加熱する
ことで行うことができる。 (4)再加熱工程終了後における成形品を取出し温度ま
で冷却する二次冷却工程。この二次冷却工程では、面精
度が要求される特定の光学面の表層部を他の光学面の表
層部よりも低い温度となるように温度差を設けて冷却す
る。かかる温度差の設定は再加熱工程と同様に、特定の
光学面を形成する入子と他の光学面を形成する入子とに
温度差が生じるように冷却することで可能となる。
The injection molding method of the present invention comprises the following steps. (1) A step of injecting a molten resin into a cavity of a mold. (2) A primary cooling step of cooling the resin in the cavity to a temperature lower than the glass transition point after injection. (3) After the primary cooling step, a reheating step of heating and softening the resin on the surface layer of each surface of the molded article to at least a temperature equal to or higher than the glass transition point. In this reheating step, the surface layer of a specific optical surface requiring surface accuracy is heated with a temperature difference so as to be lower than the surface layer of the other optical surface. The setting of the temperature difference is such that the temperature of the nest forming a specific optical surface among the nests forming each surface of the mold cavity is lower than the temperature of the nest forming the other optical surfaces. It can be performed by heating. (4) A secondary cooling step of taking out the molded article after the reheating step and cooling it down to the removal temperature. In the secondary cooling step, a surface layer of a specific optical surface requiring surface accuracy is cooled by providing a temperature difference so as to be lower than a surface layer of another optical surface. As in the case of the reheating step, the temperature difference can be set by cooling such that a temperature difference occurs between the insert forming the specific optical surface and the insert forming the other optical surface.

【0008】以上のような構成において、再加熱工程で
は、成形品の中心部が固化した状態で、表層部に溶融樹
脂層が生成されるため、この再加熱工程を経ることによ
り、成形品の中心部の樹脂の膨張及び収縮の影響がなく
なる。また、再加熱工程から二次冷却工程における表層
部の溶融樹脂層のガラス転移点近傍までの冷却の間、面
精度が要求される特定の光学面の表層部の樹脂温度が、
他の光学面よりも低いため、表層部の樹脂圧力が他の光
学面の樹脂圧力よりも低くなる。そして、取出し温度ま
で冷却されるまでの間に、各光学面の表層部の樹脂圧力
はこの高低差を有したまま低下し、一定の圧力に収束す
る。
In the above-described configuration, in the reheating step, a molten resin layer is formed on the surface layer in a state where the center of the molded article is solidified. The influence of expansion and contraction of the resin at the center is eliminated. Further, during the cooling from the reheating step to the vicinity of the glass transition point of the molten resin layer of the surface layer in the secondary cooling step, the resin temperature of the surface layer of the specific optical surface where surface accuracy is required,
Since it is lower than the other optical surfaces, the resin pressure on the surface portion becomes lower than the resin pressure on the other optical surfaces. Then, before being cooled to the take-out temperature, the resin pressure of the surface layer of each optical surface decreases while having this level difference, and converges to a constant pressure.

【0009】従って、型開き時に面精度が要求される光
学面の表層部の樹脂圧力が0kg/cmとなるように
射出圧力を調整しても、他の光学面の型開き時の樹脂圧
力が0kg/cmよりも大きいものであるため、他の
光学面にヒケが発生することがなくなる。
Therefore, even if the injection pressure is adjusted so that the resin pressure on the surface layer of the optical surface which requires surface accuracy at the time of opening the mold becomes 0 kg / cm 2 , the resin pressure at the time of opening the mold of the other optical surface is reduced. Is larger than 0 kg / cm 2 , sink does not occur on other optical surfaces.

【0010】[0010]

【実施例1】図1は本発明の実施例1により製造される
3角プリズム1を示す。この3角プリズム1は光学面
2,3,4および側面5,6の5面により構成されてお
り、光学面2が使用上の理由から他の光学面3,4より
も高精度な面精度が要求されている。以下、光学面2を
A面、光学面3をB面、光学面4をC面と記する。
Embodiment 1 FIG. 1 shows a triangular prism 1 manufactured according to Embodiment 1 of the present invention. The triangular prism 1 is composed of five optical surfaces 2, 3, 4 and side surfaces 5, 6, and the optical surface 2 has a higher surface accuracy than the other optical surfaces 3, 4 for reasons of use. Is required. Hereinafter, the optical surface 2 is referred to as an A surface, the optical surface 3 as a B surface, and the optical surface 4 as a C surface.

【0011】図2はこの3角プリズムを成形する金型を
示す。キャビティ1′はA面入子7に設けられた金型A
面2′と、B面入子8に設けられた金型B面3′と、C
面入子9に設けられた金型C面4′とによって形成され
ている。A面入子7、B面入子8、C面入子9にはそれ
ぞれA面入子水管10とB面入子水管11とC面入子水
管12が設けられていると共に、金型A面2′と金型B
面3′と金型C面4′の近傍にA面入子熱電対13、B
面入子熱電対14、C面入子熱電対15が埋設されてい
る。
FIG. 2 shows a mold for molding the triangular prism. The cavity 1 'is a mold A provided in the A-plane insert 7.
Surface 2 ′, a mold B surface 3 ′ provided on the B surface insert 8,
It is formed by the mold C surface 4 ′ provided on the face insert 9. The A-plane insert 7, the B-plane insert 8, and the C-plane insert 9 are provided with an A-plane insert water pipe 10, a B-plane insert water pipe 11, and a C-plane insert water pipe 12, respectively. Surface 2 'and mold B
In the vicinity of the surface 3 'and the mold C surface 4', the A-plane insert thermocouples 13 and B
A faceted thermocouple 14 and a C-faced thermocouple 15 are embedded.

【0012】また、A面入子水管10はA面入子用加熱
油タンク(図示省略)とA面入子用冷却油タンク(図示
省略)とに切換可能に接続されると共に、B面入子水管
11とC面入子水管12はBC面入子用加熱油タンク
(図示省略)及びBC面入子用冷却油タンク(図示省
略)に切換可能に接続されている。
The A-plane nesting water pipe 10 is switchably connected to a heating oil tank (not shown) for A-plane nesting and a cooling oil tank (not shown) for A-plane nesting. The sub water pipe 11 and the C-plane insertion water pipe 12 are switchably connected to a BC plane insertion heating oil tank (not shown) and a BC plane insertion cooling oil tank (not shown).

【0013】A面入子7,B面入子8,C面入子9は金
型ベース(図示省略)内に埋設されており、成形機ノズ
ルより金型ベース内に射出された樹脂はゲート16を介
してキャビティ1′内に充填される。
The A-plane insert 7, the B-plane insert 8, and the C-plane insert 9 are buried in a mold base (not shown), and the resin injected from the molding machine nozzle into the mold base is gated. The cavity 16 is filled through the space 16.

【0014】次に本実施例による製造工程を説明する。
図3は製造工程におけるキャビティ1′内の樹脂温度の
変化を示したものであり、特性曲線21はBC面の表層
部の温度、特性曲線22はA面の表層部の温度を示して
いる。また、金型に対して行われる各操作の切換を、時
間の目盛りとして、b,c,d,eで図3に記入する。
Next, a manufacturing process according to this embodiment will be described.
FIG. 3 shows a change in the resin temperature in the cavity 1 'in the manufacturing process. The characteristic curve 21 shows the temperature of the surface layer on the BC surface, and the characteristic curve 22 shows the temperature of the surface layer on the A surface. Further, the switching of each operation performed on the mold is entered in FIG. 3 as b, c, d, and e as a time scale.

【0015】まず、A面入子水管10と、B面入子水管
11とC面入子水管12とにA面入子用冷却油タンクと
BC面入子冷却油タンクからそれぞれ冷却油を供給し
て、A面入子7,B面入子8,C面入子9を取出し温度
Teと同じにし、この状態で成形機からゲート16を介
し、キャビティ1′内に溶融樹脂を射出して充填する。
この充填された溶融樹脂によってA面入子7,B面入子
8,C面入子9の温度が上昇し、図3の温度Tbとな
る。
First, cooling oil is supplied to the A-plane nesting water pipe 10, the B-plane nesting water pipe 11, and the C-plane nesting water pipe 12 from the cooling oil tank for the A-plane nesting and the BC-plane nesting cooling oil tank, respectively. Then, the A-plane insert 7, the B-plane insert 8, and the C-plane insert 9 are taken out at the same temperature as Te, and in this state, the molten resin is injected from the molding machine through the gate 16 into the cavity 1 '. Fill.
The temperature of the A-plane insert 7, the B-plane insert 8, and the C-plane insert 9 rises due to the filled molten resin, and reaches the temperature Tb in FIG.

【0016】次に、キャビティ1′内の樹脂を一次冷却
工程として所定時間で冷却固化させてガラス転移点より
も低い温度である図3の温度Tcとする。この温度Tc
は、取り出し温度Teと同じに設定されている。この
後、A面入子水管10と、B面入子水管11と、C面入
子水管12とにA面入子用加熱油タンクおよびBC面入
子用加熱油タンクからの加熱油を供給して、A面入子
7,B面入子8,C面入子9を少なくともガラス転移点
以上に加熱する再加熱工程のために、所定時間の再加熱
を行う。この時、BC面入子用加熱タンク内の加熱油を
A面入子用加熱タンク内の加熱油よりも高温度に保持し
ており、これにより再加熱工程完了時においては、B面
入子8及びC面入子9の温度Td−BCがA面入子7の
温度Td−よりも高い温度まで到達し、いずれもガラ
ス転移点よりも高い温度となっている。
Next, as a primary cooling step, the resin in the cavity 1 'is cooled and solidified for a predetermined time to obtain a temperature Tc shown in FIG. 3, which is lower than the glass transition point. This temperature Tc
Is set to be the same as the take-out temperature Te. Thereafter, the heating oil from the heating oil tank for nesting the A plane and the heating oil tank for nesting the BC plane is supplied to the A-plane nesting water pipe 10, the B-plane nesting water pipe 11, and the C-plane nesting water pipe 12. Then, for the reheating step of heating the A-plane insert 7, the B-plane insert 8, and the C-plane insert 9 at least to the glass transition point or higher, reheating is performed for a predetermined time. At this time, the heating oil in the heating tank for the insertion of the BC plane is maintained at a higher temperature than the heating oil in the heating tank for the insertion of the A plane. 8 and the temperature Td- BC of the C-plane insert 9 reach a temperature higher than the temperature Td- A of the A-plane insert 7, and both are higher than the glass transition point.

【0017】次に、A面入子用水管10,B面入子水管
11およびC面入子用水管12にA面入子用冷却タンク
およびBC面入子用冷却タンクから冷却油を供給し、A
面入子7,B面入子8およびC面入子9の温度が二次冷
却工程によって取出し温度Teとなるまで所定時間冷却
する。
Next, cooling oil is supplied to the A-plane insert water pipe 10, the B-plane insert water pipe 11 and the C-plane insert water pipe 12 from the A-plane insert cooling tank and the BC-plane insert cooling tank. , A
Cooling is performed for a predetermined time until the temperatures of the face insert 7, the B face insert 8 and the C face insert 9 reach the removal temperature Te in the secondary cooling step.

【0018】この冷却工程(二次冷却工程)において、
A面入子7,B面入子8およびC面入子9がガラス転移
点近傍に下がるまでは、B面入子8およびC面入子9の
温度がA面入子7の温度より高い温度となり、内且つこ
の冷却工程が完了した時に、A面入子7,B面入子8お
よびC面入子9の温度が均一となる様にA面入子用冷却
タンクとBC面入子用冷却タンク内の冷却油の温度がそ
れぞれ調整されている。また、取出し時においては、A
面表層部18(図2参照)が金型のA面2′に接触した
状態で同表層部18の樹脂圧力が0kg/cmに収束
する様に射出工程の射出圧力調整を行う。
In this cooling step (secondary cooling step),
Until the A-plane insert 7, the B-plane insert 8 and the C-plane insert 9 fall near the glass transition point, the temperatures of the B-plane insert 8 and the C-plane insert 9 are higher than the temperature of the A-plane insert 7. Temperature, and when this cooling step is completed, the cooling tank for the A-plane insert and the BC-plane insert so that the temperatures of the A-plane insert 7, the B-plane insert 8 and the C-plane insert 9 become uniform. The temperature of the cooling oil in the cooling tank is adjusted respectively. At the time of removal, A
The injection pressure in the injection step is adjusted so that the resin pressure of the surface layer 18 converges to 0 kg / cm 2 while the surface layer 18 (see FIG. 2) is in contact with the A surface 2 ′ of the mold.

【0019】図4は上記工程における金型内の樹脂圧力
の変化を示し、また、この金型に対して行われる各操作
の切換えを時間目盛りとして図3に対応させてb,c,
d,eで示すものであり、特性曲線23はBC面表層部
19,20(図2参照)の樹脂圧力、特性曲線24はA
面表層部18の樹脂圧力である。図4における時間b
は、図3において、キャビティ1′内に溶融樹脂を射出
して充填完了したときであり、b→c間は冷却工程(一
次冷却工程)であり、この工程では成形品全体が一度冷
却固化される。このときA面表層部18とB面表層部1
9とC面表層部20の樹脂圧力はそれぞれPC−A,P
C−BCに収束するが、PC−A>PC−BCとなって
いる。
FIG. 4 shows the change of the resin pressure in the mold in the above-mentioned process, and the switching of each operation performed on the mold is set as a time scale in correspondence with b, c, and b in FIG.
The characteristic curve 23 is indicated by d and e, the characteristic curve 23 is the resin pressure of the BC surface surface portions 19 and 20 (see FIG. 2), and the characteristic curve 24 is A
This is the resin pressure of the surface layer portion 18. Time b in FIG.
FIG. 3 shows a state in which the molten resin is injected into the cavity 1 ′ to complete the filling, and a cooling step (primary cooling step) is performed from b to c. In this step, the entire molded article is once cooled and solidified. You. At this time, the surface layer 18 of the surface A and the surface layer 1 of the surface B
Each 9 and the resin pressure of the C-plane surface portion 20 P C-A, P
Although it converges to C-BC , PC -A > PC -BC .

【0020】次に、再加熱工程では、成形品の中心部1
7(図2参照)が固化した状態でA面表層部18、B面
表層部19およびC面表層部20がそれぞれ温度T
d−A,Td−BCとなるまで加熱されるが、Td−A
<Td−BCとなっている。このとき、それぞれの樹脂
圧力はPd−A<Pd−BCとなっている。
Next, in the reheating step, the central part 1
7 (see FIG. 2), the surface layer 18 of the surface A, the surface layer 19 of the surface B, and the surface layer 20 of the C surface
d-A and Td-BC , but Td-A
< Td-BC . At this time, each resin pressure is Pd-A < Pd-BC .

【0021】次に、二次冷却工程では、A面表層部1
8、B面表層部19およびC面表層部20が取出し温度
Te(図3参照)まで冷却されることにより、取り出し
時(時間e)ではそれぞれの樹脂圧力がPe−A,P
e−BCとなる。また、このとき固化が開始されるガラ
ス転移点付近(図3参照)では、Td−A<Td−BC
関係が維持されているため、Pe−A<Pe−BCの関
係が生じる。従って、Pe−A≒0となる様に射出圧力
を調整してもPe−BC>0となる。
Next, in the secondary cooling step, the surface layer 1
8, by cooling the surface layer portion 19 on the B side and the surface layer portion 20 on the C surface to the removal temperature Te (see FIG. 3), the respective resin pressures at the time of removal (time e) are Pe-A , P
e-BC . Further, in the vicinity of the glass transition point at which solidification starts (see FIG. 3), T d−A <T d−BC
Since the relationship is maintained, a relationship of Pe-A < Pe-BC occurs. Therefore, even if the injection pressure Pb is adjusted so that P e−A ≒ 0, P e−BC > 0.

【0022】以上のような本実施例では、成形品の中心
部17が固化した状態で、A面表層部18とB面表層ぶ
19とC面表層部20とが再度軟化させられるため、成
形品の中心部17の収縮または膨張の影響を受けること
なく、それぞれにおける応力歪が解消され良好な面精度
とすることができる。また、A面表層部18の型開き時
の樹脂圧力Pe-A がB面表層部19とC面表層部の樹脂
圧力Pe-BCよりも低いところから、光学面2の面精度を
向上させるためにPe-A が0kg/cm2 に等しくなる
様に射出圧力を調整した場合でも、Pe-BC>0となり、
光学面3および光学面4にヒケが発生することがない。
In the present embodiment as described above, the surface portion 18 of the surface A, the surface portion 19 of the surface B, and the surface portion 20 of the C surface are softened again while the center portion 17 of the molded product is solidified. Without being affected by contraction or expansion of the center portion 17 of the product, stress distortion in each of them is eliminated, and excellent surface accuracy can be achieved. Also, since the resin pressure PeA at the time of opening the surface layer 18 of the surface A is lower than the resin pressure Pe-BC of the surface layer B 19 and the surface layer C, the surface accuracy of the optical surface 2 is improved. Even if the injection pressure is adjusted so that P eA is equal to 0 kg / cm 2 , P e-BC > 0, and
No sink marks occur on the optical surfaces 3 and 4.

【0023】[0023]

【実施例2】図5は本発明の実施例2に使用される金型
を示す。この金型ではA面入子7がA面スリーブ31内
に配設されると共に、B面入子8及びC面入子9がBC
面スリーブ32内に埋設され、これらのA面スリーブ3
1とBC面スリーブ32が金型ベース(図示省略)内に
埋設されている。
Embodiment 2 FIG. 5 shows a mold used in Embodiment 2 of the present invention. In this mold, the A-side insert 7 is disposed in the A-side sleeve 31, and the B-side insert 8 and the C-side insert 9 are BC
These A-side sleeves 3 are embedded in the
1 and a BC surface sleeve 32 are embedded in a mold base (not shown).

【0024】また、A面入子7とB面入子8とC面入子
9にはそれぞれA面入子ヒータ35,B面入子ヒータ3
6,C面入子ヒータ37が埋設されていると共に、A面
スリーブ31とB面スリーブ32にはそれぞれA面スリ
ーブ水管33とBC面スリーブ水管34が設けられてい
る。そして、これらのA面スリーブ水管33およびBC
面スリーブ水管34にはA面用冷却水タンク(図示省
略)とBC面用冷却水タンク(図示省略)が接続されて
いる。
The A-plane insert 7, the B-plane insert 8 and the C-plane insert 9 have an A-plane insert heater 35 and a B-plane insert heater 3 respectively.
6, a C-plane insertion heater 37 is embedded, and an A-side sleeve water pipe 33 and a BC-side sleeve water pipe 34 are provided in the A-side sleeve 31 and the B-side sleeve 32, respectively. Then, these A-side sleeve water pipe 33 and BC
A cooling water tank for A surface (not shown) and a cooling water tank for BC surface (not shown) are connected to the surface sleeve water pipe 34.

【0025】このような、金型を用いた製造において、
射出工程、一次冷却工程および二次冷却工程ではA面ス
リーブ水管33とBC面スリーブ水管34にA面用冷却
タンクとBC面用冷却水タンクから冷却水を供給する。
また、再加熱時にはこの通水を停止し、A面入子ヒータ
35、B面入子ヒータ36およびC面入子ヒータ37に
通電することによりA面入子7、B面入子8およびC面
入子9を加熱する。その他の操作は実施例1と同様に行
う。
In the production using such a mold,
In the injection step, the primary cooling step, and the secondary cooling step, cooling water is supplied to the A-side sleeve water pipe 33 and the BC-side sleeve water pipe 34 from the A-side cooling tank and the BC-side cooling water tank.
At the time of reheating, this water flow is stopped, and the A-plane insertion heater 35, the B-plane insertion heater 36, and the C-plane insertion heater 37 are energized, so that the A-plane insertion 7, the B-plane insertion 8, and C The face insert 9 is heated. Other operations are performed in the same manner as in the first embodiment.

【0026】このような本実施例では、A面入子ヒータ
35,B面入子ヒータ36およびC面入子ヒータ37で
A面入子7とB面入子8とC面入子9を加熱するため、
水管を設けることができない小型の入子でも再加熱を行
うことができる。また、この実施例では実施例1よりも
短時間でA面入子7,B面入子8およびC面入子9を所
定の温度まで加熱することが可能であり迅速な製造がで
きる。
In this embodiment, the A-plane insert 7, the B-plane insert 8 and the C-plane insert 9 are formed by the A-plane insert heater 35, the B-plane insert heater 36 and the C-plane insert heater 37. To heat
Reheating can be performed even with a small nest that cannot be provided with a water pipe. Further, in this embodiment, the A-plane insert 7, the B-plane insert 8 and the C-plane insert 9 can be heated to a predetermined temperature in a shorter time than in the first embodiment, and rapid production can be performed.

【0027】[0027]

【発明の効果】以上のとおり本発明では、厚肉が厚く、
偏肉のある光学素子でも良好な面精度で製造できると共
に、他の光学面の面精度にヒケを発生させることなく、
特定の光学面の面精度を選択的に向上させることができ
る。
As described above, in the present invention, the thickness is large,
Even with an optical element with uneven thickness, it can be manufactured with good surface accuracy, and without causing sink marks on the surface accuracy of other optical surfaces,
The surface accuracy of a specific optical surface can be selectively improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1により製造される3角プリズ
ムの斜視図である。
FIG. 1 is a perspective view of a triangular prism manufactured according to a first embodiment of the present invention.

【図2】実施例1に使用される金型の断面図である。FIG. 2 is a sectional view of a mold used in the first embodiment.

【図3】実施例1の製造に伴う樹脂温度の特性図であ
る。
FIG. 3 is a characteristic diagram of a resin temperature during production in Example 1.

【図4】実施例1の製造に伴う樹脂圧力の特性図であ
る。
FIG. 4 is a characteristic diagram of a resin pressure accompanying the production of Example 1.

【図5】実施例2に使用される金型の断面図である。FIG. 5 is a sectional view of a mold used in the second embodiment.

【図6】光学素子の第1例の正面図である。FIG. 6 is a front view of a first example of the optical element.

【図7】図6の側面図である。FIG. 7 is a side view of FIG. 6;

【図8】光学素子の第2例の正面図である。FIG. 8 is a front view of a second example of the optical element.

【図9】光学素子の第3例の正面図である。FIG. 9 is a front view of a third example of the optical element.

【図10】図9の正面図である。FIG. 10 is a front view of FIG. 9;

【図11】光学素子の第4例の正面図である。FIG. 11 is a front view of a fourth example of the optical element.

【符号の説明】[Explanation of symbols]

1 3角プリズム 2,3,4 光学面 5,6 側面 1 Triangular prism 2, 3, 4 Optical surface 5, 6 Side surface

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 溶融樹脂を金型のキャビティ内に射出す
る射出工程と、射出された樹脂を冷却する一次冷却工程
と、成形品を形成する各面の表層部の樹脂を少なくとも
ガラス転移点以上に加熱する再加熱工程と、成形品を取
出し温度まで冷却する二次冷却工程とを備え、前記再加
熱工程において成形品の各面に対して選択的に加熱温度
差を設けて加熱することを特徴とするプラスチック光学
素子の射出成形方法。
1. An injection step of injecting a molten resin into a cavity of a mold, a primary cooling step of cooling the injected resin, and a resin of a surface layer of each surface forming a molded product is at least a glass transition point or higher. A reheating step of heating the molded article, and a secondary cooling step of cooling the molded article to the take-out temperature, wherein in the reheating step, heating is performed by selectively providing a heating temperature difference to each surface of the molded article. Characteristic injection molding method for plastic optical elements.
JP20890893A 1993-07-30 1993-07-30 Injection molding method of plastic optical element Expired - Fee Related JP3320513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20890893A JP3320513B2 (en) 1993-07-30 1993-07-30 Injection molding method of plastic optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20890893A JP3320513B2 (en) 1993-07-30 1993-07-30 Injection molding method of plastic optical element

Publications (2)

Publication Number Publication Date
JPH0740404A JPH0740404A (en) 1995-02-10
JP3320513B2 true JP3320513B2 (en) 2002-09-03

Family

ID=16564119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20890893A Expired - Fee Related JP3320513B2 (en) 1993-07-30 1993-07-30 Injection molding method of plastic optical element

Country Status (1)

Country Link
JP (1) JP3320513B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169925A (en) * 2003-12-12 2005-06-30 Ono Sangyo Kk Method and apparatus for injection molding
JP2012250510A (en) * 2011-06-06 2012-12-20 Seiko Epson Corp Injection mold, injection-molded article, and injection molding method
WO2014185413A1 (en) * 2013-05-13 2014-11-20 日産化学工業株式会社 Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element

Also Published As

Publication number Publication date
JPH0740404A (en) 1995-02-10

Similar Documents

Publication Publication Date Title
KR102089845B1 (en) Method and apparatus for producing a multilayer injection moulding with interstage cooling
US5324473A (en) Method for molding stress free amorphous and crystalline thermoplastic resins
JPS6119407B2 (en)
JP2000084945A (en) Plastic molding and method for molding it
JP3320513B2 (en) Injection molding method of plastic optical element
WO1989010829A1 (en) Method of molding plastic and mold therefor
US2565803A (en) Method of bonding thermoplastic materials
JPS59232835A (en) Metallic mold for injection compression molding and molding method using the same
US4427618A (en) Inclined insulated runner multicavity injection molding
JP3476841B2 (en) Plastic lens injection molding method
WO2003051602A8 (en) Method for the injection moulding of an optical element made from synthetic thermoplastic material
JP2000141413A (en) Manufacture of plastic molded product
JPH06892A (en) Fresnel lens molding method and apparatus
JP2537231B2 (en) Plastic lens molding method
CA1289319C (en) Molding method and apparatus
JPH10296733A (en) Molding method for improving sinkmark and mold temperature controlling system
JPH0421574B2 (en)
JP3197981B2 (en) Injection molding method
JP4714391B2 (en) Injection molding method and plastic molded product
JPS613716A (en) Injection molding method and mold therefor
JPH08127032A (en) Manufacture of plastic molded product
JP2002240110A (en) Method for injection molding plastic optical element
JPS6035245B2 (en) Injection molding method
JP2002096351A (en) In-mold coating method
JP3719757B2 (en) Mold and molding method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees