JPH0740404A - Injection molding of plastic optical element - Google Patents

Injection molding of plastic optical element

Info

Publication number
JPH0740404A
JPH0740404A JP20890893A JP20890893A JPH0740404A JP H0740404 A JPH0740404 A JP H0740404A JP 20890893 A JP20890893 A JP 20890893A JP 20890893 A JP20890893 A JP 20890893A JP H0740404 A JPH0740404 A JP H0740404A
Authority
JP
Japan
Prior art keywords
insert
surface layer
resin
cooling
layer portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20890893A
Other languages
Japanese (ja)
Other versions
JP3320513B2 (en
Inventor
Kenji Haga
健二 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP20890893A priority Critical patent/JP3320513B2/en
Publication of JPH0740404A publication Critical patent/JPH0740404A/en
Application granted granted Critical
Publication of JP3320513B2 publication Critical patent/JP3320513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To produce an optical element deviated in wall thickness with good surface accuracy. CONSTITUTION:After the resin injected into a cavity is cooled to its glass transition point or lower, the surface layer parts of the respective surfaces of a molded product are reheated to the glass transition point or higher to melt the resin of the surface layer parts and subsequently cooled to taking-out temp. to be molded. In reheating, the molded product is heated so that temp. difference is selectively provided to the respective surfaces of the molded product to enhance surface accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はプラスチック光学素子の
射出成形方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of injection molding a plastic optical element.

【0002】[0002]

【従来の技術】プラスチック光学素子の成形は、一定の
温度に保持された金型のキャビティ内に溶融樹脂を射出
し、冷却固化させる方法が一般的に用いられている。こ
の成形方法によれば、厚肉で且つ偏肉の大きい光学素子
の場合、成形品の中心部と表層部及び成形品の厚肉部と
薄肉部とで樹脂の冷却速度に差が生じて歪が発生するこ
とにより、良好な面精度を有した光学面が得られない。
2. Description of the Related Art For molding a plastic optical element, a method of injecting a molten resin into a cavity of a mold kept at a constant temperature and cooling and solidifying the resin is generally used. According to this molding method, in the case of an optical element having a large thickness and a large uneven thickness, a difference occurs in the cooling rate of the resin between the center part and the surface layer part of the molded product and between the thick part and the thin part of the molded product, which causes distortion. Therefore, an optical surface having good surface accuracy cannot be obtained.

【0003】この問題点を解消する従来方法として、特
公昭62−183320号公報では、一度冷却固化され
た成形品の表層部を金型内で再び加熱溶融し、その後再
び冷却固化させる方法が開示されている。この方法で
は、成形品の表層部が均一に再溶融されるため、表層部
に保有されている応力歪が消失する。また、成形品の中
心部が固化した状態で表層部が再溶融及び再冷却される
ため、再冷却工程における成形品中心部の固化収縮又は
復元膨張があっても表層部に歪が発生することがなくな
る。
As a conventional method for solving this problem, Japanese Patent Publication No. Sho 62-183320 discloses a method in which a surface layer portion of a molded product once cooled and solidified is heated and melted again in a mold and then cooled and solidified again. Has been done. In this method, the surface layer portion of the molded product is remelted uniformly, so that the stress strain retained in the surface layer portion disappears. Further, since the surface layer portion is remelted and recooled in a state where the center portion of the molded product is solidified, distortion may occur in the surface layer portion even if there is solidification shrinkage or restoration expansion of the molded product center portion in the recooling step. Disappears.

【0004】[0004]

【発明が解決しようとする課題】上述した従来方法は、
表層部を再溶融し、パスカルの原理に基づき成形品各面
の樹脂圧力を均一にし、歪を低減させるものである。し
かしながら、溶融された樹脂は物性劣化が開始される直
前まで加熱されても、大きな粘性を保有しているため水
などに比べて圧力の伝達が行われにくい。従って例え
ば、図6および図7に示すように、円盤形状の成形面
や、図8に示す球形状の成形面のように、エッジ部が存
在しない面内では樹脂圧力の均一化を図ることが容易で
あるが、図9および図10に示す3角柱形状や図11に
示す左右両端が直線的に切り欠かれたレンズ形状の場合
には、エッジ部の両側の面内での樹脂圧力の相互の均一
化が困難であり、エッジ部の両側の面で樹脂圧力の差が
生じ成形品の内部に残留する。
The above-mentioned conventional method is
The surface layer is re-melted, the resin pressure on each surface of the molded product is made uniform based on the principle of Pascal, and the strain is reduced. However, even if the melted resin is heated until just before the start of physical property deterioration, it has a large viscosity, so that it is difficult to transmit pressure as compared with water. Therefore, for example, as shown in FIGS. 6 and 7, it is possible to make the resin pressure uniform within a surface having no edge portion such as a disk-shaped molding surface or a spherical molding surface shown in FIG. Although it is easy, in the case of the triangular prism shape shown in FIGS. 9 and 10 or the lens shape shown in FIG. 11 in which the left and right ends are linearly cut out, the mutual resin pressures on both sides of the edge portion are Is difficult to make uniform, and a difference in resin pressure occurs between the surfaces on both sides of the edge portion and remains inside the molded product.

【0005】このため、光学面となる成形面の間にエッ
ジ部を有する3角プリズムなどの光学素子を成形する場
合においては、表層部を再加熱しても各光学面の間で樹
脂圧力の差が存在する。従って、特定の光学面の面精度
を向上させる目的で、金型の型開き時に特定光学面の表
層部の樹脂が金型面を押圧する圧力を0kg/cm2
近ずけるように射出圧力を調整した場合に、他の光学面
にヒケが発生する問題があった。
Therefore, in the case of molding an optical element such as a triangular prism having an edge portion between the molding surfaces which become the optical surfaces, even if the surface layer portion is reheated, the resin pressure between the respective optical surfaces will be reduced. There is a difference. Therefore, in order to improve the surface accuracy of the specific optical surface, the injection pressure should be adjusted so that the pressure of the resin on the surface layer of the specific optical surface pressing the mold surface when the mold is opened approaches 0 kg / cm 2. However, there is a problem that sink marks are generated on other optical surfaces when the adjustment is made.

【0006】本発明は、上記事情を考慮してなされたも
のであり、他の光学面にヒケを生じさせることなく、特
定の光学面の面精度を向上させることが可能なプラスチ
ック光学素子の射出成形方法を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and an injection of a plastic optical element capable of improving the surface accuracy of a specific optical surface without causing sink marks on other optical surfaces. An object is to provide a molding method.

【0007】[0007]

【課題を解決するための手段および作用】本発明の製造
方法は、以下の工程順により構成される。 (1)金型のキャビティ内に溶融樹脂を射出する工程。 (2)射出後にキャビティ内の樹脂をガラス転移点以下
の温度まで冷却する一次冷却工程。 (3)一次冷却工程後に、成形品の各面の表層部の樹脂
を少なくともガラス転移点以上の温度まで加熱して軟化
させる再加熱工程。この再加熱工程では、面精度が要求
される特定の光学面の表層部を他の光学面の表層部より
も低い温度となるように温度差を設けて加熱する。かか
る温度差の設定は金型のキャビティの各面を形成する入
子の内、特定の光学面を形成する入子の温度を他の光学
面を形成する入子の温度よりも低くなるように加熱する
ことで行うことができる。 (4)再加熱工程終了後における成形品を取出し温度ま
で冷却する二次冷却工程。この二次冷却工程では、面精
度が要求される特定の光学面の表層部を他の光学面の表
層部よりも低い温度となるように温度差を設けて冷却す
る。かかる温度差の設定は再加熱工程と同様に、特定の
光学面を形成する入子と他の光学面を形成する入子とに
温度差が生じるように冷却することで可能となる。
The manufacturing method of the present invention comprises the following steps. (1) A step of injecting a molten resin into the cavity of the mold. (2) A primary cooling step of cooling the resin in the cavity to a temperature below the glass transition point after injection. (3) After the primary cooling step, a reheating step of heating the resin in the surface layer portion of each surface of the molded product to at least a glass transition temperature or higher to soften the resin. In this reheating step, a surface layer portion of a specific optical surface that requires surface accuracy is heated with a temperature difference so as to have a lower temperature than surface layer portions of other optical surfaces. The temperature difference is set so that the temperature of the nest forming a specific optical surface of the nest forming each surface of the mold cavity is lower than the temperature of the nest forming another optical surface. It can be performed by heating. (4) A secondary cooling step in which the molded product after the reheating step is finished is taken out and cooled to the temperature. In this secondary cooling step, the surface layer portion of the specific optical surface that requires surface accuracy is cooled by providing a temperature difference so as to have a lower temperature than the surface layer portion of the other optical surface. Similar to the reheating step, the temperature difference can be set by cooling so that there is a temperature difference between the insert forming the specific optical surface and the insert forming the other optical surface.

【0008】以上のような構成において、再加熱工程で
は、成形品の中心部が固化した状態で、表層部に溶融樹
脂層が生成されるため、この再加熱工程を経ることによ
り、成形品の中心部の樹脂の膨張及び収縮の影響がなく
なる。また、再加熱工程から二次冷却工程における表層
部の溶融樹脂層のガラス転移点近傍までの冷却の間、面
精度が要求される特定の光学面の表層部の樹脂温度が、
他の光学面よりも低いため、表層部の樹脂圧力が他の光
学面の樹脂圧力よりも低くなる。そして、取出し温度ま
で冷却されるまでの間に、各光学面の表層部の樹脂圧力
はこの高低差を有したまま低下し、一定の圧力に収束す
る。
In the above-mentioned structure, in the reheating step, a molten resin layer is formed in the surface layer portion in the state where the center portion of the molded product is solidified. The influence of expansion and contraction of the resin in the central part is eliminated. Further, during the cooling from the reheating step to the vicinity of the glass transition point of the molten resin layer of the surface layer portion in the secondary cooling step, the resin temperature of the surface layer portion of the specific optical surface for which surface accuracy is required,
Since it is lower than the other optical surfaces, the resin pressure on the surface layer portion becomes lower than the resin pressure on the other optical surfaces. Then, the resin pressure of the surface layer portion of each optical surface decreases while maintaining this height difference until it is cooled to the extraction temperature, and converges to a constant pressure.

【0009】従って、型開き時に面精度が要求される光
学面の表層部の樹脂圧力が0kg/cm2 となるように
射出圧力を調整しても、他の光学面の型開き時の樹脂圧
力が0kg/cm2 以上であるため、他の光学面にヒケ
が発生することがなくなる。
Therefore, even if the injection pressure is adjusted so that the resin pressure on the surface layer of the optical surface, which requires surface accuracy when the mold is opened, becomes 0 kg / cm 2 , the resin pressure at the time of mold opening of the other optical surfaces Is 0 kg / cm 2 or more, sink marks do not occur on other optical surfaces.

【0010】[0010]

【実施例1】図1は本発明の実施例1により製造される
3角プリズム1を示す。この3角プリズム1は光学面
2,3,4および側面5,6の5面により構成されてお
り、光学面2が使用上の理由から他の光学面3,4より
も高精度な面精度が要求されている。以下、光学面2を
A面、光学面3をB面、光学面4をC面と記する。
Embodiment 1 FIG. 1 shows a triangular prism 1 manufactured according to Embodiment 1 of the present invention. This triangular prism 1 is composed of five optical surfaces 2, 3 and 4 and side surfaces 5 and 6, and the optical surface 2 has a higher surface accuracy than the other optical surfaces 3 and 4 for reasons of use. Is required. Hereinafter, the optical surface 2 is referred to as an A surface, the optical surface 3 is referred to as a B surface, and the optical surface 4 is referred to as a C surface.

【0011】図2はこの3角プリズムを成形する金型を
示す。キャビティ1′はA面入子7に設けられた金型A
面2′と、B面入子8に設けられた金型B面3′と、C
面入子9に設けられた金型C面4′とによって形成され
ている。A面入子7B面入子8、C面入子9にはそれぞ
れA面入子水管10とB面入子水管11とC面入子水管
12が設けられていると共に、金型A面2′と金型B面
3′と金型C面4′の近傍にA面入子熱電対12、B面
入子熱電対14、C面入子熱電対15が埋設されてい
る。
FIG. 2 shows a mold for molding this triangular prism. The cavity 1'is a mold A provided on the A-side insert 7.
Surface 2 ', a mold B surface 3'provided on the B surface insert 8, and C
It is formed by the mold C surface 4 ′ provided on the surface insert 9. A-side insert 7 B-side insert 8 and C-side insert 9 are provided with A-side insert water pipe 10, B-side insert water pipe 11 and C-face insert water pipe 12, respectively, and mold A-face 2 A side insert thermocouple 12, a B side insert thermocouple 14, and a C side insert thermocouple 15 are embedded in the vicinity of ′, the mold B face 3 ′, and the mold C face 4 ′.

【0012】また、A面入子水管10はA面入子用加熱
油タンク(図示省略)とA面入子用冷却油タンク(図示
省略)とに切換可能に接続されると共に、B面入子水管
11とC面入子水管12はBC面入子用加熱油タンク
(図示省略)及びBC面入子用冷却タンク(図示省略)
に切換可能に接続されている。
The A-side insert water pipe 10 is switchably connected to a A-side insert heating oil tank (not shown) and an A-side insert cooling oil tank (not shown). The sub-water pipe 11 and the C-face insert water pipe 12 are a heating oil tank for BC-face insert (not shown) and a cooling tank for BC-face insert (not shown).
The switch is connected to.

【0013】A面入子7,B面入子8,C面入子9は金
型ベース(図示省略)内に埋設されており、成形機ノズ
ルより金型ベース内に射出された樹脂はゲート16を介
してキャビティ1′内に充填される。
The A-side insert 7, the B-side insert 8, and the C-side insert 9 are embedded in a mold base (not shown), and the resin injected from the molding machine nozzle into the mold base is a gate. It is filled into the cavity 1 ′ via 16.

【0014】次に本実施例による製造工程を説明する。
図3は製造工程におけるキャビティ1′内の樹脂温度で
あり、特性曲線21はBC面の表層部の温度、特性曲線
22はA面の表層部の温度を示している。
Next, the manufacturing process according to this embodiment will be described.
FIG. 3 shows the resin temperature in the cavity 1'in the manufacturing process, the characteristic curve 21 shows the temperature of the surface layer portion of the BC surface, and the characteristic curve 22 shows the temperature of the surface layer portion of the A surface.

【0015】まず、A面入子水管10と、B面入子水管
11とC面入子水管12とにA面入子用冷却油タンクと
BC面入子冷却油タンクからそれぞれ冷却油を供給し
て、A面入子7,B面入子8,C面入子9を取出し温度
とし、このにした状態で成形機からゲート16を介し、
キャビティ1′内に溶融樹脂を射出して充填する。この
充填された溶融樹脂によってA面入子7,B面入子8,
C面入子9の温度が上昇し、図3の温度bとなる。
First, cooling oil is supplied to the A-side nest water pipe 10, the B-side nest water pipe 11 and the C-side nest water pipe 12 from the A-side nest cooling oil tank and the BC-face nest cooling oil tank, respectively. Then, the A-side insert 7, the B-side insert 8 and the C-side insert 9 are brought to the temperature of extraction, and in this state, from the molding machine through the gate 16,
The molten resin is injected and filled in the cavity 1 '. The A-side insert 7, B-side insert 8,
The temperature of the C-face insert 9 rises to the temperature b in FIG.

【0016】次に、キャビティ1′内の樹脂を冷却固化
させて図3の温度cとする。この後、A面入子水管10
と、B面入子水管11と、C面入子水管12とにA面入
子用加熱油タンクおよびBC面入子用加熱油タンクから
の加熱油を供給して、A面入子7,B面入子8,C面入
子9を少なくともガラス転移点以上に加熱する、再加熱
を行う。この時、BC面入子用加熱タンク内の加熱油を
A面入子用加熱タンク内の加熱油よりも高温度に保持し
ており、これにより再加熱工程完了時においては、B面
入子8及びC面入子9の温度dBCがA面入子7の温度d
A よりも高い温度まで到達する。
Next, the resin in the cavity 1'is cooled and solidified to the temperature c shown in FIG. After this, A-side inlet water pipe 10
And heating oil from the heating oil tank for A-side insertion and the heating oil tank for BC-side insertion to the B-side insertion water pipe 11 and the C-side insertion water pipe 12, respectively. Reheating is performed by heating the B-side insert 8 and the C-side insert 9 to at least the glass transition point or higher. At this time, the heating oil in the BC side insert heating tank is kept at a higher temperature than the heating oil in the A side insert heating tank, so that the B side insert is completed at the completion of the reheating process. 8 and the temperature d BC of the C face insert 9 is the temperature d of the A face insert 7.
Reach higher temperature than A.

【0017】次に、A面入子用水管10,B面入子水管
11およびC面入子用水管12にA面入子用冷却タンク
およびBC 面入子用冷却タンクから冷却油を供給し、A
面入子7,B面入子8およびC面入子9の温度が取出し
温度Teとなるまで冷却する。
Next, cooling oil is supplied to the A-side insert water pipe 10, the B-side insert water pipe 11 and the C-face insert water pipe 12 from the A-side insert cooling tank and the B C- face insert cooling tank. Then A
The face insert 7, the B face insert 8 and the C face insert 9 are cooled until the temperature reaches the extraction temperature Te.

【0018】この冷却工程において、A面入子7,B面
入子8およびC面入子9がガラス転移点近傍に下がるま
では、B面入子8およびC面入子9の温度がA面入子7
の温度より高い温度となり、内且つこの冷却工程が完了
した時に、A面入子7,B面入子8およびC面入子9の
温度が均一となる様にA面入子用冷却タンクとBC面入
子用冷却タンク内の冷却油の温度がそれぞれ調整されて
いる。また、取出し時においては、A面表層部18(図
3参照)が金型のA面に接触した状態で同表層部18の
樹脂圧力が0kg/cm2 に収束する様に射出工程の射
出圧力調整を行う。
In this cooling process, the temperatures of the B-side insert 8 and the C-side insert 9 are A until the A-side insert 7, the B-side insert 8 and the C-side insert 9 are lowered near the glass transition point. Face insert 7
The temperature of the A-side insert 7, the B-side insert 8, and the C-side insert 9 become uniform when the cooling process is completed and the temperature is higher than that of the A-side insert cooling tank. The temperature of the cooling oil in the BC plane insert cooling tank is adjusted. Further, at the time of unloading, the injection pressure in the injection step is set so that the resin pressure of the surface A part 18 (see FIG. 3) is in contact with the surface A of the mold so that the resin pressure of the surface part 18 converges to 0 kg / cm 2. Make adjustments.

【0019】図4は上記工程における樹脂圧力の変化を
示し、特性曲線23はBC面表層部19,20(図3参
照)の樹脂圧力、特性曲線24はA面表層部18の樹脂
圧力である。図3におけるb→c間は冷却工程であり、
この工程では成形品全体が一度冷却固化される。このと
きA面表層部18とB面表層部19とC面表層部20の
樹脂圧力はそれぞれPC-A ,PC-BCに収束するが、P
C-A >PC-BCとなっている。
FIG. 4 shows changes in the resin pressure in the above process. The characteristic curve 23 is the resin pressure of the BC surface surface layer portions 19 and 20 (see FIG. 3), and the characteristic curve 24 is the resin pressure of the A surface surface layer portion 18. . Between b and c in FIG. 3 is a cooling step,
In this step, the entire molded product is once cooled and solidified. At this time, the resin pressures of the A-side surface layer portion 18, the B-side surface layer portion 19 and the C-side surface layer portion 20 converge to P CA and P C-BC , respectively.
CA > PC -BC .

【0020】次に、再加熱工程では、成形品の中心部1
7(図3参照)が固化した状態でA面表層部18、B面
表層部19およびC面表層部20がそれぞれ温度
d-A ,Td-bcとなるまで加熱されるが、Td-A <T
d-BCとなっている。このとき、それぞれの樹脂圧力はP
d-A <Pd-BCとなっている。
Next, in the reheating step, the central portion 1 of the molded product is
7 (see FIG. 3) is solidified, the A-side surface layer portion 18, the B-side surface layer portion 19 and the C-side surface layer portion 20 are heated to temperatures T dA and T d-bc , respectively, but T dA <T
It is d-BC . At this time, each resin pressure is P
dA <P d-BC .

【0021】次に、二次冷却工程では、A面表層部1
8、B面表層部19およびC面表層部20が取出し温度
Te(図3参照)まで冷却されることにより、それぞれ
の樹脂圧力がPe-A ,Pe-BCとなる。また、このとき固
化が開始されるガラス転移点付近では、Td-A <Td-BC
関係が維持されているため、Pe-A <Pe-BCの関係が生
じる。従って、Pe-A ≒0となる様に射出圧力Pb を調
整してもPe-BC>0となる。
Next, in the secondary cooling step, the A-side surface layer portion 1
By cooling the No. 8, B-side surface layer portion 19 and the C-side surface layer portion 20 to the extraction temperature Te (see FIG. 3), the respective resin pressures become PeA and Pe -BC . In addition, at this time, T dA <T d-BC near the glass transition point where solidification starts .
Since the relationship is maintained, the relationship P eA <P e-BC occurs. Therefore, even if the injection pressure P b is adjusted so that P eA ≈0 , P e-BC > 0.

【0022】以上のような本実施例では、成形品の中心
部17が固化した状態で、A面表層部18とB面表層ぶ
19とC面表層部20とが再度軟化させられるため、成
形品の中心部17の収縮または膨張の影響を受けること
なく、それぞれにおける応力歪が解消され良好な面精度
とすることができる。また、A面表層部18の型開き時
の樹脂圧力Pe-A がB面表層部19とC面表層部の樹脂
圧力Pe-BCよりも低いところから、光学面2の面精度を
向上させるためにPe-A が0kg/cm2 に等しくなる
様に射出圧力を調整した場合でも、Pe-BC>0となり、
光学面3および光学面4にヒケが発生することがない。
In this embodiment as described above, since the A-side surface layer portion 18, the B-side surface layer portion 19 and the C-side surface layer portion 20 are softened again in the state where the center portion 17 of the molded product is solidified, the molding is performed. Without being affected by the contraction or expansion of the central portion 17 of the product, the stress strain in each is eliminated, and good surface accuracy can be obtained. Further, since the resin pressure P eA at the time of mold opening of the A-side surface layer portion 18 is lower than the resin pressure P e-BC of the B-side surface layer portion 19 and the C-side surface layer portion, in order to improve the surface accuracy of the optical surface 2. Even if the injection pressure is adjusted so that P eA becomes equal to 0 kg / cm 2 , P e-BC > 0,
No sink marks are generated on the optical surfaces 3 and 4.

【0023】[0023]

【実施例2】図5は本発明の実施例2に使用される金型
を示す。この金型ではA面入子7がA面スリーブ31内
に配設されると共に、B面入子8及びC面入子9がBC
面スリーブ32内に埋設され、これらのA面スリーブ3
1とBC面スリーブ32が金型ベース(図示省略)内に
埋設されている。
Second Embodiment FIG. 5 shows a mold used in a second embodiment of the present invention. In this mold, the A-side insert 7 is arranged in the A-side sleeve 31, and the B-side insert 8 and the C-side insert 9 are BC.
Embedded in the face sleeve 32, these A face sleeves 3
1 and a BC surface sleeve 32 are embedded in a mold base (not shown).

【0024】また、A面入子7とB面入子8とC面入子
9にはそれぞれA面入子ヒータ35,B面入子ヒータ3
6,C面入子ヒータ37が埋設されていると共に、A面
スリーブ31とB面スリーブ32にはそれぞれA面スリ
ーブ水管33とBC面スリーブ水管34が設けられてい
る。そして、これらのA面スリーブ水管23およびBC
面スリーブ水管34にはA面用冷却水タンク(図示省
略)とBC面用冷却水タンク(図示省略)が接続されて
いる。
The A-side insert 7, the B-side insert 8 and the C-side insert 9 have an A-side insert heater 35 and a B-side insert heater 3, respectively.
6, the C-side insert heater 37 is embedded, and the A-side sleeve 31 and the B-side sleeve 32 are provided with an A-side sleeve water pipe 33 and a BC-side sleeve water pipe 34, respectively. And these A side sleeve water pipes 23 and BC
A cooling water tank for A surface (not shown) and a cooling water tank for BC surface (not shown) are connected to the surface sleeve water pipe 34.

【0025】このような、金型を用いた製造において、
射出工程、一次冷却工程および二次冷却工程ではA面ス
リーブ水管33とBC面スリーブ水管34にA面用冷却
タンクとBC面用冷却水タンクから冷却水を供給する。
また、再加熱時にはこの通水を停止し、A面入子ヒータ
35、B面入子ヒータ36およびC面入子ヒータ37に
通電することによりA面入子7、B面入子8およびC面
入子9を加熱する。その他の操作は実施例1と同様に行
う。
In such manufacturing using a die,
In the injection process, the primary cooling process, and the secondary cooling process, cooling water is supplied to the A-side sleeve water pipe 33 and the BC-side sleeve water pipe 34 from the A-side cooling tank and the BC-side cooling water tank.
Further, at the time of reheating, this water flow is stopped, and the A-side insert heater 35, the B-side insert heater 36, and the C-face insert heater 37 are energized so that the A-face insert 7, the B-face insert 8 and the C-face insert C The face insert 9 is heated. Other operations are the same as in Example 1.

【0026】このような本実施例では、A面入子ヒータ
35,B面入子ヒータ36およびC面入子ヒータ37で
A面入子7とB面入子8とC面入子9を加熱するため、
水管を設けることができない小型の入子でも再加熱を行
うことができる。また、この実施例では実施例1よりも
短時間でA面入子7,B面入子8およびC面入子9を所
定の温度まで加熱することが可能であり迅速な製造がで
きる。
In this embodiment, the A-side nest heater 35, the B-side nest heater 36, and the C-side nest heater 37 are used to connect the A-side nest 7, the B-side nest 8, and the C-side nest 9. To heat
Reheating can be performed even with a small insert that cannot be provided with a water pipe. Further, in this embodiment, the A-side insert 7, the B-side insert 8 and the C-side insert 9 can be heated to a predetermined temperature in a shorter time than in the first embodiment, and rapid manufacturing is possible.

【0027】[0027]

【発明の効果】以上のとおり本発明では、厚肉が厚く、
偏肉のある光学素子でも良好な面精度で製造できると共
に、他の光学面の面精度にヒケを発生させることなく、
特定の光学面の面精度を選択的に向上させることができ
る。
As described above, in the present invention, the thick wall is thick,
Even with an optical element with uneven thickness, it can be manufactured with good surface accuracy, and without sinking in the surface accuracy of other optical surfaces,
It is possible to selectively improve the surface accuracy of a specific optical surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1により製造される3角プリズ
ムの斜視図である。
FIG. 1 is a perspective view of a triangular prism manufactured according to a first embodiment of the present invention.

【図2】実施例1に使用される金型の断面図である。FIG. 2 is a cross-sectional view of a mold used in Example 1.

【図3】実施例1の製造に伴う樹脂温度の特性図であ
る。
FIG. 3 is a characteristic diagram of a resin temperature associated with the production of Example 1.

【図4】実施例1の製造に伴う樹脂圧力の特性図であ
る。
FIG. 4 is a characteristic diagram of resin pressure in the production of Example 1.

【図5】実施例2に使用される金型の断面図である。5 is a cross-sectional view of a mold used in Example 2. FIG.

【図6】光学素子の第1例の正面図である。FIG. 6 is a front view of a first example of an optical element.

【図7】図6の側面図である。FIG. 7 is a side view of FIG.

【図8】光学素子の第2例の正面図である。FIG. 8 is a front view of a second example of the optical element.

【図9】光学素子の第3例の正面図である。FIG. 9 is a front view of a third example of the optical element.

【図10】図9の正面図である。FIG. 10 is a front view of FIG. 9.

【図11】光学素子の第4例の正面図である。FIG. 11 is a front view of a fourth example of the optical element.

【符号の説明】[Explanation of symbols]

1 3角プリズム 2,3,4 光学面 5,6 側面 1 Trigonal prism 2, 3, 4 Optical surface 5, 6 Side surface

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶融樹脂を金型のキャビティ内に射出す
る射出工程と、射出された樹脂を冷却する一次冷却工程
と、成形品を形成する各面の表層部の樹脂を少なくとも
ガラス転移点以上に加熱する再加熱工程と、成形品を取
出し温度まで冷却する二次冷却工程とを備え、前記再加
熱工程において成形品の各面に対して選択的に加熱温度
差を設けて加熱することを特徴とするプラスチック光学
素子の射出成形方法。
1. An injection step of injecting a molten resin into a cavity of a mold, a primary cooling step of cooling the injected resin, and a resin of a surface layer portion of each surface forming a molded product at least a glass transition point or more. A reheating step of heating the molded article and a secondary cooling step of cooling the molded article to a temperature for removing the molded article are provided. In the reheating step, heating is performed by selectively providing a heating temperature difference to each surface of the molded article. A method for injection-molding a characteristic plastic optical element.
JP20890893A 1993-07-30 1993-07-30 Injection molding method of plastic optical element Expired - Fee Related JP3320513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20890893A JP3320513B2 (en) 1993-07-30 1993-07-30 Injection molding method of plastic optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20890893A JP3320513B2 (en) 1993-07-30 1993-07-30 Injection molding method of plastic optical element

Publications (2)

Publication Number Publication Date
JPH0740404A true JPH0740404A (en) 1995-02-10
JP3320513B2 JP3320513B2 (en) 2002-09-03

Family

ID=16564119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20890893A Expired - Fee Related JP3320513B2 (en) 1993-07-30 1993-07-30 Injection molding method of plastic optical element

Country Status (1)

Country Link
JP (1) JP3320513B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169925A (en) * 2003-12-12 2005-06-30 Ono Sangyo Kk Method and apparatus for injection molding
CN102814914A (en) * 2011-06-06 2012-12-12 精工爱普生株式会社 Injection mold, injection-molded product, and injection molding method
KR20160007635A (en) * 2013-05-13 2016-01-20 닛산 가가쿠 고교 가부시키 가이샤 Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169925A (en) * 2003-12-12 2005-06-30 Ono Sangyo Kk Method and apparatus for injection molding
CN102814914A (en) * 2011-06-06 2012-12-12 精工爱普生株式会社 Injection mold, injection-molded product, and injection molding method
KR20160007635A (en) * 2013-05-13 2016-01-20 닛산 가가쿠 고교 가부시키 가이샤 Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element

Also Published As

Publication number Publication date
JP3320513B2 (en) 2002-09-03

Similar Documents

Publication Publication Date Title
US2565803A (en) Method of bonding thermoplastic materials
JP3917362B2 (en) Molding method for precision molded products
JPH0740404A (en) Injection molding of plastic optical element
JP2000141413A (en) Manufacture of plastic molded product
JPH06892A (en) Fresnel lens molding method and apparatus
JPS613716A (en) Injection molding method and mold therefor
EP2801473A1 (en) Method for molding a resin optical lens and the optical lens made thereby
JP3197981B2 (en) Injection molding method
JPH0421574B2 (en)
JPH0354608B2 (en)
US20150273775A1 (en) Method for molding a resin optical lens and the optical lens made thereby
JPH05124077A (en) Manufacture of plastic molding
JP3719757B2 (en) Mold and molding method
JP3134441B2 (en) Parison mold
JPH08127032A (en) Manufacture of plastic molded product
JP2002240110A (en) Method for injection molding plastic optical element
JP2002103405A (en) Method and mold for molding optical element
JPH1119986A (en) Production of injection molded piece
JPS61152420A (en) Molding process of thermoplastic resin
JP2001334534A (en) Method and apparatus for manufacturing heat insulating mold
JP3387635B2 (en) Optical element manufacturing method
JP2002530222A (en) Mold temperature control method for injection molding
JPS60132719A (en) Preparation of plastic lens
JPS63286312A (en) Molding method for plastic
JPH0139337B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees